
 i

European Component Oriented Architecture (ECOA®)
Collaboration Programme:

Guidance Document:
System Management

Date: 27/11/2017

Prepared by

BAE Systems (Operations) Limited

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales
Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and
Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation,
Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom
Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties
as to completeness, accuracy or fitness for purpose, with respect to any of the information.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 ii

Contents

1 Scope 1

2 Introduction 1

3 Abbreviations 2

4 Definitions 3

5 References 4

6 Component Management 5

6.1 Component Management Concept 5

6.2 Component Lifecycle Service Concept 5

6.3 Example Management Hierarchy 5

6.4 Examples of Component Lifecycle Services 6

6.4.1 Simple Example of a Component Lifecycle Service 6

6.4.2 More Complex Example of a Component Lifecycle Service 8

7 Fault Handling 12

7.1 Fault Handling Concept 12

7.1.1 Fault Handling Levels 12

7.1.2 Fault Handling at the Application Level 12

7.1.3 Fault Handling at the ECOA Infrastructure Level 12

7.1.4 Fault Handling at the Underlying OS Level 12

7.2 The Fault Handler as additional Container code 13

7.3 The Fault Handler as a Component 13

7.4 Interaction between the ECOA domain and the underlying OS 13

Figures

Figure 1 - Example Management Hierarchy 6

Figure 2 – State chart for Simple Component Lifecycle 7

Figure 3 - State chart for more complex Component Lifecycle 9

Tables

Table 1 - New States and Responses to Commanded State Requests 11

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 iii

0 Executive Summary

System Management covers many areas of any system, from controlling the mode it is in (Initialization,
Normal Operation, Shutdown, Failure etc.), through to its behaviour in response to faults.

This document covers various aspects of System Management within a system implemented using ECOA.

It is not in any way a “normative” part of ECOA, or even a definitive solution. The discussions here are
purely examples of how System Management may be implemented and used in ECOA.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 1

1 Scope

This document is intended to provide guidance for System Designers in developing an application
architecture using ECOA that allows for various aspects of System Management.

The document is structured as follows:

Section 2 gives a brief introduction to the topic.

Section 3 expands abbreviations used in this report.

Section 4 provides definitions for the key terms used in this report.

Section 5 lists key documents referenced by this report.

Section 6 shows how Components can be managed.

Section 7 provides information on how Fault Handling may be implemented.

2 Introduction

This document provides some guidance and examples of what may be achieved by using standard ECOA
services and mechanisms to manage a system and how it behaves in various scenarios.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 2

3 Abbreviations

API Application Programming Interface

DGA Direction Générale de l’Armement

Dstl Defence Science and Technology Laboratory

ECOA European Component Oriented Architecture

MOD Ministry of Defence

XML eXtensible Markup Language

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 3

4 Definitions

For the purpose of this document, the definitions given in the ECOA Architecture Specification (ref. [AS])
Part 2 and those given below apply.

Term Definition

(currently none)

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 4

5 References

AS European Component Oriented Architecture (ECOA) Collaboration Programme:
Architecture Specification
(Parts 1 to 11)

“ECOA” is a registered mark.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 5

6 Component Management

6.1 Component Management Concept

ECOA does not define or mandate a way of managing the ‘mode’ or ‘state’ of a set of Components within a
system.

This is seen as an advantage, in that a System Designer may choose to have no Component level state
management and only use functional interactions to determine the state of a provided service. This leads to
a self-managing system based upon functional state of the Service.

Alternatively a System Designer may choose to have some level of managed control over the ‘state’ or
functionality of Components within the system. This could be in the form of a single level management
structure, where one ‘manager’ component manages all others in the system. Or it could be a hierarchical
structure where multiple levels of ‘manager’ components exist in a hierarchy.

As managed Components have a concept of their ‘state’ or ‘mode’ it is possible for them to exhibit different
functional behaviour when in these different ‘states’. In addition the functional availability of any Services
they provide may be dependent on this ‘state’ or ‘mode’ as well as any other required Services. This allows
the System Designer to build in a finer level of control to the system such that very specific behaviours may
be created.

It is also possible to have a mixture of managed and unmanaged Components within the system for areas
that are more autonomous in their behaviour. It is ultimately the responsibility of the System Designer to
define the best management philosophy for the system they are designing.

6.2 Component Lifecycle Service Concept

In order for Components to manage and be managed some form of interaction between them is required,
which can be achieved by defining a Component Lifecycle Service. ECOA does not define or mandate a
Component Lifecycle Service; however it is clear that for any set of Components within a system to manage
or be managed a common Service would need to be defined.

Since the Component Lifecycle Service is defined in the same way as any other ECOA Service, the System
Designer is free to have as little or as much control as required. Indeed it would be possible to have
different Component Lifecycle Services for different parts of the same system if various levels of control or
management were required.

6.3 Example Management Hierarchy

Figure 1 shows an example management hierarchy containing multiple levels of managed components,
grouped into a Managed Domain with multiple levels of management, along with some unmanaged
components in an Unmanaged Domain. These Managed and Unmanaged Domains are purely conceptual
and do not represent any actual artefacts.

The Manager Component in Management Level 1 is managing the two Components (Component A and
Component B) in Management Level 2 through the use of a Component Lifecycle Service. Component A in
Management Level 2 is providing functional behaviour along with managing one Component (Component
C) in Management Level 3, again through the use of a Component Lifecycle Service.

The Component Lifecycle Services shown in Figure 1 may be the same for all of the managed
Components, or could be varied based upon the particular requirements. For example the Component
Lifecycle Service used between Management Levels 1 and 2 could be different to that used between
Management Levels 2 and 3. Equally the entire system could make use of the same Component Lifecycle
Service. For simplicity it is recommended to use the same Component Lifecycle Service across the entire
system. In addition, using the same Component Lifecycle Service across the system, or even between
systems, can allow a greater flexibility in re-use and re-deployment of Components.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 6

Figure 1 - Example Management Hierarchy

Because Components A, B and C are managed to some level their behaviour may be adjusted by their
current ‘state’ or ‘mode’

Components D, E and F are conceptually within the Unmanaged Domain and only provide functional
Services to the rest of the system.

6.4 Examples of Component Lifecycle Services

6.4.1 Simple Example of a Component Lifecycle Service

A simple example of a Component Lifecycle Service could be defined as having two ‘states’ and three
request/response operations:

 States
o IDLE
o RUNNING

 Request/Response Operations
o start

 has a single output parameter returning the state when complete

 IDLE

 RUNNING
o stop

 has a single output parameter returning the state when complete

 IDLE

 RUNNING
o get_current_state

 has a single output parameter returning the current state

 IDLE

 RUNNING

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 7

The state chart for this example is shown in Figure 2 and shows the two states along with the possible
transitions.

Figure 2 – State chart for Simple Component Lifecycle

As this is a very simple example there is no requirement for error detection in terms of requesting an invalid
state change, as a start or stop will either transition to the other state, or remain in the current state.

This Component Lifecycle Service would be defined in the ECOA XML as follows:

<serviceDefinition
 xmlns="http://www.ecoa.technology/interface-2.0">

<use library="simple_lifecycle"/>

 <operations>
 <requestresponse name="start">
 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>

 <requestresponse name="stop">
 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>

 <requestresponse name="get_current_state">
 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>
 </operations>

</serviceDefinition>

This definition makes use of a predefined ‘simple_lifecycle:state’ type defined within a separate type library
‘simple_lifecycle’ as follows:

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 8

 <enum name="state" type="uint32">
 <value name="IDLE" valnum="0" />
 <value name="RUNNING" valnum="1" />
 </enum>
 </types>

</library>

Using the above Service Definition and associated type definition a manager Component would be able to
send a ‘start’ or ‘stop’ request and receive a response with the state that the managed Component had
transitioned to (or the state it had remained in). In addition the manager Component may, at any time, send
a ‘get_current_state’ request and receive a response with the current state of the managed Component.

The implementation of this state chart within a Module of the managed Components would be trivial, as at
initialization the state would be IDLE, and upon a request to ‘start’ it would transition to RUNNING once any
required functionality was completed. In the same way upon a request to ‘stop’ whilst in the RUNNING
state, it would transition to IDLE once any required functionality was completed. Any request to ‘start’ or
‘stop’ when in the ‘wrong’ state would just be ignored. Finally a request to ‘get_current_state’ would just
respond with the current state of the Component.

This is a very trivial example of a Component Lifecycle Service, however it serves to illustrate that since
Component Lifecycle Services are constructed using the normal ECOA Service rules, they are, as far as
ECOA is concerned just another functional part of the system.

6.4.2 More Complex Example of a Component Lifecycle Service

The previous example of a Component Lifecycle Service is very simple; however it is possible to enhance
the Component Lifecycle state charts to give the manager Components a better level of visibility of the
managed Component state. In addition it is possible to build in some appropriate checks for invalid state
transition requests.

In this case the Component Lifecycle Service will have four stable states and four transient states with a
service that contains a single request/response operation and a single versioned data operation as follows:

 States
o IDLE
o INITIALIZING
o STOPPED
o STARTING
o RUNNING
o STOPPING
o FINISHING
o FAILED

 Request/Response Operation
o command_state_change

 has a single input parameter with requested change

 INITIALIZE

 START

 STOP

 SHUTDOWN
 Has a single output parameter with return status

 OK

 INVALID_STATE_REQUEST

 Versioned Data Operation
o current_state – the current state of the Component

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 9

The state chart for this example is shown in Figure 3 and shows the eight states along with the possible
transitions.

Figure 3 - State chart for more complex Component Lifecycle

The Component Lifecycle Service would be defined in the ECOA XML as follows:

<serviceDefinition
 xmlns="http://www.ecoa.technology/interface-2.0">

<use library="complex_lifecycle"/>

 <operations>
 <requestresponse name="command_state_change">
 <input name="commanded_state" type="complex_lifecycle:state_command"/>
 <output name="state" type="complex_lifecycle:status"/>
 </requestresponse>

 <data name="current_state" type="complex_lifecycle:state"/>
 </operations>

</serviceDefinition>

This definition makes use of a predefined types ‘complex_lifecycle:state_command’,
‘complex_lifecycle:status’ and ‘complex_lifecycle:state’ defined within a separate type library
‘complex_lifecycle’ as follows:

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 10

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <enum name="state_command" type="uint32">
 <value name="INITIALIZE" valnum="0" />
 <value name="START" valnum="1" />
 <value name="STOP" valnum="2" />
 <value name="SHUTDOWN" valnum="3" />
 </enum>

 <enum name="status" type="uint32">
 <value name="OK" valnum="0" />
 <value name="INVALID_STATE_REQUEST" valnum="1" />
 </enum>

 <enum name="state" type="uint32">
 <value name="IDLE" valnum="0" />
 <value name="INITIALIZING" valnum="1" />
 <value name="STOPPED" valnum="2" />
 <value name="STARTING" valnum="3" />
 <value name="RUNNING" valnum="4" />
 <value name="STOPPING" valnum="5" />
 <value name="FINISHING" valnum="6" />
 <value name="FAILED" valnum="7" />
 </enum>
 </types>

</library>

Using the above Service Definition and associated type definition a manager Component would be able to
send a ‘command_state_change’ request and receive a response informing it that the request had either
been accepted (‘OK’) or that it was an ‘INVALID_STATE_REQUEST.

If a valid ‘command_state_change’ request is received by a managed Component, then it would either
respond with an ‘INVALID_STATE_REQUEST’, or change the Component state to the appropriate
intermediate state (INITIALIZING, STARTING, STOPPING, FINISHING), and publish this as versioned data
before beginning to functionally change the Component. Once the functional change was complete the
managed Component would change its state to the appropriate stable state (IDLE, STOPPED, RUNNING,
FAILED) and publish this as versioned data.

The implementation of this state chart within a Module of the managed Components would be more
complex than the previous example as it has more states and behaviour associated with the management
of functionality. In addition to generating valid state transitions upon request, the Module will also generate
a response when an invalid request is made in a particular transition. For the state chart shown in Figure 3
the behaviour of a Component in response to a requested state change is shown in Table 1. NOTE that the
‘New States’ in the table are not all stable states, and therefore the Component would ultimately transition
to a stable state based upon a valid request.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 11

Table 1 - New States and Responses to Commanded State Requests

 Commanded State

 INITIALIZE START STOP SHUTDOWN

C
u

rr
e
n

t
S

ta
te

IDLE

New State INITIALIZING New State IDLE New State IDLE New State IDLE

Response OK Response ISR
*
 Response ISR

*
 Response ISR

*

INITIALIZING

New State INITIALIZING New State INITIALIZING New State INITIALIZING New State INITIALIZING

Response ISR
*
 Response ISR

*
 Response ISR

*
 Response ISR

*

STOPPED

New State INITIALIZING New State STARTING New State STOPPED New State FINISHING

Response OK Response OK Response ISR
*
 Response OK

STARTING

New State STARTING New State STARTING New State STARTING New State STARTING

Response ISR
*
 Response ISR

*
 Response ISR

*
 Response ISR

*

RUNNING

New State INITIALIZING New State RUNNING New State STOPPPING New State FINISHING

Response OK Response ISR
*
 Response OK Response OK

STOPPING

New State STOPPPING New State STOPPPING New State STOPPPING New State STOPPPING

Response ISR
*
 Response ISR

*
 Response ISR

*
 Response ISR

*

FINISHING

New State FINISHING New State FINISHING New State FINISHING New State FINISHING

Response ISR
*
 Response ISR

*
 Response ISR

*
 Response ISR

*

FAILED

New State FAILED New State FAILED New State FAILED New State FAILED

Response ISR
*
 Response ISR

*
 Response ISR

*
 Response ISR

*

ISR
*
 - INVALID_STATE_REQUEST

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 12

7 Fault Handling

7.1 Fault Handling Concept

7.1.1 Fault Handling Levels

ECOA defines the concept of Fault Handling at various levels; the Application, ECOA Infrastructure and
underlying OS ([AS] Part 1).

Application level fault handling typically deals with the ‘functional’ view of Fault Handling, and is specific to
the functional behaviour of the particular system. This type of fault handling makes use of domain
knowledge in order to determine the best course of action when particular errors are detected.

ECOA Infrastructure level fault handling understands the ECOA architecture and the various mechanisms it
uses. It will generally not understand the context in which it operates, and will allow a tailorable response to
a particular detected error.

Underlying OS level fault handling is usually specific to the OS in question and in general it will not
understand the context in which it operates. It would normally provide a generic capability that may be
‘tailored’ by the user.

The level of support for Fault Handling provided by the ECOA platform will be determined by the platform
procurement requirements and therefore some fault handling mechanisms may not be available.

7.1.2 Fault Handling at the Application Level

This level of Fault Handling is outside the scope of the ECOA Standard, and as such is left to the System
Designer/System Integrator to define.

ECOA does provide some low-level mechanisms to allow the Application Developer to communicate the
detection of an error to the appropriate entity.

It allows:

 The reporting of detected errors from a Module to the ECOA Fault Handler
o This may be fatal or non-fatal

This mechanism may be used by the Application Developer to report errors based upon its functional
knowledge. Note that if a Module raises a fatal error, the ECOA infrastructure will shut down all modules in
the Component.

7.1.3 Fault Handling at the ECOA Infrastructure Level

This level of Fault Handling is defined within ECOA as a set of generic errors based upon the ECOA
mechanisms, and a set of possible recovery actions.

The ECOA Fault Handler may be implemented either as a specialised ECOA component, or as additional
code integrated with the Container, which allows the functionality to be implemented in the most
appropriate way. In either case the APIs are the same, and the functionality is defined by the System
Designer/System Integrator.

Ultimately if the Fault Handler cannot handle any particular error it will have the option to report it to the
underlying OS for further processing.

7.1.4 Fault Handling at the Underlying OS Level

This level of Fault Handling is outside the scope of ECOA and will be dependent upon the underlying OS
and its capabilities. At this level fairly generic responses will be possible, and may not be directly
associated with particular ECOA mechanisms or application functional behaviour.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 13

7.2 The Fault Handler as additional Container code

The main advantage of implementing the Fault Handler as additional Container code is that it is very simple
and does not require the ECOA Infrastructure to support a full Component implementation.

A very simple implementation would be to use a look-up table, where upon being invoked through the error
notification API the Fault Handler would use the information to determine the recovery action required (if
any) from a static table. If a recovery action is required, then the Fault Handler invokes the ECOA
Infrastructure API to request the appropriate recovery action.

This simple implementation can be made more generic by allowing the look-up table to be defined through
the use of a file, and would allow the implementation to be re-used in different systems by simply modifying
the provided configuration file.

A disadvantage of this approach is that the Fault Handler is unable to take advantage of domain knowledge
to influence its decision making. It has no functional context by which to vary its behaviour, and so by its
very nature would be limited in its response to certain fault scenarios.

7.3 The Fault Handler as a Component

The main advantage of implementing the Fault Handler as a Component is that is uses the same concepts
as a normal Component (e.g. Services/Operations etc.). This means that a Fault Handler implemented in
this way is able to ‘bridge the gap’ between the Fault Handling at the ECOA Infrastructure level and that at
the Application level.

A simple implementation can be made more generic by once again using a look-up table to define the
required behaviour and using a file or the PINFO mechanism to change the table being used. In addition it
would be possible to add some domain knowledge and current application state to the decision making and
potentially make the system respond more appropriately to each fault scenario.

The possibilities when using a Fault Handler implemented as a Component are endless, as it could be
designed as a fundamental part of the Application, not only invoking recovery actions through the ECOA
Infrastructure API as required, but ultimately controlling or informing the Applications of faults within the
system. Indeed a Fault Handler implemented as a Component could in effect be seen as a ‘Manager’
Component making use of Component Management (see section 6) to coordinate a change in system
behaviour based upon errors reported from various entities within the system.

A disadvantage of this approach is that the Fault Handler can, if not carefully implemented, become very
specific to an Application and ECOA Software Platform combination, thus making the reusability of the
Fault Handler very limited. With careful thought however and the use of configuration tables it may be
possible to implement a more generic and re-useable solution.

7.4 Interaction between the ECOA domain and the underlying OS

At any point the Container code is free to interact with the underlying OS layer in order to best manage the
system. This may be default behaviour within the Container for scenarios where it cannot interact with the
ECOA Fault Handler to report a detected error. In these cases it is the responsibility of the Platform
Provider and System Integrator to define the behaviour such that it delivers the requirements of the System.

Additionally it is possible for the Fault Handler itself to interact as required with the underlying OS layer.
This allows the provider of the Fault Handler to decide, based upon the reported errors, what the most
appropriate course of action is.

In the case where the Fault Handler is implemented as additional Container code (section 7.2), the System
Integrator may use the underlying OS layer APIs as required to fulfil the requirements.

In the case where the Fault Handler is implemented as a Component (section 7.3), then it may be prudent
to isolate these interactions into one particular module within the Fault Handler, such that the remainder of
it is still portable. In this case the Fault Handler would be operating as a Driver Component, and must
comply with the requirements imposed by this.

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

 14

For all cases it is the System Integrators responsibility to ensure that whatever behaviour is implemented it
will satisfy not only the functional requirements of the system, but comply with any scheduling requirements
to ensure the system behaviour is maintained appropriately.

