

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

i

European Component Oriented Architecture (ECOA)

Collaboration Programme:
Architecture Specification

Part 3: Mechanisms

BAE Ref No: IAWG-ECOA-TR-007
Dassault Ref No: DGT 144482-C

Issue: 3

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .

AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd

and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .

AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd.

The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification

make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,

with respect to any of the information.

Note: This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This standard of
documentation is recommended as appropriate for limited lab-based evaluation only. Product development based on
this standard of documentation is not recommended.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

ii

Contents

0 Introduction v

1 Scope 1

2 Warning 1

3 Normative References 1

4 Definitions 2

5 Abbreviations 2

6 ECOA Mechanisms 3

7 Interactions 4

7.1 Module Interactions 4

7.2 Module Instance Queues 4

7.3 Event 5

7.3.1 Event Sent by Provider 5

7.3.2 Event Received by Provider 6

7.4 Request Response 6

7.4.1 Synchronous Request 7

7.4.2 Asynchronous Request 8

7.4.3 Response 8

7.5 Versioned Data Publication 9

7.5.1 Notifying Versioned Data 11

7.6 Trigger 12

7.7 Dynamic Trigger 12

7.7.1 Dynamic Trigger Operations 13

7.7.2 Dynamic Trigger management 14

7.7.3 XML definitions of Dynamic Trigger Instance and associated links 14

7.8 Interactions within Components 15

7.9 Component and Module Properties 16

8 ECOA System Management 17

8.1 Lifecycle 17

8.1.1 Module Runtime Lifecycle 17

8.1.1.1 Module Startup 18

8.1.1.2 Supervision Module Startup 18

8.1.1.3 Non-Supervision Module Startup 18

8.1.1.4 Module Run-time Behaviour 19

8.1.1.5 Module Shutdown 19

8.1.1.6 Module Runtime Lifecycle Example 19

8.1.2 Component Runtime Lifecycle 20

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

iii

8.2 Health Monitoring 20

8.3 Fault Handling 21

8.4 Run-time Configuration Management 32

8.4.1 Initialisation 32

8.4.2 Reconfiguration 32

9 Scheduling 33

9.1 Module Deadline 33

9.2 Scheduling Policy 33

9.3 Activating and non-Activating Module Operations 33

10 Service Availability 34

10.1 Initialisation 34

10.2 Assembly Schema 34

10.2.1 Service Links and Ranks 34

10.3 Dynamic Service Availability 35

11 Service Link Behaviour 35

11.1 Introduction 35

11.2 Active Provider Component 36

11.3 Summary of Behaviour 36

11.4 Examples 38

12 Module Operation Link Behaviour 42

13 Utilities 43

14 Inter Platform Interactions 43

15 Composites 43

Figures

Figure 1 ECOA Documentation v

Figure 2 ECOA Interactions - Key 4

Figure 3 Event Sent by Provider 6

Figure 4 Event Received by Provider 6

Figure 5 Synchronous Client Request-Response 7

Figure 6 Asynchronous Client Request-Response 8

Figure 7 Deferred Response Server Request-Response 9

Figure 8 Versioned Data Behaviour 10

Figure 9 Notifying Versioned Data Behaviour 11

Figure 10 Trigger Behaviour 12

Figure 11 Dynamic Trigger Behaviour 13

Figure 12 Interactions within Components – Synchronous Request-Response 16

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

iv

Figure 13 Module Runtime Lifecycle 17

Figure 14 Lifecycle Example 20

Figure 15 : Non fatal Application Error propagation path 22

Figure 16 : Fatal Application Error propagation path 23

Figure 17 : Infrastructure Error propagation path 24

Figure 18 : Error propagation path 25

Figure 19 : Event faults propagation behavior 26

Figure 20 : Request-Response faults propagation behavior part 1 28

Figure 21 : Request-Response faults propagation behavior part 2 29

Figure 22 : Versioned Data faults propagation behavior part 1 31

Figure 23 : Versioned Data faults propagation behavior part 2 32

Figure 24 Service Links 35

Figure 25 Example Assembly Schema 38

Figure 26 Generation of an Event 39

Figure 27 Consumption of an Event 39

Figure 28 Synchronous Request-Response Operation 40

Figure 29 Asynchronous Request-Response Operation 40

Figure 30 Selection of Versioned Data 41

Figure 31 Interactions between Service Operations and Module Operations 42

Figure 32 A Composite 44

Tables

Table 1 Behaviour across a Service Link 36

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

v

0 Introduction

0.1 Executive Summary

The European Component Oriented Architecture (ECOA) programme represents a concerted
effort to reduce development and through-life-costs of the increasingly complex, software
intensive systems within military platforms.

ECOA aims to facilitate rapid system development and upgrade to support a network of flexible platforms
that can cooperate and interact, enabling maximum operational effectiveness with minimum resource cost.
ECOA provides the improved software architectural approaches required to achieve this.

The standard is primarily focussed on supporting the mission system software of combat air
platforms - both new build and legacy upgrades - however the ECOA solution is equally
applicable to mission system software of land, sea and non-combat air platforms.

The ECOA specification is documented in ten parts, collectively identified as the Architecture
Specification.

0.2 Main Introduction

Figure 1 ECOA Documentation

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland
Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems

(Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers
of this specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect

to any of the information.

vi

This Architecture Specification provides the definitive specification for creating ECOA-based systems. It
describes the standardised programming interfaces and data-model that allow developers to produce
ECOA components and construct ECOA-based systems. It uses terms defined in the Definitions
(Architecture Specification Part 2). The details of the other documents comprising the rest of this
Architecture Specification can be found in Section 3.

This document is Part 3 of the Architecture Specification; it acts as an introduction to ECOA.

The document is structured as follows:

 Section 6 provides an overview of the mechanisms that are used for interactions between Modules
in the system.

 Section 7 describes in details the behaviour of the interactions in an ECOA system.

 Section 8 describes the System Management mechanisms that are provided by the Infrastructure.

 Section 9 describes the support for scheduling within an ECOA system.

 Section 10 describes the mechanisms for managing Service Availability in an ECOA system.

 Section 11 describes Service Link behaviour.

 Section 12 describes Module Operation behaviour.

 Section 13 describes the utilities provided by the ECOA Software Platform.

 Section 14 describes how inter-platform communication occurs within an ECOA system.

 Section 15 describes the concept of a composite (collection of Application Software Components)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

1

1 Scope

This purpose of this Architecture Specification is to establish a uniform method for design, development and
integration of software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This
standard of documentation is recommended as appropriate for limited lab-based evaluation only. Product
development based on this standard of documentation is not recommended.

3 Normative References

Ref Description

Architecture Specification Part 1

 IAWG-ECOA-TR-001 / DGT 144474

 Issue 3

 Architecture Specification Part 1 – Concepts

Architecture Specification Part 2

 IAWG-ECOA-TR-012 / DGT 144487

 Issue 3

 Architecture Specification Part 2 – Definitions

Architecture Specification Part 3

 IAWG-ECOA-TR-007 / DGT 144482

 Issue 3

 Architecture Specification Part 3 – Mechanisms

Architecture Specification Part 4

 IAWG-ECOA-TR-010 / DGT 144485

 Issue 3

 Architecture Specification Part 4 – Software Interface

Architecture Specification Part 5

 IAWG-ECOA-TR-008 / DGT 144483

 Issue 3

 Architecture Specification Part 5 – Platform Requirements

Architecture Specification Part 6

 IAWG-ECOA-TR-006 / DGT 144481

 Issue 3

 Architecture Specification Part 6 – ECOA Logical Interface

Architecture Specification Part 7

 IAWG-ECOA-TR-011 / DGT 144486

 Issue 3

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

 Architecture Specification Part 7 – Metamodel

Architecture Specification Part 8

 IAWG-ECOA-TR-004 / DGT 144477

 Issue 3

 Architecture Specification Part 8 – C Language Binding

Architecture Specification Part 9

 IAWG-ECOA-TR-005 / DGT 144478

 Issue 3

 Architecture Specification Part 9 – C++ Language Binding

Architecture Specification Part 10

 IAWG-ECOA-TR-003 / DGT 144476

 Issue 3

 Architecture Specification Part 10 – Ada language Binding

sca-assembly-1.1-spec-cd03 Service Component Architecture Assembly Model Specification

 Version 1.1

 Available at: http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-
1.1-spec-cd03.pdf

4 Definitions

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

5 Abbreviations

API Application Programming Interface

ARINC Aeronautical Radio, Incorporated

ASAAC Allied Standards Avionics Architecture Council

ASC Application Software Component

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DDS Data Distribution Service

ECOA European Component Oriented Architecture

ELI ECOA Logical Interface

EUID ECOA Unique Identifier (ID)

FIFO First In, First Out

HR High Resolution

ID Identifier

IMA Integrated Modular Avionics

IoC Inversion-of-Control

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

3

IP Internet Protocol

LRU Line Replaceable Unit

NaN Not a Number

OS Operating System

PC Personal Computer

POSIX Portable Operating System Interface

QoS Quality of Service

RFC Request For Comments

RT Real Time

RTOS Real-Time Operating System

SOA Service-oriented Architecture

SW Software

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

UTC Coordinated Universal Time

VME Versa Module Europa (bus)

XML eXtensible Markup Language

XSD XML Schema Definition

6 ECOA Mechanisms

The Architecture Specification Part 1 defines an architecture which uses Application Software Components and
Services. This document describes the mechanisms defined by ECOA and the way that Components interact.
Additionally, it describes the behaviour of other aspects of an ECOA system including management and utility
functions along with how different ECOA Software Platforms interact.

Some of the mechanisms are described in detail within this document, whereas others are only discussed at a
high level, as they are covered in greater depth in other documents. Where this is the case a reference will be
provided.

The intended audience for this reference manual is:

1. Component Developers:

a. To understand the mechanisms available for developing applications

2. ECOA Platform Developers:

a. To understand the behaviour an ECOA Platform is required to provide for a given mechanism

This document describes the mechanisms available to an Application Software Component, but it is the
Architecture Specification Part 4 which provides the abstract API for implementing the mechanisms described
herein.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

7 Interactions

7.1 Module Interactions

Interactions between Module Instances in an ECOA system rely on three primary mechanisms:

 Events

 Request-Response

 Versioned Data publication

The interactions between Module Instances can occur within a single Application Software Component, or
between Module Instances of different Application Software Components, as a consequence of their Services.
For detail on the behaviours, see sections 11 and 12 respectively.

In addition to the above mechanisms, Operations exist for Infrastructure Services to allow the management of
the runtime lifecycle, properties, logging, faults and time services.

The following sections include numerous figures, which illustrate the interactions within an ECOA system and
provide visual clarity. The key shown in Figure 2 offers guidance on the colouring and symbology used
throughout these sections.

Figure 2 ECOA Interactions - Key

Note that the Component developer is only responsible for implementing the functionality within the Module
Instance. The other infrastructure objects shown are the responsibility of the ECOA Platform Developer and
comprise the Platform Integration Code (e.g. Trigger Instances, Module Instance Queues, Versioned Data
repositories, Service Links etc.).

7.2 Module Instance Queues

Module run-time behaviour is dependent upon the Module Runtime Lifecycle state (see section 8.1.1). A set of
predefined Module Operations called Module Lifecycle Operations exist to allow the Container to inform the
Module of changes to its Lifecycle. Module Lifecycle Operations are handled in any state (to enable the
Lifecycle of a Module Instance to be managed), whereas normal Module Operations are only handled in the
RUNNING state.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

5

Module Operation calls are placed in the Module Instance Queue, and the corresponding entry-point for the
Module Instance is invoked when the Operation reaches the front of the queue (if the Operation is specified as
an activating Operation, see section 9.3 for further detail on activating and non-activating Operations).

Module Operation calls other than Module Lifecycle Operations are only queued if the Module Instance is in the
RUNNING state and if, for a particular Module Operation, the maximum number of waiting operation calls does
not reach the value given by the attribute fifoSize defined on the receiving part of the associated OperationLink.

If the Module Instance is not in the RUNNING state Module Operations are discarded. For Request operations
arriving to a non-RUNNING Module, the Container will directly return a Response indicating that the Operation
is not available.

7.3 Event

The Event mechanism is used for one-way asynchronous “push-style” communication between Module
Instances and may optionally carry typed data.

When Events are used to implement a Service Operation, a Module Instance may be either the sender or
receiver of an Event irrespective of whether it is designated as the Provider or Requirer of the Service.

Events are “wait-free” and “one-way”: the Sender is never blocked and does not receive any feedback from the
Receiver. Events arriving on a full Receiver queue are lost, and the fault is reported to the fault-management
Infrastructure.

There may be multiple receivers of an Event within a Component (e.g. other Module Instances or Service
Instances), in which case instances of the Event are broadcast to all receivers.

For Events between Component instances, the behaviour is defined by the Rank and allEventsMulticasted
attributes associated with the Service Link. If the Service Link is not identified as allEventsMulticasted; then
only the Component instance connected to the Service Link with the lowest value of Wire Rank shall receive
the Event. Further detail of this behaviour is described in section 11.

7.3.1 Event Sent by Provider

In the case of an Event sent by Provider, the providing Application Software Component initiates the sending.
This behaviour is shown in Figure 3.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

Figure 3 Event Sent by Provider

Figure 3 shows, at point 1, a Module Operation being invoked on the sender Module Instance (of the Providing
Component instance) as a result of some other activity. During this execution, the Module Instance performs
an Event Send Container Operation (Sent by Provider) at point 2. The Send operation returns immediately,
allowing the Sender Module Instance to continue its execution. The Event will be queued on the Receiver
Module Instance Queue, (of the Requiring Component instance) shown at point 3. The appropriate Event
Received Module Operation will then be invoked on the Receiver Module Instance when the queue is
processed and the Event reaches the front of the queue, at point 4.

7.3.2 Event Received by Provider

In the case of an Event received by Provider, the requiring Component initiates the sending. This behaviour is
shown in Figure 4.

Figure 4 Event Received by Provider

Figure 4 shows, at point 1, a Module Operation being invoked on the Sender Module Instance (of the requiring
Component instance) as a result of some other activity. During this execution, the Module Instance performs an
Event Send Container Operation (sent by requirer) at point 2. The Event Send operation returns immediately,
allowing the initiating Module Instance to continue its execution. The Event will be queued on the Receiver
Module Instance Queue (of the Providing Component instance) shown at point 3. The Event Received Module
Operation will then be invoked on the Receiver Module Instance when the queue is processed and the Event
reaches the front of the queue, at point 4.

7.4 Request Response

The “Request-Response” mechanism is a two-way communication between Module Instances. The calling
Module Instance Requests an operation and the called Module Instance provides a Response. The Requesting
Module Instance (sender of the Request) is named the “Client”, and the providing Module Instance (sender of
the Response) is named the “Server”.

A Request may carry data (“in” parameters) and the Response may also carry data (“out” parameters). All
parameters are named and typed.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

7

There are two mechanisms for Request operations which provide synchronous and asynchronous behaviour at
the Client and one mechanism for Response operations at the Server. The details of these are described in the
following sections. Note that the choice of mechanism for either a Request or a Response operation can be
completely independent of each other.

For each Request-Response, the set of possible Clients and Servers are identified at design time, as is the
type of the mechanism e.g. synchronous/asynchronous.

When a Client performs a Request, if the Server is a Module Instance within the same Component instance,
then this Server is used. However, if the Request is connected to a Service, there may be multiple possible
Servers available; only the Server connected with the Service Link with the lowest value of Wire Rank is used
(known as the active Server, see Section 10). A Response from a Server is only sent to the particular Client
that has issued the Request.

A call may fail if the Server is not available. The Client is notified of the failure of the call, and the fault reported
to the fault-management Infrastructure.

The client Container instance implements a timeout in order to unblock the Client of a Synchronous Request-
Response or to inform the Client of an Asynchronous Request Response if no Response is received within the
given delay. The value of the timeout is defined at component implementation level; it can be determined by the
maximum Response time defined by the required QoS. If the Response arrives after the timeout, the Response
is discarded by the container and the fault is handled by the fault management. If the timeout is set to <0, it is
considered as infinite; the Client of a Synchronous Request-Response remains blocked indefinitely.

The three types of Request-Response are detailed in the following sections.

7.4.1 Synchronous Request

In the case of a Synchronous Request, the Client Module Instance is blocked until the Response is received, as
shown in Figure 5.

Figure 5 Synchronous Client Request-Response

Figure 5 shows, at point 1, a Module Operation being invoked on the Client Module as a result of some other
activity. During this execution, the Module Instance performs a Synchronous Request operation at point 2. At
the point the Request is made, the Client Module Instance becomes blocked. When blocked, the Client Module

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

Instance does not handle any other incoming Module Operation. From a module lifecycle point of view, this
blocking situation is considered as a sub-state of the RUNNING state (see 8.1.1).

The Request operation is connected via a Service Link to the Server Module Instance, whereby the Request
operation is queued in the Server Module Instance Queue, at point 3. The Request is accepted by the Server
Module Instance as long as it has enough resources to handle the Response. If not, the Request is discarded.

The Request operation will be invoked on the Server Module Instance at point 4, which, in this example, will
send the Response at point 5 just before completing the Request operation. Once the Response is received
by the Client Module Instance, it will become unblocked and can continue its execution at point 6.

7.4.2 Asynchronous Request

In the case of an Asynchronous Request, the Client is released as soon as the Request has been sent and
may continue to execute other functionality. The Response results in the call of an operation on the Requesting
Module Instance, as shown in Figure 6.

Figure 6 Asynchronous Client Request-Response

Figure 6 shows, at point 1, a Module Operation being invoked on the Client Module Instance as a result of
some other activity. During this execution, the Module Instance performs an Asynchronous Request operation
at point 2. At the point the Request is made, the Client Module Instance does NOT block meaning it can finish
its execution of the invoked operation.

The Request operation is connected via a Service Link to the Server Module Instance, whereby the Request
operation is queued in the Server Module Instance Queue, at point 3. The Request is accepted by the Server
Module Instance as long as it has enough resources to handle the Response. If not, the Request is discarded.

The Request operation will be invoked on the Server Module Instance at point 4, which, in this example, will
send the Response at point 5 just before completing the Request operation. The Response will then be placed
in the Client Module Instance Queue at point 6, and the Response call-back operation will be invoked on the
Client Module Instance at point 7.

7.4.3 Response

The Server decides when it replies to the Client. It can be done in the same block of functionality associated to
the Request (see 7.4.1 and 7.4.2) or the Server may defer the provision of the Response e.g. where it needs to

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

9

invoke a Request-Response Service in order to provide the Response. In the second case the Server may
continue to execute other functionality before providing the Response, as shown in Figure 7.

Figure 7 Deferred Response Server Request-Response

Figure 7 shows, at point 1, a Module Operation being invoked on the Client Module Instance as a result of
some other activity. During this execution, the Module Instance performs, in this example, a Synchronous
Request operation at point 2. At the point the Request is made, the Client Module Instance becomes blocked.

The Request operation is connected via a Service Link to the Server Module Instance, wherein the Request
operation is queued in the Server Module Instance Queue, at point 3. The Request is accepted by the Server
Module Instance as long as it has enough resources to handle the Response. If not, the Request is discarded.

The Request operation will be invoked on the Server Module Instance at point 4. The Server may, by design,
use the Response Container Operation to send the response at some later time. For example, in order to
compute the Response, it may be necessary to invoke a further Asynchronous Request operation, meaning the
original Response cannot be computed until receipt of this Response occurs.

Point 5, shows another Module Operation invoked on the Module Instance, during this execution, at point 6,
the Response Container Operation is called to send the Response back to the Client. Once the Response is
received by the Client Module Instance at point 7, it will become unblocked and can continue its execution.

7.5 Versioned Data Publication

The Versioned Data publication mechanism allows Module Instances to share typed data, according to a
concurrency-safe read-write paradigm. A reading Module Instance is named a “Reader”, and a writing Module
Instance is named the “Writer”.

The Writer can request a local copy of the data and subsequently commit or cancel any changes made. This
write action is atomic and independent of any other updates to the data-set. The Versioned Data writes are
timestamped (timestamp is performed by the ECOA Software Platform).

A Reader can also request a local copy of the data, which will be the latest data value(s) at the time of the read
request. This local copy will not be affected by any subsequent changes to the data-set (i.e. by a Writer
updating the data-set). Note that although it is possible for the Reader to modify its local copy of the data, it is
not able to update the global data-set.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

Writers and Readers have to specify the beginning and the end of each (read or write) access to the data. The
mechanism is “wait-free”: no Writer or Reader is blocked waiting for another Writer or Reader to release the
data or waiting for the underlying synchronisation mechanism to update the local data-set.

It is possible for multiple instances of the same Versioned Data repository to exist in an ECOA system e.g.
where the Readers are on different Computing Nodes. When the access begins, the Writer or the Reader
always gets the latest copy of data available locally. The timestamp enables the caller to determine the
freshness of the data. The Reader gets an error if data has never been received or initialized.

Note that at the moment the data is requested, there is no guarantee that it is synchronised with the latest
update, particularly in a distributed system. Where there are multiple Writers the timestamps can be used by
any Readers to determine the order in which the data was published.

Any copy that is made to enable a read or write access is isolated, in that it will not be changed by any
concurrent modifications of the data, and local changes will not cause the Versioned Data repository to be
updated. The local copy is discarded after the read or write has been completed.

A write access ends with two possible alternatives:

“publish” – modifications made by the Writer are published to the Versioned Data repository

“cancel” – the modified local copy of the data is discarded without making any modifications to the Versioned
Data repository.

Data publications are atomic; “simultaneous” publications of the same dataset cannot corrupt the data content.
This behaviour may require support from the Infrastructure.

An optional attribute (maxVersions) may be set in the Component Implementation as an attribute of the data
read/write operation to specify the maximum number of concurrent read or write accesses that may occur. The
default is one access per operation e.g. a Read must be released before the next Read starts. A read or write
access Request may fail if a new local copy of the data cannot be created. In this case, a null Data Handle is
returned, the Client is notified of the failure of the call, and the fault reported to the fault-management
Infrastructure.

Figure 8 Versioned Data Behaviour

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

11

Figure 8 shows, at point 1, a Module Operation being invoked on the Writer Module Instance as a result of
some other activity. During this execution, the Module Instance performs a publish Container Operation at
point 2. The data is written to the Component instance local copy of the repository at point 3. The
Infrastructure is then responsible for copying the data to any requiring Components (which may not be
immediate depending upon the implementation of the Infrastructure) at point 4 and point 5 respectively. Also
note that the Infrastructure may optimise this database management such that the ‘local’ copies are one in the
same where the components are deployed in the same protection domain.

Independently, of the Writer, the Reader Module Instance can read from the Versioned Data repository. Point
6 shows a Module Operation being invoked on the Reader Module Instance by some means (e.g. an Event
Received). During this execution, the Module Instance performs a read Container Operation at point 7.

7.5.1 Notifying Versioned Data

Versioned Data Readers can also specify an optional attribute (notifying) to receive a notification of any
updates to Versioned Data. This behaviour is achieved by queuing a notification Event on the Reader Module
Instance, which also contains a reference to the latest version of the data.

Figure 9 Notifying Versioned Data Behaviour

Figure 9 shows, at point 1, a Module Operation being invoked on the Writer Module Instance as a result of
some other activity. During this execution, the Module Instance performs a publish Container Operation at
point 2. The data is written to the Component instance local copy of the repository at point 3. The
Infrastructure is then responsible for copying the data to any requiring Components (which may not be
immediate depending upon the implementation of the Infrastructure) at point 4 and point 5 respectively.

When the requiring Component receives the updated data (and as the Reader Module Instance has defined the
operation to be notifying) a notification Event is generated at point 6 which is queued on the Reader Module
Instance Queue at point 7. This invokes the notification Module Operation, which also includes a copy of the
updated Versioned Data.

Note that specifying a Versioned Data Read operation as notifying does not preclude the use of standard
Container Operations for getting a read-only copy of the data at any time, as detailed in section 7.5. Both
mechanisms share the same underlying memory buffers.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

7.6 Trigger

Triggers generate periodic Events which can be used to invoke some functionality provided by a Module
Instance or set of Module Instances. The Trigger can generate Events which are queued to Module Instances
within the same Application Software Component and/or generate Events which are queued to Module
Instances in different Application Software Components via a Service e.g. where a single central Trigger is
used to coordinate the execution of functionality of multiple Components, in the manner of a “central clock”. The
Trigger behaviour for the case of generating events within a same Component is shown in Figure 10.

Figure 10 Trigger Behaviour

Figure 10 shows, at point 1, the Trigger Instance sending an Event to the Receiver Module Instance Queue.
This causes the Module Operation connected the Trigger to be invoked on the Receiver Module Instance at
point 2. The Trigger Instance will generate the Event at a periodic interval as defined by the Component
implementer.

The Trigger Instance is provided by the underlying Infrastructure to generate an Event at a set time interval.
The Trigger Instance exhibits a sub-set of the Module interface, to enable the Supervision Module to control the
Module Lifecycle of the Trigger.

Note that the Trigger can be connected to one or more Module Operations and/or Service Operations.

7.7 Dynamic Trigger

A Dynamic Trigger sends an Event after a given delay (known as the out Event) from the receipt of an input

Event (known as the in Event). The in Event specifies the delay time. A Dynamic Trigger may also receive a

reset Event, which will purge all unexpired delays.

It is possible for multiple Module Instances to:

Send in and reset Events to the same Dynamic Trigger.

Receive the same out Event.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

13

As with the periodic Trigger, the Dynamic Trigger can generate Events which are queued to Module Instances
within the same Application Software Component and/or generate Events which are queued to Module
Instances in different Application Software Components via a Service.

Multiple occurrences of the same in Event may be queued waiting for the delays to expire. A reset Event is

used to purge all waiting in Events.

The first parameter of a Dynamic Trigger is the delay. The remaining parameters can be any pre-defined type.

The out Event is generated with exactly the same parameters as the in Event, except that the first (delay)

parameter is omitted. The out Event is sent at the time resulting from adding the timestamp of the in Event

and the delay time. The timestamp of the out Event is the time at which the Event is sent by the Dynamic

Trigger.

Figure 11 Dynamic Trigger Behaviour

Figure 11 shows, at point 1, a Module Operation being invoked on a Module Instance as a result of some other
activity. During this execution, the Module Instance performs, at point 2, a Container Operation to Request the

Dynamic Trigger Instance to send a Trigger Event after a given period (in Event). The in Event is queued in

the Dynamic Trigger Instance Queue, at point 3. After the delay time has expired, the Dynamic Trigger

Instance will generate an out Event to the Receiver Module Instance Queue, shown at point 4.

7.7.1 Dynamic Trigger Operations

The Dynamic Trigger can be considered as a Module whose operations are:

 EventReceived in

o On reception, the Dynamic Trigger sets the trigger for the time calculated from the timestamp
at which the “in” was sent+delay

o Parameters:

o delay : ECOA:duration (seconds, nanoseconds)

o p1, p2, etc: ECOA types

 EventSent out

o The Dynamic Trigger sends an “out” Event at the time calculated from the timestamp at which
the corresponding “in” was sent+delay. The timestamp of "out" is the time at which "out" is
sent.

o Parameters:

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

o p1, p2, etc: are identical (number, types and position identical to those of the “in”
Event)

 EventReceived reset

o On reception, the Dynamic Trigger cancels the trigger settings for all "in" Events already
previously received and not yet expired.

The transmitted Events ‘in’ and ‘out’ can have several unspecified parameters (p1, p2, etc):

 These parameters are sent as they are by the Dynamic Trigger.

 The number of parameters and their types are defined in the Component implementation model at
instance definition level (see below).

From an XML point of view, the Dynamic Trigger Module definition looks like the following definition. Note that
this moduleType definition is implicit and is managed directly by the Infrastructure.

<moduleType>

 <Operations>

 <EventReceived name="in">

 <input name="delay " type="ECOA:duration"/>

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </EventReceived>

 <EventReceived name="reset"/>

 <EventSent name="out">

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </EventSent>

 </Operations>

</moduleType>

7.7.2 Dynamic Trigger management

As any other Module, the Dynamic Trigger:

 Has its own lifecycle – It can receive lifecycle Events (START, STOP, etc) as specified in section 8.1.1,

 Must be supervised by the supervisor Module,

 Must be deployed by defining its Module priority and its protection domain.

7.7.3 XML definitions of Dynamic Trigger Instance and associated links

A Dynamic Trigger Instance is defined with the tag <dynamicTriggerInstance > within the Component
implementation model (component.impl.xml); it is then used as any other ordinary Module.

Parameters of a Dynamic Trigger Instance are:

 Maximum number, named size, of waiting Events (outside possible queuing at network level)

o By default: 1

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

15

o Any Events that cause the maximum number of pending Events to be exceeded are
discarded; an error is logged by the Infrastructure.

 Minimum and maximum values of the “delay” respectively named delayMin and delayMax

o Statically defined at design time, to be used by early verification

o For each received “in” Event, the Dynamic Trigger Module checks that the expiration date is
compatible with these constraints (if not, an error is logged by the Infrastructure and the Event
is not taken into account).

o Defined in seconds. Engineer notation is supported to ease the readability (type xsd:double).

The XML snippet below provides an example of a Dynamic Trigger Instance with one integer parameter.

<dynamicTriggerInstance name="delayResult"

 modulePriorityRanking="20"

 size="10" delayMin="100e-3" delayMax="200e-3">

 <parameter name="p1" type="int32"/>

</dynamicTriggerInstance>

...

<EventLink>

 <senders><moduleInstance name="producerComputer" OperationName="result"/></senders>

 <receivers><dynamicTrigger name="delayResult" OperationName="in"/></receivers>

<EventLink>

<EventLink>

 <senders><dynamicTrigger name="delayResult" OperationName="out"></senders>

 <receivers>

 <moduleInstance name="consumerComputer" OperationName="result"/>

 </receivers>

</EventLink>

<EventLink>

 <senders><moduleInstance name="managerComputer" OperationName="reset"/></senders>

 <receivers><dynamicTrigger name="delayResult" OperationName="reset"/></receivers>

<EventLink>

 ...

7.8 Interactions within Components

Although the majority of examples shown in the preceding sections display interactions between Module
Instances in multiple Components (using Services), the exact same interactions can occur within a Component
boundary (Module to Module communications).

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

16

Figure 12 Interactions within Components – Synchronous Request-Response

Figure 12 shows the interactions of a Synchronous Request –Response operation between two Module
Instances within a Component. At point 1, a Module Operation is invoked on the Client Module Instance from
a Service Operation.

During this execution, the Module Instance performs a Synchronous Request operation at point 2. At the point
the Request is made, the Client Module Instance becomes blocked.

The Request operation is connected to another Module Instance within the Component. The Request
operation is queued in the Server Module Instance Queue, at point 3. The Request operation will be invoked
on the Server Module Instance at point 4, which can peform any processing required in order to produce the
Response.

In this example, at point 4, the Module Instance invokes a Container Operation to perform an Event Send. The
Server Module Instance sends the Response at point 5 just before the Module Operation completes and
returns control to the Container. Once the Response is received by the Client Module Instance, it will become
unblocked and can continue its execution at point 6.

7.9 Component and Module Properties

Components may be instantiated multiple times within a system. Component Properties provide a means to
tailor the behaviour of a Component instance. A Component Property is declared as part of the Component
Definition.

Within the Assembly Schema the Component Property values are assigned for each Component Instance.
These values are assigned at design time and cannot be changed during execution.

As part of a Component Implementation a Module Type can have Module Properties declared, which can then
be used to tailor different behaviour for each Module Instance.

For each Module Instance, a Module Property can either reference a Component Property, or be assigned a
value at Component implementation time (design time) which cannot be changed during execution. Note that in

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

17

order for Component Properties to be accessed; a Module Property must be created to reference the
Component Property.

Module Instances can then access Module Properties, and consequently Component Properties if referenced,
via the Container Interface at run-time. The Architecture Specification Part 4 contains more detail regarding
Properties.

8 ECOA System Management

8.1 Lifecycle

A Component Instance is composed of Module Instances. The Runtime Lifecycle of a Module Instance defines
its runtime state. The Module Lifecycle is described in Section 8.1.1.

8.1.1 Module Runtime Lifecycle

Figure 13 illustrates the Module Runtime Lifecycle.

Figure 13 Module Runtime Lifecycle

A Module Instance has three possible logical states:

 IDLE – state reached after instantiation, fatal error raising or shutdown.

 READY – state reached when the module has been initialised.

 RUNNING – state where the Module Instance is handling incoming Module Operations. In the RUNNING
state, the Module Instance may be blocked when invoking Container Interface blocking operations such as
synchronous request-responses.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

18

A Module Instance can transition between these states as shown in Figure 13. The states and transitions are
managed by the Container, which invokes Module Interface entry points for each state change. The Module
Instance states do not necessary reflect the states of the underlying OS tasks which support the Module
Instances, e.g. a Module Instance may be in a RUNNING state while the underlying task may be in a ready
state waiting for the CPU resource.

The Module Interface contains entry points that are invoked by the Container as a result of a Module Lifecycle
state change. They are:

 INITIALIZE

 REINITIALIZE

 START

 STOP

 SHUTDOWN

Note: For an INITIALIZE command, the Container will invoke the INITIALIZE entry point if the Module is in the
IDLE state and the REINIITIALIZE entry point if it is in the READY or RUNNING state.

The lifecycle of non-Supervision Module Instances within a Component instance are managed by the
Supervision Module with the assistance of the Container:

In order to achieve this, the Supervision Module Container Interface provides the following operations (one set
per non-Supervision Module Instance):

 INITIALIZE

 START

 STOP

 SHUTDOWN

8.1.1.1 Module Startup

Upon start-up of the ECOA System, the ECOA Infrastructure is responsible for the allocation and initialization
all the resources (threads, libraries, objects, etc.) needed to execute the functionality of the Module Instances
and their Containers.

Following allocation and initialisation of resources each Module Instance is brought to the IDLE state.

8.1.1.2 Supervision Module Startup

When all Module Instances have been brought to the IDLE state, the Container commands all Supervision
Module Instances to INITIALIZE and START by performing the following:

 the Container changes the state of the Supervision Module Instance from IDLE to READY, and calls the
INITIALIZE entry point in the Supervision Module Interface

 when the entry point returns, the Container changes the state of the Supervision Module Instance from
READY to RUNNING, and calls the START entry point in the Supervision Module Interface.

 Note that although the Supervision Module is able to manage non-Supervision Modules at any time; it is
recommended that it only manages them in the RUNNING state (i.e. during or after the START entry
point).

8.1.1.3 Non-Supervision Module Startup

Within a Component, the Supervision Module can Request non-Supervision Module Instances to INITIALIZE
(or REINITIALIZE depending on the state of the Module Instance). The Module Instance then performs any
actions required to initialize, or re-initialize, such as allocating further resources, setting its internal variables
and/or reading its Properties to reach a functionally coherent and initialized internal state.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

19

Following initialisation the Module Instance is READY and the Supervision Module can Request it to START. At
this point, the Module Instance has the opportunity (via its START operation) to perform any actions relevant to
its transition to the RUNNING state (these are likely to be specific to the functionality of the design.). Once
started the Module Instance enters the RUNNING state.

The following are the steps taken to change the state of a Module Instance:

 the Supervision Module Requests a Module Instance lifecycle state change via the Container Interface

 the Container changes the state of the Module Instance immediately prior to invoking the appropriate entry
point in the non-Supervision Module Interface

 the Container then notifies the Supervision Module when the entry point of the non-Supervision Module
Instance returns – indicating the state change is complete.

8.1.1.4 Module Run-time Behaviour

Lifecycle Events that do not represent a valid transition from the current state, as shown by the Module
Lifecycle state diagram in Figure 13, are discarded, and the fault management Infrastructure will be notified
(see section 8.3).

Lifecycle Events have no priority over other operations:

 On receipt of STOP, SHUTDOWN or INITIALIZE Events, operations already executing are allowed to
complete and operation calls already queued will be executed.

 Operations arriving when a Module Instance is entering the RUNNING state will be queued and executed
after the START entry-point has returned.

A Module cannot invoke any Request-Response operations in its Container Interface as part of the
implementation of a Module Lifecycle operation. The Module may however invoke Event or Versioned Data
operations in this case.

8.1.1.5 Module Shutdown

A Module Instance may be shutdown in response to a non-recoverable error, when its SHUTDOWN entry point
is called. This entry point should be used for the de-allocation of the resources used by the Module Instance
(those previously allocated during INITIALIZE), after which the Module Instance enters the IDLE state.
Information regarding Fault Management may be found in section 8.3.

8.1.1.6 Module Runtime Lifecycle Example

Figure 14 provides an example of how the Module lifecycle can be used in a Component by a Supervision
Module to manage other modules

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

20

Figure 14 Lifecycle Example

Here the Supervision Module, once it has been initialised and started by the platform, automatically initialises
and starts the other module in the Component. At each step the Supervision Module is notified of the
Supervised Module state transition to ensure that it correctly sequences the commands.

Once the Supervised Module is Initialized, the component can be thought of as ‘initialized’, and once the
Supervised Module is Running, the Component can be thought of as being in a ‘running’ state.

This is a very simple example, and more complex components may not automatically initialise and start all
Supervised Modules immediately. This could be related to some specific management policy for a component,
or may be related to a hierarchical component lifecycle defined by the system being developed (see 8.1.2).

8.1.2 Component Runtime Lifecycle

Each Application Software Component manages internally its own state based on its own Module Runtime
Lifecycle states. By default, this internal component-level state is not shared with other components.

If a given system requires a more advanced concept, the Guidance for System Management provides elements
to build a distributed management of Application Software Components.

8.2 Health Monitoring

The area of health monitoring is fairly immature within ECOA, and has currently not been discussed.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

21

8.3 Fault Handling

Management of faults is performed at various levels within the Infrastructure, the aim is to manage
faults in such a way as to isolate, and minimize fault propagation between Components.

8.3.1 Error Categorization

Error is a global term that enfolds:

 Application Errors: consequences of faults occurring at Application Module or Supervision
Module level. Their management is the responsibility of the component provider. An Error can
be:

o A fatal Error: the Module knows it cannot recover on its own and uses mechanisms provided
by the Infrastructure to report the Error

o A non fatal Error: the Module may be able to recover on its own (in case of minor Errors) or it
may report the Error

 Infrastructure Errors: consequences of faults occurring at ECOA Infrastructure level, i.e. Module
Container level, Protection Domain level, Computing Node level or Computing Platform level, or
faults raised by a Supervision Module. Their management is the responsibility of the system
architect and system integrator.

8.3.2 Error Propagation and Recovery Actions

Errors can be detected at several levels:

 Module level (Application Errors)

 Module Container level (Infrastructure Errors)

 Protection Domain level (Infrastructure Errors)

 Computing Node level (Infrastructure Errors)

 Computing Platform level (Infrastructure Errors)

Depending on the nature of the error (Application Error or Infrastructure Error) and the level of
detection, fault management may provide recovery procedures at:

 Module level

 Component level

 Protection Domain level

 Computing Node level

 Computing Platform level

The recovery procedures for Infrastructure Errors, provided by the ECOA Infrastructure, are done by
an entity named Fault Handler.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

22

8.3.2.1 Application Errors Propagation and Recovery Actions

Application Errors may be detected by an Application Module or a Supervision Module. The
Component Provider determines the recovery actions (if any) to be applied by an Application Module,
or by a Supervision Module when an Application Error occurs.

If an Application Error is detected by an Application Module, the recovery procedure may be:

 In case of non fatal Application Error, the Module may

o Handle the Application Error if it has been coded to recover from that type of error,

o Raise the Application Error to its Supervision Module through raise_error.

 In case of fatal Application Error, the Application Module uses the raise_fatal_error API. The
error is automatically sent to the Supervision Module and the Application Module is shutdown by
the ECOA middleware. Then the Supervision Module may for example change some services
availability of the faulty Module.

Figure 15 illustrates Application Errors propagation.

Figure 15 : Non fatal Application Error propagation path

Non fatal Error detected

Error raised to the
Fault Handler

is the faulty
Module a

Supervision
Module ?

noyes

Error raised to
Supervision Module

is the fault
handled by

the Module ?

Module recovery action
is performed

noyes

component provider

Supervision Module
recovery action is

performed

Fault Handler recovery
action is performed

system architect +
system integrator

component provider

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

23

When an Application Error is detected by a Supervision Module or received from an Application
Module, the procedure may be:

 Handle the Application Error. The recovery actions may be:

o Shutdown the faulty Module or all the Modules of the faulty Component

o Restart the faulty Module or all the Modules of the faulty Component

o Change one or some availability of the Component Services

 If the Supervision Module is the faulty Module, or if it cannot handle the Application Error, the
Supervision Module raises it to the Fault Handler through raise_error or raise_fatal_error. If the
Supervision Module calls raise_fatal_error, the ECOA middleware sets the Component services
as unavailable and shutdown all its Modules.

Figure 16 illustrates fatal Application Errors propagation.

Figure 16 : Fatal Application Error propagation path

Error raised to the
Fault Handler

is the faulty
Module a

Supervision
Module ?

noyes

Error raised to
Supervision Module

Supervision Module
recovery action is

performed

Fault Handler recovery
action is performed

system architect +
system integrator

component provider

Fatal Error detected

Component is
shutdown and its
services are set as
unavailable by the

platform

Application Module is
shutdown by the

platform

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

24

8.3.2.2 Infrastructure Errors propagation and Recovery Actions

An Infrastructure Error is a fault detected at Infrastructure level, i.e. at Module Container level,
Protection Domain level, Computing Node level, Computing Platform level or raised by a Supervision
Module. Figure 17 illustrates Infrastructure Error propagation:

 If the Infrastructure Error involves the Fault Handler (itself or its Protection Domain or its
Computing Node):

o If there is only one Fault Handler instance on the ECOA platform, it is handled by the ECOA
platform that applies a default recovery action

o Else it may be handled by another Fault Handler (or, still, by the ECOA platform) , depending
on the implementation chosen by the platform supplier

 Else:

o If the Infrastructure Error is detected by a Module Container, it is raised to the Fault Handler

o Else If the Infrastructure Error comes from a Protection Domain, a Computing Node, or
another Computing Platform, it is directly detected by the Fault Handler

Then, the Fault Handler logs the fault and applies the corresponding recovery procedure.

Figure 17 : Infrastructure Error propagation path

The parameterization of the Fault Handler recovery routines (i.e. the recovery actions to be applied)
is the responsibility of the system architect and the system integrator. Recovery actions for
Infrastructure Errors may be applied at some levels:

Error detected
at module container level

or at protection domain level
or by the ECOA Middleware

or raised by a Supervision Module

Error raised to the
Fault Handler

Error handled by the
ECOA platform

noyes

Fault Handler recovery
action is performed

system architect +
system integrator

ECOA platform default
recovery action is

performed

platform supplier

does the Error
involve the Fault

Handler ?

Example :
does the Protection

Domain that
crashed contain the

Fault Handler ?

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

25

 At Component level, the Fault Handler may:

o Shutdown the faulty Component

o Warm/cold restart the faulty Component

 At Protection Domain level, the Fault Handler may:

o Shutdown the Protection Domain

o Warm/cold restart the Protection Domain

 At Computing Node level, the Fault Handler may:

o Shutdown the Computing Node

o Warm/cold restart the Computing Node

 At Computing Platform level, the Fault Handler may:

o Shutdown the Computing Platform

o Warm/cold restart the Computing Platform

o Load a new one

In order to allow fault filtering, the Fault Handler has a context that can be used as a memory to store
the number of occurrences for each fault on a slipping time frame. As an example, it allows to
distinguish a sporadic fault from a recurrent fault, and then to apply recovery action only if a given
fault occurs more than X times in the given time frame.

The Figure 18 summarizes the error propagation path and applicable recovery actions.

Figure 18 : Error propagation path

applicable recovery actions

Application
Module

Supervision
Module

Fault
Handler

error

error

error

Fault handling at
application level

Fault handling at infrastructure level

if RAISE_ERROR or
RAISE_FATAL_ERROR

if RAISE_ERROR or
RAISE_FATAL_ERROR log

Levels
Actions

Component
Protection
Domain

Computing
Node

Computing
Platfom

Restart
cold/warm

OK OK OK OK

Shutdown OK OK OK OK

Load new
composite

OK

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

26

8.3.3 Operations and faults

ECOA allows the component supplier to use three types of operations in his application modules:

 Event

 Versioned Data

 Synchronous and Asynchronous Request/Response

Each of these operations has specific behaviors regarding identified errors and infrastructure errors.

Event:

 No error code is returned to the Module, due to fire-and-forget schema

 Infrastructure Errors handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE client container unable to send the event

o OPERATION_NOT_AVAILABLE server cannot handle the event

o UNKNOWN_OPERATION requested operation ID is invalid

The Figure 19 illustrates these behaviors.

Figure 19 : Event faults propagation behavior

Client
Module

Client
Container

event

Client
Module

Client
Container

Fault Handler

event

Fault outside client area:
• on server side
• on communication link

Error detected by the client container

Client

Client

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

27

Request-Response:

 Request faults:

o Error codes returned to the Module:

o OK no error

o NO_RESPONSE QoS timeout

o Infrastructure Errors handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE client container unable to send the request

o OPERATION_NOT_AVAILABLE server cannot handle the request

o UNKNOWN_OPERATION requested operation ID is invalid

 Response faults:

o Error codes returned to the Module:

o OK no error

o INVALID_IDENTIFIER API called with invalid request-response ID

o Infrastructure Errors handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE server container unable to send the response

o OPERATION_NOT_AVAILABLE client cannot handle the response

o OVERFLOW server container unable to retain the request
(maxConcurrentRequests has been reached)

The Figure 21 and Figure 21 illustrate these behaviors.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

28

Figure 20 : Request-Response faults propagation behavior part 1

Client
Module Client

Container

request

Client
Module Client

Container

Fault Handler

request

Fault outside client area:
• on server side
• on communication link

Error detected by the client container

Client

Client

NO_RESPONSE

NO_RESPONSE

Supervision
Module

Supervision
Module

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

29

Figure 21 : Request-Response faults propagation behavior part 2

Note that in case of NO_RESPONSE returned to the Module due to an Infrastructure Error detected
by the client Container after a request call, the Infrastructure Error is handled by the Fault Handler. At
the same time, the Module has the possibility to raise the NO_RESPONSE error to its Supervision
Module, which potentially may raise it to the Fault Handler too, causing two recovery actions for a
same original fault.

Note also that when a fault is detected outside of the client area after a request call, the platform
supplier has the possibility to choose between two implementations: he can choose to send
NO_RESPONSE to the client though the ECOA middleware, or do nothing and wait for the timeout to
happen on the client side (which causes the client Container to send a NO_RESPONSE to the client
Module).

Versioned Data:

 Get_read_access:

o Error codes returned to the Module:

o OK no error

Server
Module Server

Container

response

Error detected by the server container

Server

INVALID_IDENTIFIER

Supervision
Module

Server
Module Server

Container

Fault Handler

response

Error detected by the server container

Server

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

30

o INVALID_HANDLE API called with a invalid versioned data handle (e.g.
null pointer)

o NO_DATA not an error ; the data has never been written (reader
side)

o Infrastructure Error handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE client container unable to access the memory
slot

 Release_read_access

o Error codes returned to the Module:

o OK no error

o INVALID_HANDLE API called with an invalid versioned data handle (e.g.
null pointer)

o Infrastructure Error handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE client container unable to access the memory
slot

 Get_write_access:

o Error codes returned to the Module:

o OK no error

o INVALID_HANDLE API called with an invalid versioned data handle (e.g.
null pointer)

o DATA_NOT_INITIALIZED not an error ; the data has never been written
(writer side)

o Infrastructure Error handled by the Fault Handler:

o RESOURCE_NOT_AVAILABLE client container unbale to access the memory
slot

 Publish_write_access:

o Error codes returned to the Module:

o OK no error

o INVALID_HANDLE API called with an invalid versioned data handle (e.g.
null pointer)

o Infrastructure Error handled by the Fault Handler

o RESOURCE_NOT_AVAILABLE client container unable to access the memory
slot

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

31

 Cancel_write_access:

o Error codes returned to the Module:

o OK no error

o INVALID_HANDLE API called with an invalid versioned data handle (e.g.
null pointer)

o No Infrastructure Error

The Figure 22 and Figure 23 illustrate these behaviors.

Figure 22 : Versioned Data faults propagation behavior part 1

Fault detected by the infrastructure

Client
Module

Container

get_read_access
released_read_access

get_write_access
publish_write_access

Client

error

Supervision
Module

Fault detected by the infrastructure

Client
Module Container

Client

Fault detected by the client container

Fault Handler

Versioned
Data

Versioned
Data

get_read_access
released_read_access

get_write_access

publish_write_access

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

32

Figure 23 : Versioned Data faults propagation behavior part 2

8.4 Run-time Configuration Management

Configuration management within an ECOA system is the responsibility of the underlying Infrastructure. The
configuration of the system is managed in accordance with the system management policies.

It is envisaged that a set of pre-defined alternative configurations of Service Links is available to support
different functionality. The different configurations will be described by different Assembly Schemas along with
system specific information regarding the scheduling of Modules.

Note: the area of configuration management is fairly immature within ECOA, and the information in these
sections is provisional.

8.4.1 Initialisation

When an ECOA system is initialized all of the Application software Components are initialized and put into their
own initial state (see Section 8.1 for a description of the Lifecycle). The Components then set their Services
available as they become functional, which may depend on the availability of required Services.

8.4.2 Reconfiguration

Reconfiguration in an ECOA system may occur because of:

 Change of Mode: The system may reconfigure active Components by changing the Assembly Schema
being used. This will result in a change to the Components and Services available, along with the
configuration of Service Links between them. This is a more fundamental change of the Assembly
Schema, and would only be used for gross changes in configuration.

 Loss of Service: if a Service becomes unavailable, and an alternative Provider is available as defined in
the Assembly Schema, then switching between Providers will be achieved by switching between the
Service Links. This reconfiguration does not require changing to an alternative pre-defined Assembly
Schema; it represents the dynamic aspects of ECOA Services.

It is envisaged that Service switching is available on any ECOA conformant computing platform. However, the
change of Assembly Schema (replacement of one Assembly Schema by another Assembly Schema through
unload/load actions) is highly dependent upon underlying mechanisms. The way a reconfiguration is
commanded is also dependent upon the underlying mechanisms; it is expected that the command is sent by a
management Component through a specific API or a system management Service provided by the ECOA
Software Platform.

See Section 10 for further information regarding Service availability.

Client
Module Client

Container

cancel_write_access

Client

error

Supervision
Module

Fault detected by the infrastructure

Versioned
Data

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

33

9 Scheduling

Support for scheduling of Module Instances, which are single-threaded, is provided by the underlying operating
system and the ECOA Module Application Code is agnostic to the scheduling policy used. A Module Deadline
is specified for each Module Instance to assist the integrator with scheduling of the Modules.

Note: the area of scheduling is fairly immature within ECOA, and the information in these sections is
provisional.

9.1 Module Deadline

Each Module Instance has a Module Deadline attribute that is used to guide a system integrator with regard to
scheduling of Modules. The deadline values are expressed in time units (seconds in engineering notation), and
are a measure of the time by which any Module Operation invoked on the Module is required to have
completed by. This information may be used by the system integrator to determine the scheduling parameters
and policies used to schedule all Modules within a deployment.

9.2 Scheduling Policy

Scheduling is the responsibility of the Infrastructure and any scheduling policy supported by the OS/Middleware
may be used as required by the system integrator. Scheduling analysis of the proposed system should be
carried out in the same way as normal at design time. Scheduling analysis is outside the scope of ECOA;
although it is anticipated that it would be carried out following existing, established methods. The schedulability
analysis required will be dependent upon the chosen scheduling policy.

9.3 Activating and non-Activating Module Operations

By default, Module Operations are activating; the arrival of a new operation implies the execution of the
associated entry-point as soon as the Module Instance is able to execute. This schema is an Event-driven
programming model.

To disable this default behaviour, attributes are defined within the Component Implementation at EventLink,

RequestLink and DataLink level:

 activating which is a boolean specifying the policy used by the Container to handle the operation:

o when True (default value), the Container activates the associated entry-point as soon as
possible.

o when False, the operation is queued and remains pending. When an activating Module
Operation arrives to the same Module Instance through another Module Operation Link, all
pending Module Operations arrived before the activating one are then processed in FIFO
order and executed as any other Module Operation in accordance with the priority of the
Module Instance. If non activating Module Operations are queued while this processing is
done, their processing is postponed until the arrival of a new activating Module Operation. It is
envisaged that this type of mechanism could be used to implement a time-driven
programming model, which may allow for easier schedule feasibility analysis.

 fifoSize which is an integer specifying the maximum number of pending operations of a single type at

each receiving Container level. The fifoSize attribute is defined against an operation Link; therefore

different operations can be specified to have different maximum queue sizes. When the maximum number
is reached for a given operation, the receiving Container discards the new incoming Module Operations
associated to the Link. For an incoming Request Response, the receiver Container sends back an error
message to the sending Container in order to notify the Client of the failure.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

34

Note that activating on DataLink is only useful when associated to a notifying Versioned Data (attribute

notifying set to true) (see §7.5.1).

10 Service Availability

The availability of Services provided by a Component instance can be set, on a per Service basis, by the
Supervision Module Instance via the Container Interface. The availability of a provided Service is totally left
under the responsibility of the Provider component: it is likely to be dependent upon a combination of
component internal logic and the availability of any required Services necessary in order to successfully provide
its Service.

The availability of Services may be affected by run-time errors that could cause Module Instances to be
shutdown.

10.1 Initialisation

During initialisation the ECOA Software Platform sets all Services as unavailable, and will propagate the
availability of Services as Component instances are initialized and started. The set of Services in the system
are defined by the Assembly Schema (see section 10.2), which may or may not be available at any given time.

10.2 Assembly Schema

The possible connections between the provided and required Services of Application Software Components in
an ECOA system are determined by the Assembly Schema. This provides details of the Service Links (called
Wires in the Assembly Schema) between Services. Service discovery may be:

 Static: where there is a single Provider of a Service. The links between providers and requirers of such
Services are statically pre-determined by the Assembly Schema and are established at system start up.

 Dynamic: where there is more than one Provider of the Service and which is the active Provider is
determined at run-time, when the Service Request is made. All of the possible connections are statically
defined in the Assembly Schema.

An ECOA system may contain a mix of static and dynamic connections between its Services.

10.2.1 Service Links and Ranks

The links between Services are described by the Wires in the Final Assembly Schema. Each Wire has a single
Requirer of a Service (identified as a source in the schema) a single Provider of the Service (identified as a
target in the schema), and a Rank.

There may be multiple Providers and Requirers of the same Service; the connections between them are
determined by the Wires in the Assembly Schema. Where multiple Providers (targets) are connected to the
same Requirer (source) in the case of Versioned Data or Request Response, each Wire that is connected must
have a unique Rank, which is used to choose a single Provider. The Provider with an available service which is
connected by a Wire with the lowest Rank value is chosen in preference to the others (i.e. Active Provider).
The behaviour of Events is dependent upon whether the Service Link is specified to multicast Events. If
multicast is not enabled, the Active Provider concept is used.

Further detail on Rank and Service Link behaviour can be found in section 11.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

35

10.3 Dynamic Service Availability

The Active Provider for Events, Versioned Data and Request-Response may be decided dynamically at run-
time from the possible connections defined in the Final Assembly Schema.

The current Provider may become unavailable due to the loss of the Supervision Module or due to internal
decision which sets the provided service to unavailable. In the case of a Supervision Module loss, i.e. as soon
the Supervision Module leaves the RUNNING state, all provided services are set automatically by the platform
to unavailable and associated modules are shutdown.

Where the current Provider of a Service (the available Provider with the lowest Rank value) becomes
unavailable, the ECOA Software Platform will arrange for the Provider connected by a Wire with the next lowest
Rank value (if the Service is available) to be chosen as:

 the sender in the case of an Event Sent By Provider (unless multicast is enabled),

 the receiver in the case of an Event Received By Provider (unless multicast is enabled),

 the responder in the case of a Request-Response,

 the writer in the case of Versioned Data

Any change to the Provider of a Service is notified to the Requirer. If there is no available Provider the
Requirer will be notified that the Service is no longer available.

Optionally, the Quality-of-Service provided by any Provider may be monitored at run-time to ensure it is within
the required QoS of the Requirer. If this is not the case, then a fault may be generated and reported to the Fault
Management. In addition an alternative Provider may be used if one is available.

Note: the area of Quality-of-Service is fairly immature within ECOA, and this information is provisional.

11 Service Link Behaviour

11.1 Introduction

A Service Link connects Application Software Components together1. Each Service Link connects one
Provided Service to one Required Service which refers to the same Service Definition (which consists of
operations i.e. Events, Request Response and Versioned Data). This is shown in Figure 24.

Figure 24 Service Links

It is necessary to specify the behaviour of each operation across the Service Links. This is because it is
different for each type of operation.

1 The wiring of Application Software Components through Service Links may lead to cyclic dependencies between them:
the correctness and the consistency of the resulted Assembly Schema is under the responsibility of the System Designer.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

36

11.2 Active Provider Component

The term Active Provider is introduced to describe the Application Software Component selected by the
Infrastructure according to the following policy: it’s provided Service is set as available and its Service Link has
the lowest value of Wire Rank. (The value of the Rank attribute can be computed according to the deployment,
for example to reflect a notion of "bonding" between Requirer and Provider). Rank is expressed as a positive
integer value, whereby a low integer value represents a high ranking Service Link.

11.3 Summary of Behaviour

When a Service Definition includes an Event Sent By Provider operation, the Event (and its associated typed
data) sent by any Provider is received by all Requirers linked to the Provider (the Event data is distributed from
the Provider to many Requirers). If there are multiple providers, the requirer only receives Events from the
Active Provider, unless the Service Link is specified to multicast Events.

Similarly, when a Service Definition includes an Event Received By Provider operation, the associated typed
data sent by any Requirer is received by the Active Provider, unless the Service Link is specified to multicast
Events.

When a Service Definition includes a Versioned Data operation, each providing Application Software
Component that is linked to the Provided Service may supply that data. Application Software Components that
are linked to the Required Service read the most recent value of the data provided by the Active Provider.
When the Active Service Provider is changed to another one, Readers read the instance of the new Provider.
The Containers hide the switch between instances.

For a Request-Response operation referenced in a Service Link, the Request from the Client is addressed
(directed) to the Active Provider (Server). In other words, in the case of multiple eligible Providers, the
Infrastructure will select one of the Providers to provide a Response.

These behaviours are summarised in Table 1.

Table 1 Behaviour across a Service Link

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

37

Operation Provider Requirer

Event Operations

sent_by_provider

The Event and its
associated typed
data is sent to all

Requirers

Receives the Event
and its associated

typed data from the
Active Provider

selected from set of
eligible Providers

(Servers) as
determined by the

Infrastructure

according to the Rank

attribute2.

received_by_provider

Receives the Event
and its associated
typed data from all

Requirers if the
Provider is the

Active Provider3.

The Event and its
associated typed data
is sent to all Providers

Request-Response Operations
Receives Requests
from all Requirers

(Clients)

Active Provider
selected from set of

eligible Providers
(Servers) as

determined by the

Infrastructure
according to the Rank

attribute.

Versioned Data Operations
Updates data for all

Requirers
(Readers)

Active Provider (Writer)
selected by

Infrastructure
according to the Rank

attribute4.

The behaviour above is true when the associated service is defined as available. When the service is defined
as unavailable, the following behaviour is then applied:

 Event

o The event is discarded on server side in case of local communication

o The event is discarded on server and client sides in case of ELI-based communications

 Request-Response

2 This behaviour is the default one when the flag AllEventsMulticasted is set to False (default value). When this flag is set to

True, Requirers receive all events sent by the Providers for which the flag is set to True.

3 This behaviour is the default one when the flag AllEventsMulticasted is set to False (default value). When this flag is set to

True, all Providers receive all events sent by the Requirers for which the flag is set to True.

4 Providers maintain their own instance of the data : when a Provider accesses the data, it gets the value it wrote
previously.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

38

o NO_RESPONSE returned on the client side as soon as possible

o The request is discarded on server side

o The response is always returned when the request has been handled before the setting of the
service to unavailable

 Versioned data

o The versioned data is always accessible by the writer but the publish action does not actually
push the data.

o The platform is required to republish data when the service becomes available again

o The versioned data is always accessible by the reader, but the versioned data may become
stale.

11.4 Examples

Figure 25 Example Assembly Schema

In the above Assembly Schema, three Application Software Components R1, R2 and R3 are connected, via
Service Links, to two Application Software Components P1 and P2. P1 is considered as the Active Service
Provider for R1 and R2, while P2 is considered as the Active Service Provider for R3.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

39

"Sent by Provider" Events

Figure 26 Generation of an Event

An Event e “Sent by Provider” in Service S translates to:

 An Event queue (q1,q2,q3) is created for each Requiring Component (R1, R2, R3);

 An Event sent by an Active Service Provider (P1 or P2) is received by all its Requirers (R1 and R2 for P1,
R3 for P2).

 An Event sent by a non-active Provider is discarded by the Infrastructure except if the allEventsMulticasted
flag is set to true. Therefore, an Event sent by P2 is only received by R2 if the allEventsMulticasted flag is
set to true, otherwise, it does not reach R2.

"Received by Provider" Events

Figure 27 Consumption of an Event

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

40

An Event “received by Provider” in a Service translates to:

 An Event queue (q1,q2) is created for each providing Component (P1 and P2);

 An Event sent by a Requirer (R1, R2, R3) is received by the Active Service Provider (P1 for R1, P1 for R2,
P2 for R3)

 An Event sent by a Requirer is received by its non-active Providers if the allEventsMulticasted flag is set to
true (P2 for R2). Otherwise, the Event does not reach non-active Providers.

 All Requirers are allowed to send the Event.

Request-Response

Figure 28 Synchronous Request-Response Operation

Figure 29 Asynchronous Request-Response Operation

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

41

In Figure 28 and Figure 29, Service definition S defines a single Request-Response operation (rr). This
translates to:

 Service Requirers (R1, R2 and R3) issue a Request to their current Active Provider (P1 for R1 and R2, P2
for R3).

 Based on the Rank attribute of the Service Links, the Infrastructure will determine the Active Provider for
Component R2. In this example the Active Provider for R2 is P1.

 The Service Providers (P1, P2) respond to the received Requests.

 For Synchronous Request-Response operations, the Requiring Component is blocked until the Response
is received.

 For Asynchronous Request-Response operations, the Requiring Component is not blocked. The
Response is received at some later time and processed by a callback function.

 Requests into a Provider are queued (qP1 and qP2) until the relevant Request_Received API callback
function is called by the Provider Component's Container. This will cause additional blocking delays to
Requirers of Synchronous Request-Response operations.

 Responses to Asynchronous Request-Response operations are queued in the Requiring Component’s
queue (qR1, qR2, qR3) until the relevant Response_Received API callback function is called by the
Requirer Component's Container.

 Responses to Synchronous Request-Response operations are not queued in the Requiring Component
which will be blocked waiting in the Request_Sync API function for the Response.

Versioned Data

Figure 30 Selection of Versioned Data

In Figure 30 Service definition S defines one Versioned Data operation (d). This translates to:

 Two instances of data5 (d1 and d2) created – one per providing Components (P1 and P2)

5 This is a logical view from the point-of-view of the Component. In an actual platform implementation, the data may be
physically distributed and synchronized across the processing nodes in different ways.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

42

 Based on the Rank attribute of the Service Links, the Infrastructure will determine the Active Provider for
the data Reader Component R2. In this example the Active Provider for R2 is P1 (hence R2 accesses data
instance d1).

 Each Versioned Data instance is written by only one Application Software Component and can be read by
many Application Software Components. In this example, even if P1 is the active Provider for R2, P2 only
accesses data instance d2. That means there is no underlying synchronisation between d1 and d2.

12 Module Operation Link Behaviour

This section shows the relationships between Service Operations and Module Operations.

Figure 31 Interactions between Service Operations and Module Operations

Figure 31 shows possible interactions between Service Operations and Module Operations. The following give
more details on each of these:

 The Grey boxes are the Services which are collections of Service Operations and are described by
Service Definitions.

 The Yellow boxes are Service Operations which are connected together using Service Links / Wires which
are in Blue.

 The Purple boxes are Module Operations which are entries onto Executable Entities which are in Green.

 The Orange boxes are Container Operations which are called from an entry point of a Module Instance.

 Incoming Service Operations are connected to Module Operations using Module Operation Links.

 Container Operations are connected to outgoing Service Operations using Module Operation Links.

Container B

Component 2

Container A

Component 1

Module 2.a

Module 1.a

Required
Service

Module 2.b

Provided
Service

Service / Service Definition

Service Link / Wire

Module Operation Link

Executable Entity

Provided
Service

Required
Service

Request Response
 (synchronous)

 Event

Version Data

Request Response
 (synchronous)

Version Data

Service Operation

Module Operation

Container Operation

Request Response
 (A-synchronous)

Request Response
 (A-synchronous)

 Event

(Received By Provider)

 Event
 Event

(Sent By Provider

callback

Request link

Request link

Request link

Request link

Event link

Event link

Event link

Event link

Data link Data link

ECOS Interactions

Get Read Access

Release Read Access

Get Write Access

Publish Write Access

Cancel Write Access

ECOA Interactions

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

43

 Container Operations are connected to Module Operations using Module Operation Links.

 Service Operations cannot be mapped to other Service Operations using Module Operation Links.

 All Module Operation Links require Container code.

 The names of Service Operations and Module Operations which are connected together don’t have to
match.

 A Request Response Service Operation can only be mapped to a single Module Operation.

 Multiple Event Service Operations can be mapped to the same Module Operation.

 One Container Operation can be mapped to multiple Event Service Operations.

 Versioned Data is always Read or Written by an entry point of a Module Instance using a Container
Operation.

13 Utilities

An ECOA Software Platform provides utility functions for acquiring time and for generating logs. The
Architecture Specification Part 4 contains more detail regarding these functions.

One of the ECOA Software Platform provided functions is a method for allowing access to global time. It is a
system specific decision how this global time is synchronised, and at what precision, however ECOA assumes
that time values acquired through these functions are synchronised across the system.

14 Inter Platform Interactions

In order to provide interoperability between ECOA Software Platforms, a message protocol has been defined.
This message protocol requires an underlying transport protocol for its implementation. The choice of the
underlying transport protocol is left to the system designer depending on system-level requirements
(performance, security, etc.). As an example, a binding to the UDP transport layer has been defined. These can
be found in the Architecture Specification Part 6.

15 Composites

Note: the area of Composites is fairly immature within ECOA, and the information in these sections is
provisional. Further detail of the Composite concept can be found in sca-assembly-1.1-spec-cd03, which is
included for information only, as it can help provide an indication of what a Composite may encompass with
regard to ECOA.

Within ECOA it is envisaged that a system may be constructed using many Components. In order to help with
design abstractions the concept of a Composite is introduced.

A composite is described by its definition, the list of its Application Software Components and the associated
Assembly Schema of these Application Software Components. The Composite will provide several Services,
each one linked to one or several Services or provided by its Application Software Components. This kind of
Service Link is called a Promotion Link. The Composite will require several Services required by internal
Application Software Components. The link used here is also called a promotion link. An Application Software
Component external to the Composite is only connected to Services provided or required at Composite level
and has no knowledge of the internal Application Software Components.

Figure 32 shows an example Composite constructed with four Components.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd and the copyright is owned by BAE Systems (Operations) Limited,

Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Selex ES Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

44

Figure 32 A Composite

