
 i

European Component Oriented Architecture (ECOA®)
Collaboration Programme:

Guidance Document:
Design Patterns

Date: 30/08/2017

Prepared by

Dassault Aviation

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales
Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation,
Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties
as to completeness, accuracy or fitness for purpose, with respect to any of the information.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 ii

Contents

1 Scope 1

2 Introduction 1

3 Abbreviations 2

4 Definitions 3

5 References 4

6 Design Patterns 4

6.1 Design patterns for ASC implementation 4

6.1.1 Single Module Component Design Pattern 4

6.1.2 Multiple Module Component Design Pattern 5

6.1.3 Multiple Module Component with Parallel Execution Design Pattern 6

6.2 Design pattern for service availability 7

6.2.1 “Passive” or “pro-active” service availability management 7

6.2.2 Design pattern for “pro-active” service availability management 8

6.3 Design patterns for handling redundant service providers 14

6.4 Design patterns for module FIFO management 16

6.4.1 Design pattern for Fine Level Control of Module FIFO management 17

Figures

Figure 1: Example design pattern – Single Module ASC 5

Figure 2: Example design pattern – « Centralized Decision & Parallel calculation » template:
multi-modules ASC + centralized management 6

Figure 3: Example design pattern – « Decentralized Decision & Parallel calculation » template:
multi-modules ASC + decentralized management 7

Figure 4: Example design pattern – Global svc availability @ASC level, illustrated on template
1) « Single Module ASC » 9

Figure 5: Example design pattern – Global svc availability @ASC level, illustrated on template
2) « Centralized Decision & Parallel calculation » 10

Figure 6: Example design pattern – Global svc availability @ASC level, illustrated on template
3) « Decentralized Decision & Parallel calculation » 11

Figure 7: Example design pattern – Availability @service level for some services, illustrated on
template 1) « Single Module ASC » 12

Figure 8: Example design pattern – Availability @service level for some services, illustrated on
template 2) « Centralized Decision & Parallel calculation » 13

Figure 9: Example design pattern – Availability @service level for some services, illustrated on
template 3) « Decentralized Decision & Parallel calculation » 14

Figure 10: Example design pattern – Redundant service providers 15

Figure 11: Example design pattern – Broker ASC 16

Figure 12: No module FIFO size management 17

Figure 13: Module FIFO size management 18

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 iii

0 Executive Summary

This document provides examples of design patterns which may be considered by AS issue 6 users for
developing ASCs. Each design pattern focuses on a different topic of interest.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 1

1 Scope

This document is intended to provide examples of design patterns aligned with AS issue 6.

The document is structured as follows:

Section 2 gives a brief introduction to the topic.

Section 3 expands abbreviations used in this report.

Section 4 provides definitions for the key terms used in this report.

Section 5 lists key documents referenced by this report.

Section 6 provides examples of design patterns.

2 Introduction

This document provides examples of design patterns which may be considered by AS issue 6 users for
developing ASCs. Each design pattern focuses on a different topic of interest.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 2

3 Abbreviations

API Application Programming Interface

ASC Application Software Component

ECOA European Component Oriented Architecture

ELI ECOA Logical Interface

FR French

IAWG Industrial Avionics Working Group

I/O Inputs-Outputs

OS Operating System

PF Platform

QoS Quality of Service

RR Request-Response

STD Standard

TR Technical Report

TRL Technology Readiness Level

UDP User Datagram Protocol

UK United Kingdom

XML eXtensible Markup Language

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 3

4 Definitions

For the purpose of this document, the definitions given in the ECOA Architecture Specification (ref. [AS])
Part 2 and those given below apply.

Term Definition

(currently none)

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 4

5 References

AS European Component Oriented Architecture (ECOA) Collaboration Programme:
Architecture Specification
(Parts 1 to 11)

“ECOA” is a registered mark.

6 Design Patterns

6.1 Design patterns for ASC implementation

The following design patterns are examples of possible ways of implementing an ASC using one or more
modules. These patterns are not exhaustive and are provided for illustration only.

6.1.1 Single Module Component Design Pattern

Figure 1 illustrates what is believed to be the “default” design pattern, which is sufficient when there is no
specific software development requirement to split the functionality into multiple modules (such as parallel
computation) within the ASC. Having a single Module greatly simplifies application code as it eliminates the
need for functional synchronization between several Modules. This Module Instance (M1) is automatically
started by the ECOA Platform.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 5

Figure 1: Example design pattern – Single Module ASC

6.1.2 Multiple Module Component Design Pattern

Figure 2 illustrates a pattern for implementing multiple Module ASCs when there is a requirement for
performing parallel computation. It features a centralized architecture with a “functional manager”. From an
ECOA point of view, this “functional manager” is a Module Instance without any privilege (no difference with
other Module Instances). All Module Instances are automatically started by the ECOA Platform (in terms of
ECOA technical Module lifecycle management). The “functional manager” controls the functional
initialization of the ASC once all Module Instances are in “RUNNING” state from an ECOA lifecycle point of
view. This involves normal functional interactions between Module Instances. For instance, Module
Instances may tell the “functional manager” about their functional initialization state (e.g: not initialized /
initialization in progress / initialized…) and the “functional manager” would request Module Instances to
perform functional initialization. It may synchronize ASC level states based on the functional initialization
state from Module Instances.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 6

Figure 2: Example design pattern – « Centralized Decision & Parallel calculation » template: multi-
modules ASC + centralized management

6.1.3 Multiple Module Component with Parallel Execution Design Pattern

Figure 3 illustrates a pattern for implementing multiple Module ASCs when there is a requirement for
performing parallel computation. The difference with the previous design pattern is that it does not feature
any “functional manager”. All Modules initialize functionally as soon as they are running, and they do not
need to synchronize functionally with each other. The use of this or the previous pattern depends on the
functional requirements of the Component.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 7

Figure 3: Example design pattern – « Decentralized Decision & Parallel calculation » template: multi-
modules ASC + decentralized management

6.2 Design pattern for service availability

6.2.1 “Passive” or “pro-active” service availability management

“Pro-active” service availability management implies that all components have to monitor themselves and
provide the availability of their services, so that this information is received by all their clients.

Another approach is to rely on “passive” service availability. With this approach a client monitors the
availability of the services it requires, based on observing the functional behaviour of these services. This
has several advantages over the "pro-active" pattern:

 There is less network traffic

 It is simpler as it works with existing APIs, not by creating a dedicated one.

 No component is monitoring itself, making the system more robust.

 Availability of a service can be different for different clients, the network path is accounted for.

 “Passive” and “pro-active” can be mixed and matched. “Pro-active” service availability would be
applied only in the places in the system where it is necessary.

 “Passive” service availability is focused on defensive programming and how to achieve it - which is
necessary anyway even with “pro-active” service availability.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 8

6.2.2 Design pattern for “pro-active” service availability management

In use cases where a “pro-active” service availability management is required, “normal” ECOA operation
links provide everything needed by the ASC Supplier to manage “pro-active” service availability:

 In terms of service definition, it means that service availability could be declared as an explicit
versioned data operation in services where it is actually needed. This allows for traceability
between software implementation and system specification where such service availability may be
explicitly declared as an interface.

 In terms of updating service availability, besides the functional application code which calculates
the availability of a service, the ASC supplier writes that versioned data operation. This is done by
getting a handle on the data, writing it and publishing it.

 In terms of reading the availability of required services, the application code reads a versioned data
operation. This is done by getting a handle on the data, reading it, then releasing the handle on the
data.

 When service availability is implemented as a periodic versioned data, monitoring whether this data
has become stale allows client ASCs to detect that services have become unavailable or that there
is a network issue. This implies the implementation of such data monitoring code in the application.
Such defensive programming on the application side may improve its robustness to network
failures (either temporary or permanent).

 In addition, using service operations allows any module to write and read service availability. This
enables a decentralized ASC architecture to be used in places where a centralized design pattern
is not appropriate, eliminating application code related to functional synchronization between a
manager and other modules. This provides the benefit of flexibility in options for implementing
ASCs.

The following design patterns illustrate the above principles. These patterns are not exhaustive and are
provided for illustration only.

Figure 4, Figure 5 and Figure 6 illustrate a pattern for managing service availability, which could be used
within an ECOA Composite under the responsibility of a unique application supplier. The supplier could
optimize the internal design of the Composite by managing services availability “globally” through a single
availability state data per ASC. This pattern is illustrated for each of the three patterns about ASC
implementation. These figures show an additional operation which illustrates the change a component
would require if an externally provided service was updated to include an availability service operation.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 9

Figure 4: Example design pattern – Global svc availability @ASC level, illustrated on template 1)
« Single Module ASC »

Figure 5 illustrates the example of ASC implementation pattern #2 (centralized architecture), where one
Module Instance has the role of a “functional manager” which controls the functional states and modes of
the ASC, including functional initialization. This “functional manager” is also responsible for setting the ASC
availability information and for monitoring availabilities from other ASCs via versioned data.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 10

Figure 5: Example design pattern – Global svc availability @ASC level, illustrated on template 2)
« Centralized Decision & Parallel calculation »

Figure 6 illustrates the design pattern on the example of ASC implementation pattern #3 (decentralized
architecture).

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 11

Figure 6: Example design pattern – Global svc availability @ASC level, illustrated on template 3)
« Decentralized Decision & Parallel calculation »

Figure 7, Figure 8 and Figure 9 illustrate a pattern for managing service availability, which could be used in
a service oriented design mixing ASCs from different suppliers. This pattern is illustrated for each of the
three patterns about ASC implementation into Modules.

Only in services that functionally require availability information would the supplier read or write a versioned
data conveying that information.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 12

Figure 7: Example design pattern – Availability @service level for some services, illustrated on
template 1) « Single Module ASC »

Figure 8 illustrates the example of component implementation pattern #2 (centralized architecture), where
the “functional manager” is responsible for writing the availability versioned data of provided services which
feature such information. It is also responsible for monitoring the availability versioned data of required
services depending on whether it needs to do so functionally.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 13

Figure 8: Example design pattern – Availability @service level for some services, illustrated on
template 2) « Centralized Decision & Parallel calculation »

Figure 9 illustrates that service availability information could also be managed in a decentralized way
provided no functional synchronization is required between Modules.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 14

Figure 9: Example design pattern – Availability @service level for some services, illustrated on
template 3) « Decentralized Decision & Parallel calculation »

6.3 Design patterns for handling redundant service providers

Figure 10 and Figure 11 illustrate example design patterns of possible ways for managing redundant
service providers.

These patterns are not exhaustive and are provided for illustration only. Redundant service providers and
the design patterns using them may also be employed to provide data correlation or data fusion between
the providers

In thie pattern described in Figure 10, the “SensorManager” ASC features two required service instances,
each of them being connected to one provided service instance.

An explicit versioned data operation (called “Available” in this example) may be added in the service to
monitor service availability, as illustrated previously in section 6.2. This is not mandatory and depends on
the functional nature of the service, as any existing periodic data (e.g. AV State vector) could be used for
monitoring the service availability.

The “SensorManager” ASC monitors the periodic versioned data that conveys the service availability
information in both required service instances.

The “SensorManager” ASC has the freedom and flexibility for deciding how to use these redundant
services:

 It may use data from just one provider and ignore the other,

 Or it may use data from both providers in order to consolidate the AV State vector and detect any
abnormal divergence between them.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 15

The “SensorManager” ASC is responsible for resetting and managing any functional protocol with the
provider(s) of its choice.

A third required service instance is featured for growth potential. It can be left unconnected and the
“SensorManager” ASC may be configured with a property that instructs it to ignore it. The application code
of the “SensorManager” ASC can be written in such a way that it will comply with the varying number of
providers. The difference in terms of ECOA XML data is not significant.

The design pattern in Figure 10 is believed to be a flexible and versatile option as it covers all use cases.

Figure 10: Example design pattern – Redundant service providers

In the design pattern illustrated in Figure 11, a “broker” ASC is inserted between the “SensorManager” ASC
and the redundant “AVLoc” service providers.

The role of the broker is to perform the switch between redundant providers. The broker only exposes one
provided service instance to the “SensorManager”.

A versioned data is added in the service exposed by the broker. When defined as “notifying” in
“SensorManager” implementation XML, it enables the “broker” to be notified upon a change in the active
provider and trigger any functional behaviour such as resetting functional protocol with the new active
provider.

This pattern provides abstraction in terms of the number of service providers, as the SensorManager
component in Figure 11 would not require updating if the number of service providers changed. A single
“broker” may also be used to expose one service instance to any number of clients such as
“SensorManager”.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 16

Figure 11: Example design pattern – Broker ASC

6.4 Design patterns for module FIFO management

Module FIFO management can be tailored to provide a fine level of control over the queueing of operations.
The simple mechanism for FIFO management is to connect all sources to a single OperationLink, as
illustrated by Figure 12. In this scenario, all three clients share the same fifoSize=”10” and activating=”true”
settings.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 17

Figure 12: No module FIFO size management

6.4.1 Design pattern for Fine Level Control of Module FIFO management

The purpose is to manage module FIFO size and operation activation in case of multiple sources sending
events or requests which are processed by the same module. The goal is to be able to set different module
FIFO sizes and activation policies depending on the source of the event or request. This aims at mitigating
the effects of a source which would send too many events or requests, thereby preventing events or
requests from other sources being processed, which would happen if there was a single module FIFO size.

The design pattern consists of keeping the same operation links, but duplicating the Module entry points to
match the number of operation links. In each of these duplicate entry points, the incoming call is forwarded
to the same M2 internal function which contains the same application code as in Figure 12. This means that
the Container only has to manage one FIFO per Module Operation entry point whilst it is still possible to
assign different module FIFO sizes per source of incoming calls.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation
Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations)
Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no
warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the
information.

Page 18

Figure 13: Module FIFO size management

Of course, this pattern should only be used if there is such a requirement; otherwise it is simpler to connect
all sources to a single OperationLink as illustrated by Figure 12.

