

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 1

European Component Oriented Architecture

(ECOA®) Collaboration Programme:
ECOA Exploitation Guide

Prepared by Dassault Aviation

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 2

1 Abbreviations and Acronyms

ACK Acknowledge

API Application Programming Interface

AS Architecture Specification

ASC Application Software Component

ASCTG Application Software Components Test Generator

CAC Clauses Administratives Communes « Armement »

CBSE Component Based Software Engineering

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CSMGVT Connected System Model Generation and Verification Tool

DAL Design Assurance Level

Db Database

ECOA European Component Oriented Architecture

EDT ECOA Design Tool

ELI ECOA Logical Interface

FAQ Frequently Asked Questions

FR France

HLR High Level Requirements

HW Hardware

IAWG Industrial Avionics Working Group

IP Intellectual Property or Internet Protocol

IT Information Technology

LDP Lightweight Development Platform tool

MMTI Maritime Moving Target Indicator

MSCIGT Module Skeleton and Container Interfaces Generator Tool

MW Middleware

NA Not Applicable

OS Operating System

PC Personal Computer

PINFO Persistent Information (ECOA)

QoS Quality of Service

SOA Service Oriented Architecture

SW Software

UML Unified Modelling Language

WCET Worst Case Execution Time

WP Work Package

XML eXtensible Markup Language

XSD XML Schema Definition

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 3

2 References

1
ECOA Standard AS6
DEF STAN 00-973
RG AERO 000 973

2
ECOA website
www.ecoa.technology

http://www.ecoa.technology/

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 4

3 Table of Contents

1 Abbreviations and Acronyms .. 2
2 References ... 3
3 Table of Contents ... 4
4 List of Figures ... 6
5 List of Tables .. 7
6 Introduction ... 8

6.1 What is ECOA? .. 8
6.2 What does the ECOA Standard consist in? .. 11
6.3 How to decide whether to choose ECOA? .. 11

7 Identification of Development Activities and Associated Tooling ... 14
7.1 Overview of Possible ECOA Tooling for the System Development Process 14
7.2 Overview of Available Open Source ECOA tooling ... 15

7.2.1 EDT – ECOA Editor ... 16
7.2.2 LDP – ECOA Engine ... 17
7.2.3 MSCIGT – ECOA Skeleton Generator ... 18
7.2.4 ASCTG – ECOA Test Generator ... 19
7.2.5 CSMGVT – ECOA Cork Generator .. 20
7.2.6 EXVT – ECOA Checker ... 21

7.3 About Other Tools .. 22
7.3.1 Remaining Possible Specific Tools .. 22
7.3.2 Available Non-Specific COTS Tools ... 22

7.4 Synthesis ... 23
8 Application Typologies .. 24
9 Roles .. 25

9.1 ECOA System Architect ... 27
9.2 ECOA System Integrator .. 29
9.3 ECOA ASC Supplier(s) .. 31
9.4 ECOA Compatible Platform Supplier .. 35
9.5 Illustration of the Relationship between Roles and Activities through the
Component Development Workflow ... 37

10 Tutorial ... 38
10.1 Case of Study: Search and Rescue System ... 38

10.1.1 Logical Architecture ... 38
10.1.2 Functional Chains .. 40
10.1.3 Selection of a Subset of Components .. 41

10.2 Focus on Tooled Activities ... 42
10.2.1 UC1: As a System Architect, I want to define the applicative
architecture of my system ... 43
10.2.2 UC2: As a System Architect, I want to modify an existing applicative
architecture ... 45
10.2.3 UC3: As a System Integrator, I want to define components
implementation architecture .. 47
10.2.4 UC4: As an ASC Supplier, I want to get an ECOA model specifically
adapted to my components development ... 49
10.2.5 UC5: As an ASC Supplier, I want to generate source code for my
component(s) modules ... 51
10.2.6 UC6 : As an ASC Supplier, I want to test one or several module(s) on
the basis of my ECOA model and source code ... 53

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 5

10.2.7 UC7: As an ASC Supplier, I want to use binary files to integrate and
test components ... 58
10.2.8 UC8: As a System Integrator, I want to define the software
deployment onto hardware resources ... 59
10.2.9 UC9: As a Platform Provider, I want to provide an ECOA-compliant
platform 60

10.3 Highlights on ECOA standard benefits ... 61
11 FAQ .. 62

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 6

4 List of Figures

Figure 1: System architecture based on ECOA Infrastructure ... 9
Figure 2: ECOA concepts go along with the continuity of system process development 11
Figure 3: Choice of a good perimeter for code refactoring with ECOA 12
Figure 4: Possible and existing specific tooling in the ECOA development process 14
Figure 5: Principle view of EDT ... 16
Figure 6: Basic toolchain for ECOA development process .. 23
Figure 7 : Application Typologies .. 24
Figure 8: Component development in a typology A application ... 37
Figure 9: Component development in a typology B application ... 37
Figure 10: Search & Rescue Logical Architecture ... 39
Figure 11: Tutorial components subset and its dependencies to other SAR components 41
Figure 12: Use of tools in the development process .. 42
Figure 13: User Panel to launch ECOA tools .. 42
Figure 14: EDT New project creation (Tutorial UC1) ... 43
Figure 15: EDT Tree View of SAR example (Tutorial UC1) ... 44
Figure 16: EDT screenshot of a successful export (Tutorial UC1) 44
Figure 17: EDT export of the ECOA model (Tutorial UC1) .. 44
Figure 18: EDT screenshot of SAR example (Tutorial UC2) .. 46
Figure 19: EDT - RTE implementation treeview (Tutorial UC2) ... 47
Figure 20: EDT screenshot of RTE implementation (Tutorial UC2) 48
Figure 21: The harness component replaces components connected to a subsystem 49
Figure 22: Expected harness to be generated by ASCTG (principle) 49
Figure 23: ASCTG configuration file (Tutorial UC4) ... 50
Figure 24: Extract of HARNESS implementation file (Tutorial UC4) 50
Figure 25: Generated files (Tutorial UC4) .. 50
Figure 26: New files created after using ASCTG and MSCIGT ... 51
Figure 27: Extract of RDD module source code (Tutorial UC5) .. 52
Figure 28: Creation of artefacts for functional tests with CSMGVT 53
Figure 29: Extract of RTE module source code .. 54
Figure 30: List of files created by CSMGVT (Tutorial UC6) ... 54
Figure 31: Extract of main code generated by CSMGVT (Tutorial UC6) 55
Figure 32: Example of CSMGVT lifecycle logs (Tutorial UC6) .. 55
Figure 33: Example of CSMGVT functional logs (Tutorial UC6) ... 55
Figure 34: Creation of artefacts for tests in an ECOA environment 56
Figure 35: Some files generated by LDP (Tutorial UC6) ... 56
Figure 36: Generation of Protection Domains by LDP (Tutorial UC6) 57
Figure 37: LDP execution dated logs about channels creation (Tutorial UC6) 57

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 7

5 List of Tables

Table 1: ECOA AS6 Promotional Tools ... 15
Table 2: Definition of ECOA roles in the development process ... 25

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 8

6 Introduction

The ECOA exploitation guide is destinated to a wide audience, and aims at helping to start
with ECOA standard thanks to available open source and free tools.

It begins with a short introduction to ECOA concepts, with guidelines to help users in their
decision to choose ECOA for their systems.
Then, the document reminds ECOA former tooling analysis, and explains the position of
current available tools in the development process.

Before detailing activities performed by the different ECOA Business model roles, the
document points the different typologies of applications the user may face, because they
have an influence on roles perimeters. For each role and associated activities, the document
defines applicable tools, and highlights the link with the ECOA approach (for example
dependencies on ECOA model).

A tutorial section is provided in this version: the purpose is to offer a concrete step-by-step
example of the ECOA development process, implementing tools, on a representative
“Search and rescue” system.

To finish, the document provides with a FAQ section.

6.1 What is ECOA?

ECOA is an open standard that allows building a service-oriented architecture of ASCs
(Application Software Components) which are independent of the underlying computing
platform.

ECOA is designed to offer many properties:

 Combining a high level description of the applicative architecture (close to system
considerations) with an implementation level describing deployed software artefacts
(close to real-time considerations),

 Independence between functional code and technical infrastructure code,

 Portability of ASCs on any ECCPF (ECOA compliant computing platform),

 Interoperability between any ECCPFs,

 Compliance with any real-time scheduling policy.

ECOA allows implementing an ECOA Infrastructure, akin to a middleware, on top of any
computing platform to host portable ASCs, regardless of its Operating System, as illustrated
below.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 9

Figure 1: System architecture based on ECOA Infrastructure

Moreover:

 ECOA provides a technical solution for implementing software components in a
collaborative way.

 The service oriented aspects of ECOA encourages application developers to focus
on functional development rather than platform specific details. Consequently, the
functional code becomes portable and easier to maintain.

 ECOA is a technology which caters for both new build and legacy upgrades. ECOA is
capable of encompassing and interacting with legacy systems.

Key concepts:

This section gives a quick sum up of ECOA main concepts. For further details, please refer
to ECOA Standard AS6 (see reference 1)

ECOA is build around the founding concept of component, to be considered as an
applicative level artefact covering a system functional consistent sub-perimeter. The idea is
to enable you to incrementally build your application by assembling components, each
component bringing a new functionality. A component may be tailored to provide specific
behaviour using properties.
In ECOA Business Model, the Application Software Component (ASC) is the unit of
exchange between software developers and/or integrators.

To ensure components reusability and interoperability, ECOA defines an extensible standard
for their exchange interfaces and software mechanisms they are allowed to use.

Exchange interfaces are based on the concept of service that a component can either
provide or require. A service contains a set of related operations, each one relying on one
of the three possible types of interaction:

 Event for sampling mode exchanges,

 Versioned Data for time-optimized sharing of last published data values,

 Request-response for transactions.
Thus, assembling components consists in connecting service links between provider
components and consumer components. A components assembly defines an ECOA
application.
This is the applicative architecture part of the standard.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 10

Then, for implementation purpose, ECOA contains a technical description level with
complementary concepts:
A component is splitted into one or several modules, whose purpose is to bring together
treatments having close real-time constraints and that will be sequentially executed. Modules
identification is an essential step to define the technical real-time tasks that will be scheduled
by the operating system.
Modules interfaces are defined using the same types of interactions than services operations
at component level.
So, a component implementation describes the internal architecture of a component,
made of modules, and links between either modules operations, or between a module
operation and its associated service operation. This step also requires to define relative
priorities between the modules belonging to the same component.
You need to know that, except for trigger-typed modules, a module is activated from the
outside: as a matter of fact, in a module, treatments are associated to entry-points, which
may be activated when the corresponding input exchange is received. This is called the
inversion-of-control principle.
A really important concept associated to modules is the container. It consists in a technical
glue code between modules specific API and the generic services of the ECOA platform. As
this code is generated, applicative developers do not have to think about it. And yet, this is
the key concept that allows ECOA to meet the need of both a standardized execution
environment, and the independence from the underlying platform.

Once components implementations are defined, you are able to enrich the components in a
final assembly by adding the selected implementation for each component, so that the
technical artefacts of your application can be fully identified.

Then, the remaining major topic to define your system is to specify the deployment of
software artefacts onto execution resources: in ECOA, you define a deployment by
mapping modules, grouped within protection domains (representing software processes),
onto a logical system. A logical system is a formal representation of significant platform
characterics for deployment, such as the identification of available nodes. The deployment
specification requires to assign absolute priorities on modules, with respect to relative
priorities already defined at component level.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 11

Figure 2: ECOA concepts go along with the continuity of system process
development

6.2 What does the ECOA Standard consist in?

The ECOA standard is made of:

 Concepts and Mechanisms derived from CBSE and SOA,

 An XSD Meta-model that allows to specify a system using ECOA concepts:
o At applicative architecture level: definition of components, services and

associated exchanges types, assembly etc.,
o At technical implementation level: definition of components implementation,

deployment etc.,

 A Software interface and associated bindings for C, C++ and ADA languages,

 Platform requirements to claim ECOA compliance.

ECOA standard offers extensions possibilities, by defining new bindings for other languages
or other applicative architecture description standards.

6.3 How to decide whether to choose ECOA?

Nevertheless, you have to consider several contextual topics before choosing to apply
ECOA in your system development:

 Is it a new system development or a refactoring?

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 12

In case of a code refactoring, it is important to delimit a functional perimeter in your
existing code that will facilitate the cohabition with ECOA new developments. It is
recommended to cover a functional perimeter that fits, as much as possible, with the
frontiers of your previous code blocks.

Figure 3: Choice of a good perimeter for code refactoring with ECOA

 Which other technologies do you intend to use?
o Communication protocols,
o Programmation languages
Are they covered by the current ECOA standard or do you have to create new
bindings?

 What are the characteristics of your execution platform regarding available
resources, complexity of architecture?
ECOA implementation must be adapted regarding your application typology
(described below), but in any case, ECOA allows you to easily manage different
deployment strategies (knowing that ECOA is agnostic from your functional
architecture and your scheduling policy, as far as the latter is consistent with your
execution platform). This ability is particularly interesting for multi-nodes execution
platforms, since ECOA automatically ensures deployment on nodes in accordance
with XML files.

 Do you intend to reuse components in other applications or on other platforms?
Reusability is a strong argument to choose ECOA.

 Do you have certification requirements?
ECOA has been proved to be compliant with DO178C development processes, at
least up to DAL C.

 What is the industrial organization of your system development?
In case of a multi-industrial partnership, a possible organization is described in the
ECOA Business Model which clearly identifies roles and interactions between them.
You can of course choose a different organization, or even work alone in your project
context. What is important to have in mind is that, thanks to XML models, technical
contracts that define software artefacts are non ambiguous, clear for all actors, which
improves the quality of the development process.

 What is the relative cost of choosing ECOA considering your system complete
lifecycle?
Adopting ECOA will require to:

o Train your teams,

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 13

o Maybe replace some of your specific engineering tools with ECOA ones (to
help you, some ECOA tools are available for free),

o Maybe define complementary bindings,
o Procure a middleware compliant with your execution platform requirements.

In return, you will benefit from ECOA properties during your system lifecycle: tooling
productivity gains, less errors thanks to process continuity, mastery of impacts in
case of a component evolution, easy portability on other ECOA platforms etc.

Note that you can also refer to the FAQ section to get more elements for your decision.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 14

7 Identification of Development Activities and Associated Tooling

7.1 Overview of Possible ECOA Tooling for the System Development
Process

The following figure describes possible and existing specific tooling in the ECOA
development process:

Figure 4: Possible and existing specific tooling in the ECOA development process

As you can see, lots of specific tools are already identified to enhance the development
process thanks to the ECOA Standard, whose formal models make automatic analyses and
generations possible.
Eight of these initial identified tools are now covered by six existing tools, which are available
for free on ECOA website (see reference 2). You can custom them to your convenience as
they are open source (respecting licence conditions).

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 15

7.2 Overview of Available Open Source ECOA tooling

To make the use of ECOA Standard easier, and to take then more rapidly advantage of its
benefits, a set of six engineering tools is proposed, which allows to get a first evolutive
ECOA design and development environment:

Official Name Icon Technical alias

ECOA EDITOR

EDT

ECOA ENGINE

LDP

ECOA SKELETON
GENERATOR

MSCIGT

ECOA TEST
GENERATOR

ASCTG

ECOA CORK
GENERATOR

CSMGVT

ECOA CHECKER

EXVT

Table 1: ECOA AS6 Promotional Tools

This section gives a short description of each tool. You will find in the following sections of
the document a more concrete approach, explaining how these tools can be used
considering each role implied in the ECOA system development process.

Please note that all tools are compliant with ECOA Standard AS6.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 16

7.2.1 EDT – ECOA Editor

ECOA Editor (also known as EDT meaning “ECOA Design Tool”) is a graphical editor
allowing users to create step-by-step, or to simply update or visualize, an ECOA
architecture.

It offers an XML import/export function allowing to easily switch from the graphical view to a
corresponding consistent ECOA model, and to check imported models consistency.

Figure 5: Principle view of EDT

Main benefits:

 No need to master ECOA meta-model semantic to use the standard,

 Easy appropriation of an ECOA system architecture thanks to user-friendly views.

Who is this tool for?

 Everybody.

What if I did not have such a tool?

 ECOA models would have to be manually written with risks of mistakes.

 An extensive reading of XML files would be necessary to get architectural views of
components assembly and components implementation, which would require more
effort to understand the system.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 17

7.2.2 LDP – ECOA Engine

ECOA Engine (also known as LDP meaning “Lightweight Development Platform tool”) is a
framework that requires a complete ECOA model, and source code for all the modules of
described components. The tool is then able to generate an ECOA middleware that
executes these components, following specified deployment rules. This middleware fully
covers ECOA AS6 core specification, plus ELI, fault handling and graceful shutdown
extensions. Only C and C++ bindings are available.

This middleware can be used for development, test or demonstration purpose, but is not
designed for an embedded use.

Main benefits:

 Ability to execute an ECOA application on wide market means (COTS PC + Linux)

 Ability to generate binary files to provide partners with components to be executed in
a compliant environment.

Who is this tool for?

 Everybody but mainly ECOA developers and integrators.

What if I did not have such a tool?

 Another ECOA environment would have to be found to execute components in a
real-time context (it might be specific benches using embedded resources)

 Other means would have to be identified to generate binary deliveries (possibly
manual compiling/linking directives), whenever you chose ECOA or not.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 18

7.2.3 MSCIGT – ECOA Skeleton Generator

ECOA Skeleton Generator (also known as MSCIGT meaning “Module Skeleton and
Container Interfaces Generator Tool”) is a tool that generates useful artefacts concerning
ECOA modules implementation and test, such as:

 Source code headers and skeletons in accordance with ECOA API,

 Container source code,

 Partial module-level harness source code,

 Makefiles.

The tool only addresses C and C++ implementation languages.

Main benefits:

 Acceleration of ECOA modules development and test.

Who is this tool for?

 Developers.

What if I did not have such a tool?

 All previously presented artefacts would have to be manually written on the basis of
ECOA bindings for C and C++ (with risks of mistakes),

 In case of evolution of components interfaces during the system development
process, modifications would have to be manually done, taking care of consistency
between files.

 Note that without ECOA, there is the same issue about source code production.
MSCIGT offers a solution for ECOA.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 19

7.2.4 ASCTG – ECOA Test Generator

From an ECOA model and a selection of components to be tested, ECOA Test Generator
(also known as ASCTG meaning “Application Software Components Test Generator”)
generates a new ECOA model describing both a new harness component and tested
components. Each interface that is not initially connected within the set of components under
test, is then automatically connected to the harness component in the assembly schema.
The harness component is then able to stimulate and control all the external interfaces of the
set of tested components (which is regarded as a subsystem).

The selection of components to be tested can be reduced to a single component.

Main benefits:

 Acceleration of components verification process.

Who is the tool for?

 Developers,

 Integrators.

What if I did not have such a tool?

 ECOA models would have to be manually updated to create component-level test
artefacts, with risks of mistakes.

 This work would have to be repeated for each subsystem to be tested.

 Without ECOA, testing problematic would also have to be addressed, and solutions
might be manual development (especially when there is no formal architecture
model)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 20

7.2.5 CSMGVT – ECOA Cork Generator

ECOA Cork Generator (also known as CSMGVT meaning “Connected System Model
Generation and Verification Tool”) is a tool that allows a non real-time execution of ECOA
components, apart from any ECOA middleware, by generating minimal stubs for each API
service call. The main purpose of these stubs is to ensure communication between
components. Time aspects are of course not significant.

The tool is only compliant with C and C++ implementation languages. It can be associated to
a debugger tool such as gdb for functional code tuning.

Main benefits:

 Abstracting ECOA middleware to focus components verification on functional
behavior,

 Compliance with office IT environment

Who is the tool for?

 Everybody.

What if I did not have such a tool?

 To focus on functional tests at component level, there would be no other solution
than a manual development of stubbing artefacts, with risks of mistakes,

 In case of evolution of components interfaces during the system development
process, modifications would have to be manually done, taking care of consistency
between files.

 Without ECOA, functional testing problematic would also have to be addressed, and
solutions might be manual development (especially when there is no formal
architecture model).

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 21

7.2.6 EXVT – ECOA Checker

ECOA Checker (also known as EXVT meaning “ECOA XML Validation Tool”) is a tool that
allows to check both the conformity of a set of XML files with ECOA AS6 specifications, and
the consistency of described elements with each other. Note that EXVT can be executed on
partial ECOA models: for example, you can choose to only check data types definition.

Main benefits:

 Ensuring the user to own a correct set of ECOA XML files

Who is the tool for?

 Everybody.

What if I did not have such a tool?

 An extensive reading of XML files would be necessary to get confident enough in an
ECOA model validity, as remaining errors could introduce problems with different
levels of severity in the system development process: misunderstanding between
partners, integration issues due to unconsistent artefacts, unexpected behaviour
during execution etc.

 This deep analysis, that requires a good knowledge of ECOA model legality rules,
would have to be repeated (or partially repeated) each time the model is updated.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 22

7.3 About Other Tools

7.3.1 Remaining Possible Specific Tools

According to Figure 4: Possible and existing specific tooling in the ECOA development
process, there are some tools which were identified during previous ECOA phases. These
tools fall into the following categories:

 Tools which would contribute to further promote ECOA to new adopters:
o ASC Conformance Validation Tooling: test suite to check ASC definition and

implementation according to ECOA rules.
o Platform Conformance Validation Tooling: test suite to be executed on a

plateform to check the availability and correctness of ECOA API and software
mechanisms.

 Tools which could improve productivity in the context of a given application on a
specific target platform:

o Scheduling Validation Tool: analysis of compliance between modules real-
time properties and scheduling policy.

o Platform tooling: for example, platform configuration management,
components lifecycle management etc.

o ECOA Platform Execution Analyzer Tooling: for example, performance
measurements.

o Observability Tooling: graphical tool allowing to activate and manage
observability services in a compliant platform. It displays interpreted contents
of selected operations parameters among components services.

Note that some of these tools may require extensions of the ECOA standard to specify
complementary data (for example, real-time properties such as module WCET for
scheduling analysis).

7.3.2 Available Non-Specific COTS Tools

It is of course possible and recommended to complete the ECOA engineering toolkit with
non-specific COTS tools.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 23

7.4 Synthesis

In the following sections, it will be considered that ECOA users have access to a basic
toolchain containing:

 The set of ECOA specific open source tools,

 COTS tools: XML editor, compiler, linker and debug tools.

Figure 6: Basic toolchain for ECOA development process

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 24

8 Application Typologies

Two major application typologies are to be considered :

Figure 7 : Application Typologies

Application Typology aggregates constraints as opposed to application typology :

 Application typology :
o The infrastructure controls the execution of the functional code,
o Data consistency at the module level to be managed (non-scalable if

functionally or hierarchically managed at the component level),
o Real – Time calculations,
o A mastery of the splitting into modules of all the components is necessary for

the consistency of data and performance on constrained resources. We will
see in the following section that this activity for this given typology could be
the responsibility of the ECOA System integrator.

 Application typology :
o Possibly relaxation of the inversion of control principle: this means that some

applications may authorise the functional code to control its own execution,
o Delayed calculations / Soft real-time calculations (response times are longer

and the need for determinism is less critical),
o High-performance and oversized resources (memory and computing power),
o We will see in the following section that the mastery of the splitting into

modules of each component for this given typology could be entrusted to the
ECOA ASC Supplier.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 25

9 Roles

Concerning the ECOA development process, the ECOA Business Model identifies
contributing roles as shown in the table below:

 Role Activity V cycle Definition

ECOA® System
Architect
(System

Designer)

System
Architecture

The system designer is responsible for designing the
system architecture captured in the ECOA assembly
XML files as well as system level specification of
ECOA components.

Integrated
System

Validation

The system designer performs functional validation of
ECOA components assembled together (i.e. functional
validation of the integrated system).

ECOA® System
Integrator

Deployment
Choice

The system integrator is responsible for the
deployment of ECOA modules onto the CPU nodes of
the target. This deployment is captured in the ECOA
deployment XML files.

In some cases, the system integrator is responsible for
ECOA components breakdown into ECOA modules
(see detailed tables below).

Pre-
Integration

The system integrator performs technical integration of
ECOA components assembled together.

ECOA® ASC
Supplier(s)

Specifying
Models

The ASC Supplier is responsible for detailed ECOA
software component functional specification in
compliance with system level specification, ECOA
service contracts and insertion constraints.

In some cases, the ASC Supplier is responsible for
ECOA components breakdown into ECOA modules
(see detailed tables below).

Software
Components

The ASC Supplier provides ECOA Software
Component developed according to design rules.

The ASC Supplier delivers Compiled code (binary).

ECOA®
Compatible

Platform
Supplier

ECOA®

Middleware

Platform Supplier provides the ECOA middleware for
the execution platform, and tools for using this ECOA
middleware on the target platform.

Platform

+ OS

Platform Supplier provides Runtime Platform:

 HW = avionics platform
 Host Structure = OS (+ possible legacy

middleware)
 ECOA Independent Platform Implementation

Tools

Table 2: Definition of ECOA roles in the development process

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 26

For each role, the ECOA Business Model also precisely defines responsibilities, from which
main activities are extracted and presented in this section.
For each role, the following arrays define activities attached to each ECOA role. This is how
these arrays must be interpreted:

 Column “Activity” identifies an activity.

 Column “Sub-activity” refines this activity into sub-activities.

 Column “Application typology” indicates how application typologies may impact the
activity, sometimes even determining whether the activity is applicable.

 Column “Available tools” specifies which tools you can use to help you performing
the activity.

 Column “Relation to ECOA” explains how the activity interfere with ECOA Standard,
e.g. by enriching the ECOA system model or by using it, by relying on ECOA
mechanisms etc.

 The next column lists some possible ECOA inputs to perform an activity that is not
directly addressed by ECOA.

 The last column refers to helpers that users can apply to get interesting guidelines for
their activities.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 27

9.1 ECOA System Architect

Activity Sub-activity
Application

typology
Available

tools
Relation with ECOA

Possible
ECOA inputs
to achieve the

activity

Helpers

1. ECOA Platform
selection

 Platform
requirements
identification

may be a
requirement

 Required ECOA
perimeter must be
defined

ECOA core and
extensions in
AS6

ECOA Developers
Guide available on the
ECOA Website (see
reference 2)

 Analysis of
procurement
alternatives

may be a
consequence

 Logical system
definition

 Specified in the ECOA
model as an output

2. Functional chains
definition

 MBSE process (e.g
relying on languages
such as UML or
SySML)

3. Identification of
applicable system
architecture rules

 Might impact ECOA
components reusability

 Micro-services
approach

4. Strategy selection for
integration to non-ECOA
domains

 Refers to ECOA
mechanisms

Driver
components
ELI protocol

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 28

5. Iterative definition of
applicative architecture

 Components /
services / Data
types identification
including QoS

EDT

Specified in the ECOA
model as an output

 ECOA Developers
Guide
available on the
ECOA Website (see
reference 2)

 Components
system
specification

Refers to ECOA
components interfaces

 Assembly definition

EDT

Specified in the ECOA
model as an output

 ECOA Developers
Guide
available on the
ECOA Website (see
reference 2)

 Early verification

Partially relies on ECOA
model attributes

QoS attributes

6. Functional validation
of the application

 Components test
definition

 Non-real-time
verification of
functional chains

 CSMGVT

 Verification of
integrated
components on
target platform

Might benefit from
observability tools
based on ECOA

Exchange Ids
Data types
definition

7. System demonstration
on lightweight means

 LDP

If LDP covers ECOA
required perimeter

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 29

9.2 ECOA System Integrator

Activity Sub-activity
Application

typology
Available

tools
Relation with ECOA

Possible ECOA
inputs to

achieve the
activity

Helpers

1. Definition of rules
related to components
technical behaviour

In accordance with
ECOA mechanisms

2. Component Design

 Component
breakdown into
modules and
treatments mapping

EDT

Specified in the ECOA
model as an output

Operations QoS
in component
services

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

 Time allocation for
components
modules

 Logical system

 Insertion
constraints

Stronger

for

 Modules activation
policy and priorities

EDT

Specified in the ECOA
model (operation
attribute "activating") as
an output

Operations QoS
in component
services

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 30

 Modules exchanges
end FIFO sizing

EDT

Specified in the ECOA
model as an output

Data types
definition

 Initialization
procedures

In accordance with
ECOA lifecycle
mechanisms

Components
and Modules
lifecycles

 Fault management
policy

In accordance with
ECOA fault handling
mechanisms

Fault Handler

 Context
management and
content

In accordance with
ECOA software
mechanisms

Warm start
context

3. Creation of final
assembly

Specified in the ECOA
model as an output

Components
Implementations
Initial assembly

4. Deployment of
components modules
onto platform
resources

 Choice of
scheduling policy

No ECOA specificity ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

 Definition of
Protection Domains

Specified in the ECOA
model as an output

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 31

 Definition of
Modules absolute
priorities

Specified in the ECOA
model as an output

Module relative
priorities within
components

 Schedulability
analysis

Partially relies on
ECOA model attributes

Logical system
Deployment
attributes

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

5. Test of delivered
components

ASCTG +

LDP +
Debug Tools

API from ECOA binding
for chosen language

Components
Definition
Deployment

6. Technical integration
of components

 Within a protection
domain LDP

If LDP covers ECOA
required perimeter

Deployment

 Protection domains
on a computing
node

 LDP
If LDP covers ECOA
required perimeter

Deployment

 Computing nodes
on a platform LDP

If LDP covers ECOA
required perimeter

Deployment

 Multi-platforms
integration LDP

If LDP covers ECOA
required perimeter

Deployment

9.3 ECOA ASC Supplier(s)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 32

Activity Sub-activity
Application

typology
Available

tools
Relation with ECOA

Possible
ECOA inputs
to achieve the

activity

Helpers

1. Component Design

 Component
breakdown into
modules and
treatments mapping
(including HLR
definition)

EDT

Modules specified in the
ECOA model as an
output

Operations
QoS in
component
services

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

 Modules activation
policy and priorities

EDT

Specified in the ECOA
model (operation
attribute "activating") as
an output

Operations
QoS in
component
services

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

 Modules exchanges
FIFO sizing

EDT

Specified in the ECOA
model as an output

Data types
definition

 Initialization
procedures

In accordance with
ECOA lifecycle
mechanisms

Components
and Modules
lifecycles

 Fault management
policy

In accordance with
ECOA fault handling
mechanisms

Fault Handler

Context
management and
content

In accordance with
ECOA software
mechanisms

Warm start
context

2. Developing the
component

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 33

 Types libraries

MSCIGT

API from ECOA binding
for chosen language

 External libraries

No ECOA specificity

 Module source
code

MSCIGT

API from ECOA binding
for chosen language

 Container source
code

MSCIGT

API from ECOA binding
for chosen language

3. Conducting stand-
alone verification
activities

 Applicable process for
the expected quality
assurance level
(independent of
ECOA)

 Module level testing

MSCIGT +
 LDP +

debug tools

API from ECOA binding
for chosen language

Component
implementation

 Component level
testing

ASCTG +
MSCIGT +

LDP +
debug tools

API from ECOA binding
for chosen language
Deployment specified in
the ECOA model

Component
Definition

ECOA Guidance for
rhythmic models
available on the ECOA
Website (see
reference 2)

 Functional test at
component level CSMGVT +

debug tools

API from ECOA binding
for chosen language

Component
Definition

4. Providing the
associated artefacts

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 34

 Building artefacts

Compiler +
Linker

No ECOA specificity

 Binary files
characteristics

 Specified in the ECOA
model (bin-desc.xml)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 35

9.4 ECOA Compatible Platform Supplier

Activity Sub-activity
Application

typology
Available

tools
Relation with ECOA

Possible
ECOA inputs
to achieve the

activity

Helpers

1. Platform Design

ECOA model (logical
system definition) is an
output

 ECOA Developers
Guide
available on the ECOA
Website (see
reference 2)

2. Developing an ECOA
Middleware

 ECOA core
development

MSCIGT

conformity to AS6 ECOA standard LDP source code

 ECOA extensions
development (AS6
compliant)

conformity to AS6 ECOA AS6
optional parts

3. Specific additional
features

 New Extensions
(example: new
binding, fine grain
deployment...)

 Tooling
development
(observability…)

 ECOA model
(services
definition)

4. Integration on
Hardware

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no

warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 36

5. Validation and
certification

 ECOA conformity
tests

LDP

conformity to AS6 ECOA standard ECOA examples
available on the ECOA
Website (see
reference 2)

 Certification
process

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 37

9.5 Illustration of the Relationship between Roles and Activities through the
Component Development Workflow

This section aims at illustrating through the component development workflow the
relationships between role and activities while taking into account the application typology.

Figure 8: Component development in a typology A application

Figure 9: Component development in a typology B application

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 38

10 Tutorial

10.1 Case of Study: Search and Rescue System

10.1.1 Logical Architecture

The tutorial whose purpose is to explain the differences and benefits from using ECOA is
based on a case of study: Search and Rescue system.

This case of study is a representation of a rescue aircraft and a ground control station
working together to perform a search and rescue mission within the defined emergency
area.

The rescue aircraft will fly a route whilst prosecuting a set of several identified potential
objective for rescue under control of a ground control station operator (through HMI).

In addition it will be possible to detect additional Maritime Moving Target Indicators. Upon
detection of the MMTIs these will be displayed to the operator to allow them to be selected
as an item of interest.

Once selected as an item of interest sensor video will be displayed to the operator. The
operator may switch to a radar map image to determine if the item should be designated as
an objective for rescue.

Once designated as an objective for rescue it will be possible for the operator to select it as
the primary objective for that stage of the mission and to order to the aircraft the rescue
sequence.

The following figure describes its logical architecture.

The Search and Rescue system implements several functional chains that will be discussed
in detail in the following section:

 Prepare rescue device,

 Display MMTI radar detections and add them to lifeguard detection Db,

 Select objective for sensors aiming,

 Perform radar map acquisition of objective for sensors aiming,

 Perform optical tracking of objective for sensors aiming,

 Select MMTI as potential objective for rescue and tag it in Db,

 Select confirmed rescue objective among potential rescue objectives,

 Launch aid computed,

 Display launch aid cue,

 Rescue drop sequence.

Please note that ECOA artefacts related to this tutorial (XML files and source code) will be
available on the ECOA website (SAR-example).
In the rest of the document, it is considered that elements are created in accordance with
this given SAR-example.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,

with respect to any of the information.

 Page 39

Figure 10: Search & Rescue Logical Architecture

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 40

10.1.2 Functional Chains

 Prepare rescue device: When the operator launches the preparation of the rescue
device, a request is sent to the “Rescue_Controller” component, which sends an
“inflate” event to the “Rescue_Tasks_Execution”. This event is transmitted to the
rescue device driver, the rescue device is prepared and the rescue device driver
writes a version data indicating the new preparation status of the rescue device. This
data is read by the “Rescue_Controller” and this component replies to the
“Operator_Station_Manager” that the rescue device is now ready. This information is
displayed to the operator.

 Display MMTI radar detections and add them to lifeguard detection Db: Newly
detected MMTI radar detections are added to the “Lifeguard_Detections_Db” by the
“Lifeguard_Search_Execution”. They are also sent to the
“Lifeguard_Search_Controller” and then sent to the “Operator_Station_Manager”.

 Select objective for sensors aiming: When the operator selects a lifeguard
detection, the “Operator_Station_Manager” sends a request to the
“Lifeguard_Search_Controller” to aim the optical sensor at it. If the
“Lifeguard_Search_Controller” was in tracking mode, the
“Lifeguard_Search_Controller” validates the tracking request and sends an event to
the “Rescue_Mission_Manager” to request activation of high rate state vector. The
“Lifeguard_Search_Controller” sends an event to order the
“Lifeguard_Search_Execution” to aim the optical sensor. The
“Lifeguard_Search_Execution” then aims the optical sensor at the intended objective
position (which is the position of the lifeguard detection). Next, the optical sensor
sends a video stream parameter and will send periodically video stream buffers with
one event per buffer. The “Lifeguard_Search_Execution” will receive those buffers
and will send an image flow to the “Operator_Station_Manager”.

 Perform radar map acquisition of objective for sensors aiming: When the
operator requests a radar map, request passes through the
“Operator_Station_Manager”, the “Lifeguard_Search_Execution” and then reaches
the Radar sensor. The “Lifeguard_Search_Execution” sets objective position so as to
aim the radar map center. When the radar has performed map acquisition, it is being
displayed to the operator.

 Perform optical tracking of objective for sensors aiming: When the operator
switches to optical tracking mode, a request is sent by the
“Operator_Station_Manager”, passes through the “Lifeguard_Search_Controller” and
reaches the “Lifeguard_Search_Execution”. The “Lifeguard_Search_Execution” then
configures the optical sensor and sends periodically an updated tracked position. The
video parameter is sent by the optical sensor to the “Lifeguard_Search_Execution”.
Video is finally displayed by the “Operator_Station_Manager”.

 Select MMTI as potential objective for rescue and tag it in Db: When the operator
selects a MMTI track as potential objective, the “Operator_Station_Manager” sends a
request that passes through the “Rescue_Controller” and reaches the
“Rescue_Tasks_Execution”. The “Rescue_Tasks_Execution” is then responsible to
tag this lifeguard detection as potential objective in the “Lifeguard_Detections_Db”.
The “Rescue_Tasks_Execution” can then read objectives list from the

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 41

“Lifeguard_Detections_Db” and pass it to the “Operator_Station_Manager” via the
“Rescue_Controller”.

 Select confirmed rescue objective among potential rescue objectives: When the
operator confirms a potential rescue objective, a request passes through the
“Rescue_Controller” and reaches the “Rescue_Tasks_Execution”. The
“Rescue_Tasks_Execution” downloads the objective position into the
“Rescue_Device_Driver”. Downloaded position is then displayed to the operator.

 Launch aid computed: When a new air vehicle position is provided, the
“Rescue_Tasks_Execution” requests a new launch aid calculation. A rescue device
drop zone is returned and the “Rescue_Tasks_Execution” publishes the rescue
device basket to the “Operator_Station_Manager” through the “Rescue_Controller”.

 Display launch aid cue: When a new rescue device launch aid calculation is
performed, the “Rescue_Tasks_Execution” will provide to the
“Operator_Station_Manager” through the “Rescue_Controller” a drop cue if the the
air vehicle is within the rescue device drop zone.

 Rescue drop sequence: When the operator pushes the DROP button, the
“Operator_Station_Manager” will send to the “Rescue_Controller” a rescue device
drop command. The “Rescue_Controller” will then check the rescue device
preparation status, loaded objective position and drop cue. If verification is successful
a rescue device drop command will be sent to the rescue device driver.

10.1.3 Selection of a Subset of Components

The tutorial will focus on development activities for a subset of Search and Rescue system
(SAR) composed of “Rescue_Device_Driver” and “Rescue_Tasks_Execution” components.
This selection has been driven by the large combination of exchanges managed by these
components.

Figure 11: Tutorial components subset and its dependencies to other SAR
components

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 42

10.2 Focus on Tooled Activities

This is a step-by-step presentation of activities performed using available tools.

Here is an overview of a possible process based on given tools to develop an ECOA
application. At each step, EXVT can be used to check an ECOA input model.

Figure 12: Use of tools in the development process

Note that you have two options to launch tools:

 Direct call to each tool (see user guides),

 Or use of the provided light user panel (see GUI documentation).

Figure 13: User Panel to launch ECOA tools

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 43

10.2.1 UC1: As a System Architect, I want to define the applicative architecture of my
system

I have to launch EDT tool and create a new project. I use the tree view to create types,
services and components definition (right click on an element to get a contextual edition
menu).
For each element, all attributes to be defined are presented in the properties window, where
they can be edited.
For the initial assembly schema, I can either work in the tree view or in the graphical view. I
can instantiate already defined components, and connect provided services to required
services.
To get a correct system, I need to know ECOA concepts, but I do not need to master the
XML syntax of ECOA models.
At any time, I can choose to save my project and ask for an XML export according to ECOA
AS6 standard.
A set of light consistency controls are automatically done on the fly during edition, but more
complete tests are executed at export time by an implicit call to EXVT tool.
In case of errors, a detailed report is produced in the user interface to help correcting the
system definition.
Note that if a change is done in a definition, it will be automatically propagated to all
dependent objects, except for canceling operations that require a manual but guided
procedure.

Execution steps :

 Launch EDT

 Create a new project

Figure 14: EDT New project creation (Tutorial UC1)

 Create types then services then components definitions in

the tree view (right click on an object to create/edit

sub-objects then in the Properties window to access to an

object attributes).

PRACTICE : Creation of types, services and components definition for “Rescue

Device Driver” and “Rescue Tasks Execution” with EDT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 44

Figure 15: EDT Tree View of SAR example (Tutorial UC1)

 Save the project and select XML export

Results:

 EXVT is executed and the XML analysis report is displayed

in the console window.

If there is no errors, an ECOA XML model is delivered

(some directories might be empty in accordance with the

level of elements defined in EDT)

Figure 16: EDT screenshot of a successful export (Tutorial UC1)

Figure 17: EDT export of the ECOA model (Tutorial UC1)

 In case of errors, the EXVT report is displayed and gives

information to locate them, so that the user might update

the EDT project and try a new XML export.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 45

10.2.2 UC2: As a System Architect, I want to modify an existing applicative
architecture

In this use case, I am given an ECOA input model that needs to be updated.
I may be not familiar with ECOA XML files, or just willing to easily make required changes.
I just have to launch EDT tool, create a project and import the ECOA model.
EXVT can be chosen as the required model checker for imported files: in case the input
model is not complete, I have to specify the definition level to be covered by consistency
tests.
If there is no error, the input model appears in EDT user interface: in the tree view, and, if an
assembly schema is defined, in the graphical view.
EDT behavior is then the same that for the previous use case.

Execution steps :

 Launch EDT

 Open the project saved in UC1

 EXVT is executed and the XML analysis report is displayed

in the console window : 0 error / 0 warning

 ECOA model elements are displayed in the tree view

 In the assembly graphical view, instanciate a component

“Rescue_Device_Driver” from associated component

definition, and a component “Rescue_Tasks_Execution” from

the associated component definition

 In the graphical view, create links between the two

component instances services.

 You can adjust the objects layout on the graphical view.

PRACTICE : Addition of an assembly schema for “Rescue Device Driver” and

“Rescue Tasks Execution” using EDT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 46

Figure 18: EDT screenshot of SAR example (Tutorial UC2)

 Save the project (including objects layout)

 Select XML export

Results:

 EXVT is executed and the XML analysis report is displayed

in the console window.

 If there is no errors, an ECOA XML model is delivered.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 47

10.2.3 UC3: As a System Integrator, I want to define components implementation
architecture

I have to launch EDT, and import an ECOA input model that defines the applicative
architecture containing my components. Components implementation can be edited either in
the tree view or in the graphical view.

Note: the tool’s purpose is only to capture components breakdown into modules in an ECOA
model. It will not to assist the user in the design process defining this breakdown.

Execution steps :

 Launch EDT

 Open the project saved in UC2

 EXVT is executed and the XML analysis report is displayed

in the console window : 0 error / 0 warning

 ECOA model elements are displayed in the tree view and in

the assembly graphical view

 Create a component implementation for Rescue Tasks

Execution component in the tree view, and create a module

type, then a module implementation then a module instance

and a trigger instance

Figure 19: EDT - RTE implementation treeview (Tutorial UC2)

 In the implementation graphical view for Rescue Tasks

Execution component, instantiate the created module

instance and connect module operations to corresponding

PRACTICE : Creation of “Rescue Tasks Execution” internal architecture in

 EDT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 48

component services operations, then connect the trigger

instance to the module Activate operation

Figure 20: EDT screenshot of RTE implementation (Tutorial UC2)

 Save the project (including objects layout)

 Select XML export

Results:

 EXVT is executed and the XML analysis report is displayed

in the console window.

 If there is no errors, an ECOA XML model is delivered.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 49

10.2.4 UC4: As an ASC Supplier, I want to get an ECOA model specifically adapted to
my components development

I am responsible for the development of a subset of components in the ECOA applicative
architecture. I probably do not own components that are connected to mine.
So, to be able to test my components, I need to define a specific new component (called
“harness” component) replacing all these missing components.

Figure 21: The harness component replaces components connected to a subsystem

From a configuration file listing the components subset to be tested, ASCTG allows to
automatically adapt the input ECOA model by:

 Adding the definition and the implementation of the harness component,

 Defining a new assembly limited to my components and their harness component,

 Defining the associated new deployment (based on simplified hypotheses).

The new ECOA model I get offers me all the definition elements I need to complete my
development.

Figure 22: Expected harness to be generated by ASCTG (principle)

Execution steps :

PRACTICE : Creation of a Harness component to test “Rescue Device Driver”

and “Rescue Tasks Execution” components, using ASCTG

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 50

 Prepare a configuration file for the susbsystem under

test

Figure 23: ASCTG configuration file (Tutorial UC4)

 Launch ASCTG with SAR example and the prepared

configuration file

Results:

 EXVT is executed and reports 0 errors and 0 warnings

 A new component HARNESS is created with its XML

implementation file

Figure 24: Extract of HARNESS implementation file (Tutorial UC4)

 New assembly for components Rescue Device Driver, Rescue

Execution Task and HARNESS

 New deployment for these components

Figure 25: Generated files (Tutorial UC4)

Let us call SAR-HARNESS the updated ECOA model.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 51

10.2.5 UC5: As an ASC Supplier, I want to generate source code for my component(s)
modules

Once an ECOA model is defined from types to components implementation, I can launch
MSCIGT to generate applicative source code, mainly corresponding to types declaration and
modules entry-points functions.
A module entry-point is associated to a module input operation, and describes treatments to
be executed for this operation. Depending on whether the activating parameter of the
operation is true, the associated entry-point is called immediately or not when the operation
is received.

Thanks to MSCIGT, several applicative source code files are automatically generated from
the ECOA model:

 Defining the associated new deployment,

 Types declaration files,

 And for each module implementation:
o Several declaration files addressing user data context, container functions and

module entry-points functions,
o An implementation file, which contains the so-called “code skeleton” because all

module entry-points functions are defined with an empty body. I will have then to
manually fill these functions bodies to complete the module behavior.

MSCIGT also generates elements for module unit testing composed of a unit test, a
container mockup, and code building directives.
Container mockup code mainly contains empty functions (i.e. “skeletons”) to be manually
filled, and allows then to test the module in a minimal environment.

Code generation is available for C and C++ languages.

Figure 26: New files created after using ASCTG and MSCIGT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 52

Execution steps :

 Prepare a template file to define your file headers style

 Launch MSCIGT with SAR-HARNESS example and the prepared

template file

Results:

 EXVT is executed and reports 0 errors and 0 warnings

 Source code files are created for all modules defined in

components Rescue Device Driver, Rescue Execution Task

and HARNESS. Particularly, module entry-points skeletons

with comments to indicate where manual functional code

must be inserted.

Figure 27: Extract of RDD module source code (Tutorial UC5)

PRACTICE : Code skeletons generations for modules defined in “Rescue
Device Driver”, “Rescue Tasks Execution” and associated “Harness”
component with MSCIGT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 53

10.2.6 UC6 : As an ASC Supplier, I want to test one or several module(s) on the basis
of my ECOA model and source code

 Case A: I only want to execute functional tests and/or I do not have an ECOA
environment on my workstation.

It is possible to begin with unit tests for each of my modules: as we have seen in
§10.2.5, MSCIGT generates source code files in that purpose, and I just have to fill in
test functions bodies to implement my tests (and expected logs).

I can also use CSMGVT to execute functional tests by simulating a non real-time
execution of several ECOA components. This is also interesting as a pre-integration
test for my components.

o Step 1: As I probably do not own all the components that are connected with
those I want to validate, I can use ASCTG to create the “harness” component
that will be connected to the component(s) which contain(s) the module(s)
under test. (cf. 10.2.4).

o Step 2: I generate source code skeletons for my harness component thanks
to MSCIGT. (cf. 10.2.5)

o Step 3: In harness component implementation, I fill in harness module entry
points with my source code, according to the behaviour I expect.
For example, I can use an input file (PINFO) to define input data to be used in
my validation scenario, and the associated expected results. I can execute
one test each time the harness module is triggered, and log the comparison
status between received results and expected ones.

o Step 4: I can use CSMGVT to execute components in my workstation
environement, and check their functional behaviour.

Figure 28: Creation of artefacts for functional tests with CSMGVT

PRACTICE : Execution of “Rescue Device Driver”, “Rescue Tasks

Execution” and associated “Harness” component with CSMGVT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 54

Execution steps (1) :

 Insert manual code in artefacts generated by MSCIGT (not

functionally significant in our SAR-HARNESS example)

Figure 29: Extract of RTE module source code

with manual insertion (Tutorial UC6)

 Launch CSMGVT with SAR-HARNESS example enriched with

manual code

 Compile and execute

Results:

 EXVT is executed and reports 0 errors and 0 warnings

 Stubbing code files are created

Figure 30: List of files created by CSMGVT (Tutorial UC6)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 55

Figure 31: Extract of main code generated by CSMGVT (Tutorial UC6)

Execution steps (2) :

 Launch SAR-HARNESS example compilation

 Launch SAR-HARNESS example execution

Results:

 Execution logs appear on your terminal

Figure 32: Example of CSMGVT lifecycle logs (Tutorial UC6)

Figure 33: Example of CSMGVT functional logs (Tutorial UC6)

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 56

 Case B : I want to test my module(s) in an ECOA environment. This allows me to
consider both functional and real-time issues.

o Steps 1 to 3 are the same than in case A with CSMGVT, except that I can
add real-time oriented tests.

o Step 4: I can use LDP to execute both my component(s) and the harness
component, according to logical-sytem and deployment files that were
previously generated by ASCTG.

Figure 34: Creation of artefacts for tests in an ECOA environment

Execution steps (1) :

 Keep manual code from previous practicing exercise

 Launch LDP with SAR-HARNESS example enriched with this

manual code

Figure 35: Some files generated by LDP (Tutorial UC6)

PRACTICE : Execution of “Rescue Device Driver”, “Rescue Tasks

Execution” and associated “Harness” component with LDP

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 57

Figure 36: Generation of Protection Domains by LDP (Tutorial UC6)

 Compile and execute

Results:

 EXVT is executed and reports 0 errors and 0 warnings

 Execution logs are saved in dedicated files that you can

read after execution.

Figure 37: LDP execution dated logs about channels creation (Tutorial UC6)

Important: CSMGVT, and LDP as well, enable validation tests at component level only. So, I
have to be careful when I am associating component level interfaces to module level
interfaces for my tests (the easiest case is the bijective association for mono-module
components).

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 58

10.2.7 UC7: As an ASC Supplier, I want to use binary files to integrate and test
components

LDP generates binary files for ECOA modules from my available source code.
I can also receive binary files corresponding to my industrial partners’modules.
So, in my validation process, I want to integrate components with each other, only
considering binary modules deliveries.
This work is possible with LDP, provided that the ECOA required bin-desc XML file is
available for each module.
For my modules, bin-desc files have to be written manually (mainly to describe modules
memory needs).

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 59

10.2.8 UC8: As a System Integrator, I want to define the software deployment onto
hardware resources

I am in charge of defining the logical system and the deployment files in the ECOA model.

The logical-system description has to be representative of the target execution platform high-
level architecture (particularly: number and characteristics of computation nodes).
The deployment file addresses the definition of ECOA protection domains (processes with
specific properties such as execution priorities) and their mapping onto hardware resources.
These definitions are the result of my technical expert analysis, but I can capture them
thanks to EDT, and be sure then to generate correct XML files, in accordance with ECOA
AS6 standard.

Execution steps :

 Launch EDT

 Open the project saved in UC3

 EXVT is executed and the XML analysis report is displayed

in the console window : 0 error / 0 warning

 ECOA model elements are displayed in the tree view

 In the tree view, create your logical-system

 Create your final assembly in the graphical view

(instanciation of component definitions specifying the

chosen component implementation)

 In the tree view, create a deployment for your modules by

defining protection domains with their target node, and

attached module/trigger instances

 Select XML export

Results:

 EXVT is executed and the XML analysis report is displayed

in the console window.

 If there is no errors, an ECOA XML model is delivered.

PRACTICE : Deployment of modules defined in “Rescue_Device_Driver”,

“Rescue_Tasks_Execution” and associated “Harness” component using EDT

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 60

10.2.9 UC9: As a Platform Provider, I want to provide an ECOA-compliant platform

I have to clearly identify the ECOA standard perimeter I want to cover.
In any case, I can get inspired by ECOA tools to create my ECOA adaptation layer.
If my platform already offers ECOA-like services, it may be sufficient to create an ECOA
container generator that will call original platform services. MSCIGT and CSMGVT source
code can give me good means to start this work.
If my purpose is more ambitious, I can ratherly analyze LDP implementation to get relevant
ideas.

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 61

10.3 Highlights on ECOA standard benefits

Thanks to its formal approach based on an XML model, ECOA allows to create lots of tools
which significantly enhance the applications development process:

 It avoids misunderstanding between partners as interfaces and associated
mechanisms are non ambiguous,

 It increases productivity by generating technical source code (so that developers may
focus on applicative-level issues).
As an example, we have experimented the development of an event-like exchange
between two components in C language, reproducing the event mechanism apart
from any ECOA environment. It gave the following results (not including header files):

o ~250 lines of (reusable) middleware-level source code,
o ~25 lines of send/receive code to be repeated for each event-like exchange,

with risks of mistakes.
o Loss of clearness in source code files because of the mix of technical and

functional code (with no warranty on source code portability on future
execution platforms).

 It increases validation efficiency by allowing the automatic creation of test harnesses
and tests environments, targeting user different needs (unit, functional or real-time
testing).

 It facilitates contractual exchanges of components between partners, based on well-
defined binary and XML files.

This list can still be enriched as there are many other possibilities to be explored!

This document is prepared by Dassault Aviation and copyright is owned by Dassault Aviation. The information set out in this document is
provided solely on an ‘as is’ basis and developers of this document make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 Page 62

11 FAQ

 How to begin with ECOA?
A lot of examples are available on the ECOA website (section Documentation and
Resources/Tutorials: see reference 2).

 How can I get support to implement ECOA?
It is planned to provide support to accompany the delivery of Open Source tools.
All related explanations will be available on the ECOA website: www.ecoa.technology

http://www.ecoa.technology/

