
 i

European Component Oriented Architecture (ECOA®)
Collaboration Programme:

Guidance Document:
Container level checking and Time synchronization

Date: 29/08/2017

Prepared by

Dassault Aviation

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales
Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation,
Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties
as to completeness, accuracy or fitness for purpose, with respect to any of the information.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 ii

Contents

1 Scope 1

2 Introduction 1

3 Abbreviations 2

4 Definitions 3

5 References 4

6 Guidance to Time Synchronisation 4

7 Guidance to Container-level QoS Checking 4

7.1 Introduction 4

7.2 Validity of input and output data 5

7.2.1 Principles 5

7.2.2 Fault handling 5

7.3 Validity of temporal characteristics 6

7.3.1 Principles 6

7.3.2 Fault handling 6

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 iii

0 Executive Summary

This document defines guidance to time synchronisation and container level QoS checking within an ECOA
system.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 1

1 Scope

This document is intended to provide guidance on container level checking and time synchronization.

The document is structured as follows:

Section 2 gives a brief introduction to the topic.

Section 3 expands abbreviations used in this report.

Section 4 provides definitions for the key terms used in this report.

Section 5 lists key documents referenced by this report.

Section 6 discusses time synchronization.

Section 7 discusses container level checking.

2 Introduction

This document defines guidance to time synchronisation and container level QoS checking within an ECOA
system.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 2

3 Abbreviations

API Application Programming Interface

ASC Application Software Component

DSTL Defence Science and Technology Laboratory

ECCPF ECOA Compliant Computing Platform

ECOA European Component Oriented Architecture

ELI ECOA Logical Interface

FR French

IAWG Industrial Avionics Working Group

I/O Inputs-Outputs

OS Operating System

PF Platform

QoS Quality of Service

RR Request-Response

STD Standard

TR Technical Report

TRL Technology Readiness Level

UDP User Datagram Protocol

UK United Kingdom

XML eXtensible Markup Language

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 3

4 Definitions

For the purpose of this document, the definitions given in the ECOA Architecture Specification (ref. [AS])
Part 2 and those given below apply.

Term Definition

(currently none)

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 4

5 References

AS European Component Oriented Architecture (ECOA) Collaboration Programme:
Architecture Specification
(Parts 1 to 11)

“ECOA” is a registered mark.

6 Guidance to Time Synchronisation

This section provides guidance to time synchronisation within an ECOA system.

Currently the ECOA Architecture Specifications does not define any way to synchronize time between
elements of an ECOA system since it is considered that the decision as to whether time synchronisation is
required is system specific. As a result, ECOA does not mandate a particular method for achieving time
synchronisation. This allows the ECOA Compliant Computing PlatForm (ECCPF) suppliers to choose the
most appropriate solution for their platforms.

Time synchronisation may be required at two levels:

 Between computing nodes of the same platform,

 Between platforms of the same system.

To synchronize computing node clocks within an ECOA Compliant Computing Platform, the platform
provider is responsible of his design choices. As a consequence, he is required to provide time
characteristics of his platform (maximum drift, precision between computing nodes, etc.).

To synchronize time between several ECOA Compliant Computing Platforms, there are multiple ways
depending on physical choices made by the system designer.

For his design, the system designer may select one or many of the following solutions depending on his
availability constraints:

 One given ECCPF is the clock master broadcasting time to other platforms through a standardized
protocol (e.g. NTP, SNTP) or a specific one.

 One specific piece of equipment (e.g. GPS receiver time server, IRIG time code generator, NTP
server) is the clock master broadcasting time to all platforms through a dedicated network or through
the avionics network.

 One network piece of equipment (e.g. IEEE1588 switch) distributes time over the avionics network.

Those choices may lead to specific procurement requirements towards platform providers so that their
platforms can be synchronized with one or many external clocks. Those requirements may cover interface
definition, time scale, origin of time, expected accuracy of computing nodes against the external reference
time, etc.

7 Guidance to Container-level QoS Checking

7.1 Introduction

This section provides guidance about what the container may check at its level based on information saved
in the model.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 5

It is important to note that Container-level QoS checking will result in additional overheads (e.g. CPU
resources). As a consequence the system designer should take careful consideration regarding its use in
an embedded system. For an on-ground reference platform, it is however recommended the container-level
QoS checking should be run systematically.

In this guidance, two types of checking are considered:

 Validity of input and output data

 Validity of temporal characteristics

7.2 Validity of input and output data

7.2.1 Principles

The current metamodel allows strong typing of data by setting the basic type (byte, char8, etc.), the
minimum value, the maximum value and the precision of each elementary data item (field, simple type,
etc.).

The following XML snippet provides an example of such typing:

 <simple type="double64" name="range" minRange="0.0" maxRange="12000.0" unit="NM"

 precision="10"/>

Then the container may check for each input or output parameter of an entry point or a container API if the
value is within the defined range or if the value is rounded to the proper precision.

This check is useful when:

 Integrating and checking on-going developments in order to fix bugs,

 Integrating and running components of low trust in relation with other components.

In case of trusted components, the check should not be useful once the system has been qualified. The
associated verification and validation shall have check that data coupling is correct. Moreover, if a software
quality assurance standard has been followed, the likelihood that the application source checks by itself
data validity is very high and in this case it is redundant with the container-level checking. So the system
designer must clearly indicate where the data validity is done to avoid superfluous processing.

In case of non-trusted components, the check could be done near those components (either their container
or the container of the components just beside); it is not necessary to handle in the same way all I/O data
within an assembly mixing different levels of trust.

7.2.2 Fault handling

When the check succeeds, the execution flow may continue.

However, when the check fails, it is recommended that any container should carry on the processing of the
current data/control flow (i.e. invoking the entry point with the faulty parameters or continuing the container
API call) for the following rationale:

 Detecting a problem at this level does mean the cause of the problem is at this level. So the decision
to invoke such or such recovery action should be left to a more intelligent entity such as the fault
handler.

 This allows a reproducible behaviour between all platforms

 Real systems generally implement data validity at application source code level.

In addition, it should log the error and it should inform the fault handler (ILLEGAL_INPUT_ARGS,
ILLEGAL_OUTPUT_ARGS error codes).

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 6

7.3 Validity of temporal characteristics

7.3.1 Principles

The current metamodel stores time information regarding service operations and request-response
timeouts.

Service operation QoS defines the arrival law and the maximum expected processing time to handle an
event or a request-response.

The client and the server of the same service instance may respectively request or provide different QoS;
their containers may check them appropriately.

The client container may check that:

 the service operations sent at its level respect the expected arrival law (frequency, minimum inter-
arrival time),

 the response is received before the max response time (time between the sending of the request and
the local queuing of the response),

 the age of a versioned data, when accessed, does not exceed the max ageing (this means that the
container should calculate and save locally the timestamp when the data is updated by a writer).

 The server container may check that:

o the service operations arriving at its level respect the expected arrival law (frequency, minimum
inter-arrival time),

o the entry-point associated to an event finishes before the maximum handling time (time between
the queuing of the event and the end of the entry-point),

 the response is sent before the max response time (time between the queuing of the request and the
send of the response).

As a module entry-point can be connected simultaneously to service-level operations and module
operations internal to the component through the same link and as there is currently no QoS information
available regarding these later operations, the container implementation shall distinguish both kinds of
operations in order to conditionally check the temporal characteristics of the service operations.

A platform supplier may enrich the checking by taking into account module-level behaviours, but these
behaviours are currently not normative; they are provided as guidance.

7.3.2 Fault handling

When the check succeeds, the execution flow may continue.

However, when the check fails, it is recommended that any container should carry on the processing of the
current data/control flow (i.e. invoking the entry point) for the following rationale:

 Detecting a problem at this level does mean the cause of the problem is at this level. So the decision
to invoke such or such recovery action should be left to a more intelligent entity such as the fault
handler.

 This allows a reproducible behaviour between all platforms

 Real systems implement temporal checks at application source code level.

In addition, it should log the error and it should inform the fault handler (OPERATION_OVERRATED,
OPERATION_UNDERRATED error codes).

