

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

Dining	Philosophers	

Introduction

This document describes an ECOA® implementation example of the famous “Dining Philosophers”

problem (ref.[2]).

“Dining Philosophers” is an often used example in concurrent programming design, addressing

resource contention and synchronization issues.

Five silent
1
 philosophers sit at a round table with bowls of noodles. A chopstick is placed between

each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a philosopher can only eat noodles when

he has both “left” and “right” chopsticks. Each chopstick can be held by only one philosopher and so

a philosopher can use the chopstick only if it is not being used by another philosopher. After he

finishes eating, he needs to put down both chopsticks so they become available to others. A

philosopher can take the chopstick on his right or the one on his left as they become available, but

cannot start eating before getting both of them. Nor can he take a chopstick that is not immediately

on his left or right.

Eating is not limited by the remaining amounts of noodle or stomach space; an infinite supply is

assumed!

The problem is how to design a discipline of behaviour (a concurrent algorithm) such that no

philosopher will starve; i.e. each can forever continue to alternate between eating and thinking,

assuming that no philosopher can know when others may want to eat or think.

Figure 1 The Dining Philosophers

1
 The philosophers cannot communicate with each other.

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

This document presents the principal user generated artefacts required to create a “Dining

Philosophers” example using the ECOA. It is assumed that the reader is conversant with the ECOA

Architecture Specification (ref.[1]) and the process of defining and declaring ECOA Assemblies, ASCs

(components), Modules, and deployments in XML, and then using code generation to produce

Module framework (stub) code units and ECOA Container and Platform code.

Aims

This ECOA “Dining Philosophers” example is intended to demonstrate how ECOA concepts of

concurrency and inversion of control (see ref.[1]) ease and facilitate the design and implementation

of multi-threaded, multi-processing, applications.

ECOA Features Exhibited

• Composition of an ECOA Assembly of multiple ECOA ASCs (components).

• Contention-free resource sharing within an ECOA Assembly.

• Multiple cooperating ECOA Protection Domains.

• Service Availability.

• Use of the ECOA runtime logging API.

Design and Definition

Resource Hierarchy Solution

The method of solving the resource contention issue in the Dining Philosophers problem, i.e. how to

ensure that no philosopher starves because he cannot get both chopsticks at once, is Dijkstra’s

original “resource hierarchy” solution.

Each chopstick is assigned a “partial order” value (“0” to “4”) (with no duplication) so each

philosopher has a “lower ordered” chopstick on one side and a “higher ordered” chopstick on the

other side. The solution derives from imposing the rule that the lower ordered chopstick must be

picked up first.

So after a philosopher has finished thinking, rather than pick up the first chopstick to become

available (of those on his left or right), he must wait until the lower ordered of those chopsticks is

available, pick that up, then possibly wait again until the higher ordered chopstick becomes

available.

Once he has both chopsticks, he eats, and when finished, surrenders each chopstick. He then thinks

for a while, before getting hungry and starting over.

This solution is depicted (for one philosopher) in the UML Activity Diagram of Figure 2.

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

Figure 2 Resource Hierarchy Solution Applied to a Dining Philosopher

ECOA Assembly Design and Definition

This ECOA “Dining Philosophers” example is realized as an ECOA Assembly named “Restaurant”

comprising five ECOA ASCs named “P1” to “P5” of the ASC type “Philosopher”, and one ASC named

“Table” of ASC type “Table”. The “Table” ASC provides a “svc_Chopsticks” ECOA Service, which is

referenced by the “Philosopher” ASCs, and by which each “Philosopher” can take and surrender

chopsticks.

The ECOA “Dining Philosophers” (Restaurant) Assembly is depicted in Figure 3.

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

Figure 3 ECOA "Dining Philosophers" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Dining Philosophers” (Restaurant) Assembly is as follows (file Restaurant.impl.composite),

reflecting the Assembly diagram above:

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="Restaurant">

 <csa:component name="Table">
 <ecoa-sca:instance componentType="Table">
 <ecoa-sca:implementation name="Table"/>
 </ecoa-sca:instance>
 <csa:service name="svc_Chopsticks"/>
 </csa:component>

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

 <!-- -->
 <csa:component name="P1">
 <ecoa-sca:instance componentType="Philosopher">
 <ecoa-sca:implementation name="Philosopher"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_Chopsticks"/>
 <csa:property name="Id"><csa:value>1</csa:value></csa:property>
 </csa:component>
 :
 : components P2 to P4 repeat
 :
 <csa:component name="P5">
 <ecoa-sca:instance componentType="Philosopher">
 <ecoa-sca:implementation name="Philosopher"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_Chopsticks"/>
 <csa:property name="Id"><csa:value>5</csa:value></csa:property>
 </csa:component>
 <!-- -->
 <!-- System Wiring... -->
 <csa:wire source="P1/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-

sca:rank="1"/>
 <csa:wire source="P2/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-

sca:rank="1"/>
 <csa:wire source="P3/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-

sca:rank="1"/>
 <csa:wire source="P4/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-

sca:rank="1"/>
 <csa:wire source="P5/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-

sca:rank="1"/>
</csa:composite>

The Table ASC type is defined in XML as follows (file Table.componcompoententType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="svc_Chopsticks">
 <ecoa-sca:interface syntax="svc_Chopsticks"/>
 </service>
</componentType>

That is, the ASC provides a single Service (svc_Chopsticks).

The Philosopher ASC type is defined in XML as follows (file Philosopher.componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="svc_Chopsticks">
 <ecoa-sca:interface syntax="svc_Chopsticks"/>
 </reference>
 <property name="Id" type="xs:string" ecoa-sca:type="int32"/>
</componentType>

That is, in addition to declaring a reference to the svc_Chopsticks Service, the ASC defines an ECOA

Property (Id) . Note that the Property value is given for each instance of the ASC in the Restaurant

Assembly declaration (above), not here in the ASC type definition.

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

ECOA Service Definition

The svc_Chopsticks Service, which is provided by the Table ASC and referenced by the

Philosophers ASCs, is defined in a XML file (svc_Chopsticks.interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0"><!--
name="svc_Chopsticks" -->

 <operations>
 <requestresponse name="take">
 <input name="which" type="int32"/>
 <input name="who" type="int32"/>
 <output name="taken" type="boolean8"/>
 </requestresponse>
 <requestresponse name="surrender">
 <input name="which" type="int32"/>
 <input name="who" type="int32"/>
 </requestresponse>
 <data name="ready" type="boolean8"/>
 </operations>
</serviceDefinition>

The Service comprise two ECOA Request-Response Operations, take and surrender, each of which

takes two input parameters (which and who), whilst take also has a return parameter (taken). The

parameter which specifies which chopstick the request is for, and is the partial order number for the

chopstick (“0” to “4”). The who parameter specifies the philosopher’s identity (“1” to “5”) as given

by its Id ECOA Property. The taken parameter will be true if the requested chopstick is available,

or false if not.

The Service also includes an ECOA Versioned-Data Operation, ready, which will be used to indicate

to the Service clients (the Philosophers) that the Service is ready to accept operation requests – that

is, to indicate “Service Availability”, which will be discussed later.

Note that there is no mention or imposition at this declarative stage of the Resource Hierarchy

algorithm, except to note that the chopsticks are identified by their numerical order value.

ECOA Module Design and Definition

The Table and Philosopher ASC (component) types are composed of a single ECOA Module each

(Module Implementations Table_modMain_Im and Philosopher_modMain_Im of Module Types

Table_modMain_t and Philosopher_modMain_t respectively) as illustrated in UML in Figure 4.

Here is depicted in UML the Table ASC (component) providing the svc_Chopsticks ECOA Service,

whilst the Philosopher ASC references the Service, and possesses the Id ECOA Property. As always

in the ECOA, the Module Implementations implement the Module Lifecycle operations defined by

the ECOA (as represented in UML by the abstract class ECOA::Module).

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

Figure 4 ECOA "Dining Philosophers" Module Design (as UML Class Diagram)

The Table ASC

The Table ASC is declared in XML as follows (file Table.impl.xml):

<componentImplementation xmlns=http://www.ecoa.technology/implementation-2.0
componentDefinition="Table">

 <use library="ECOA" />
 <!-- -->

 <moduleType name="Table_modMain_t" hasUserContext="true"
 hasWarmStartContext="false">
 <operations>
 <requestReceived name="take">
 <input name="which" type="int32" />
 <input name="who" type="int32"/>
 <output name="taken" type="boolean8"/>
 </requestReceived>
 <requestReceived name="surrender">
 <input name="which" type="int32" />
 <input name="who" type="int32"/>
 </requestReceived>
 </operations>
 </moduleType>
 <!-- -->
 <moduleImplementation name="Table_modMain_Im" moduleType="Table_modMain_t"

language="C" />
 <!-- -->
 <moduleInstance name="Table_modMain_Instance"

 implementationName="Table_modMain_Im" relativePriority="1">
 </moduleInstance>

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

 <!-- -->
 <requestLink>
 <clients>
 <service instanceName="svc_Chopsticks" operationName="take"/>
 </clients>
 <server>
 <moduleInstance instanceName="Table_modMain_Instance"

operationName="take"/>
 </server>
 </requestLink>
 <!-- -->
 <requestLink>
 <clients>
 <service instanceName="svc_Chopsticks" operationName="surrender"/>
 </clients>
 <server>
 <moduleInstance instanceName="Table_modMain_Instance"

operationName="surrender"/>
 </server>
 </requestLink>
/componentImplementation>

That is, a Module Type (Table_modMain_t) is declared which has two requestReceived operations,

“take” and “surrender”, inherited from the svc_Chopsticks ECOA Service (depicted by the UML

generalization association). This Module Type is implemented by a concrete Module

Implementation Table_modMain_Im (depicted in the UML expanded in the form of the code class

produced by the code generation process), which in turn is instantiated at runtime as the Module

Instance Table_modMain_Instance.

The <requestLink> XML segments logically associate the specific concrete operations of the

runtime Module Instance with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Table_modMain_Im class, and named “Table_modMain_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

The Philosopher ASC

The Philosopher ASC is declared in XML as follows (file Philosopher.impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-
2.0"componentDefinition="Philosopher">

 <use library="ECOA" />

 <moduleType name="Philosopher_modMain_t" hasUserContext="true"
 hasWarmStartContext="false">
 <properties>
 <property name="Id" type="uint32"/>
 </properties>
 <operations>
 <eventReceived name="Tick" />
 <requestSent name="take" isSynchronous="true" timeout="-1.0">
 <input name="which" type="int32" />
 <input name="who" type="int32"/>
 <output name="taken" type="boolean8"/>
 </requestSent>

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

 <requestSent name="surrender" isSynchronous="true"
 timeout="-1.0">

 <input name="which" type="int32" />
 <input name="who" type="int32"/>
 </requestSent>
 </operations>
 </moduleType>
 <!-- -->
 <moduleImplementation name="Philosopher_modMain_Im"

 moduleType="Philosopher_modMain_t"
 language="C" />

 <!-- -->
 <moduleInstance name="Philosopher_modMain_Instance"

 implementationName="Philosopher_modMain_Im"
 relativePriority="1">

 <propertyValues>
 <propertyValue name="Id">$Id</propertyValue>
 </propertyValues>
 </moduleInstance>
 <!-- -->

 <triggerInstance name="Philosopher_Ticker" relativePriority="2"/>
 <!-- -->
 <requestLink>
 <clients>
 <moduleInstance instanceName="Philosopher_modMain_Instance"

operationName="take"/>
 </clients>
 <server>
 <reference instanceName="svc_Chopsticks" operationName="take"/>
 </server>
 </requestLink>
 <requestLink>
 <clients>
 <moduleInstance instanceName="Philosopher_modMain_Instance"

operationName="surrender"/>
 </clients>
 <server>
 <reference instanceName="svc_Chopsticks" operationName="surrender"/>
 </server>
 </requestLink>
 <eventLink>
 <senders>
 <trigger instanceName="Philosopher_Ticker" period="0.05" />
 </senders>
 <receivers>
 <moduleInstance instanceName="Philosopher_modMain_Instance"

operationName="Tick"/>
 </receivers>
 </eventLink>
</componentImplementation>

That is, a Module Type (Philosopher_modMain_t) is declared which has two requestSent

operations, “take” and “surrender”, inherited from the svc_Chopsticks ECOA Service (depicted

by the UML generalization association), and an eventReceived operation named “Tick”. This

Module Type is implemented by a concrete Module Implementation Philosopher_modMain_Im

(depicted in the UML expanded in the form of the code class produced by the code generation

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

process), which in turn is instantiated at runtime as the Module Instance

Philosopher_modMain_Instance.

The Philosopher_Ticker Trigger Instance is introduced because a periodic iterative polling

behaviour is required to implement the philosopher implementation state machine (of which more

later). Once every period (0.05 seconds as set in the <eventLink> XML
2
) the Trigger will fire and

the Module Operation Tick will be invoked.

The Service Link (<requestLink> and <eventLink>) XML segments logically associate the specific

concrete operations of the runtime Module Instance with the abstract Service operations, or in the

case of the “Tick” operation, associates the concrete Module Operation to the Trigger Instance

operation.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Philosopher_modMain_Im class, and named “Philosopher_modMain_Im.c”

(assuming the Module Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “Dining Philosophers” (Restaurant) Assembly is deployed (that is, the declared Module

and Trigger Instances are allocated to ECOA Protection Domains, which are themselves allocated to

computing nodes) by the following XML (file Restaurant.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"

finalAssembly="Restaurant" logicalSystem="hostbased">
 <protectionDomain name="Restaurant">
 <executeOn computingNode="cpu" computingPlatform="host"/>
 <deployedModuleInstance componentName="Table"

moduleInstanceName="Table_modMain_Instance"
modulePriority="50"/>

 <!-- -->
 <deployedModuleInstance componentName="P1"

moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="P1"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

 <!-- -->
 <deployedModuleInstance componentName="P2"

moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="P2"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

 <!-- -->

2
 The UML does not explicitly depict Service Links. The period attribute is therefore depicted as a UML

property of the «ecoa.triggerInstance» UML interface class.

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

 <deployedModuleInstance componentName="P3"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="P3"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

 <!-- -->
 <deployedModuleInstance componentName="P4"

moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="P4"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

 <!-- -->
 <deployedModuleInstance componentName="P5"

moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="P5"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

 </protectionDomain>

 <platformConfiguration faultHandlerNotificationMaxNumber ="8"
computingPlatform="host" />

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Restaurant) executing on ECOA

Computing Node cpu, in ECOA Computing Platform host (as represented as a UML Deployment

Diagram in Figure 5).

Figure 5 ECOA “Dining Philosophers” (Restaurant) Assembly Deployment

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

Service Availability Considerations3

Since the Table ASC provides an ECOA Service (svc_Chopsticks) it can be useful that the Service be

declared (at runtime) as “available”. Clients of the Service can then check and take alternate action

if the Service is not currently being provided. In the present simple example, availability of the

svc_Chopsticks Service will be indicated using the ready ECOA Versioned Data item. ready will be

set true (the Service is “available”) when the Table ASC’s Module (Module Implementation

Table_modMain_Im) receives a START Event Operation. No error conditions are defined in this

example, so once set the svc_Chopsticks Service will always be “available” and the ready

Versioned Data item will always be true.

Implementation

In the implementation, philosophers are numerically identified “1” to “5”. Chopsticks are

numerically identified “0” to “4” – the modulus-to-base-5 of which is the partial ordering required

for the Resource Hierarchy Solution, i.e.:

“0” < “1” < “2” < “3” < “4” < “0”

The Table ASC

The Table ASC provides the svc_Chopsticks Service using a trivial chopstick allocation algorithm:

if the requestedChopstick is free

 allocate requestedChopstick to requestingPhilospher

 return taken Boolean set true

otherwise

 return taken Boolean set false

There is no attempt to police whether a requestingPhilosopher “may” or “may not” request a

particular chopstick. An error is raised if a philosopher tries to surrender a chopstick that is not

allocated to him, including a chopstick that is already free.

All chopsticks are initially free, initialized by the INITIALIZE operation – implemented by the(C)

code function Table_modMain_Im__INITIALIZE__received in the code unit

Table_modMain_Im.c:

void Table_modMain_Im__INITIALIZE__received(
Table_modMain_Im__context* context)

{
 int i;
 for(i = 0; i < 5; i++){
 context->user.Stick[i] = FREE;
 }
}

3
 Service Availability was a concept and intrinsic functionality included in the ECOA up to issue 5 of the

Architecture Specification. It allowed ECOA Service providers to signal to clients when the provider was active

and able to accept Service Operation requests.

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 13

On invocation of the START operation, the Table ASC will set the ready Versioned Data item (Service

Availability) for the svc_Chopsticks ECOA Service, and announce its presence. That START

operation is implemented by the (C) code function Table_modMain_Im__START__received in the

code unit Table_modMain_Im.c:

void Table_modMain_Im__START__received(
Table_modMain_Im__context* context)

{
 ECOA__log msg;
 ECOA__return_status erc;
 //
 msg.current_size = sprintf(msg.data,

"\n\tThe Table is laid, the chopsticks are available...\n");
 Table_modMain_Im_container__log_info(context, msg);
 //
 Table_modMain_Im_container__ready__get_write_access(context, &rdyHndl);
 *(rdyHndl.data) = ECOA__TRUE;

 Table_modMain_Im_container__ready__publish_write_access(context, &rdyHndl);
}

The “take” Service Operation is handled by the code function Table_modMain_Im__-

take__request_received. The function checks if the requested chopstick (which) is free, and if so

allocates it to the requesting philosopher (who). The taken output parameter is set true (not zero)

or false (zero) respectively. The code function completes the request-response transaction by

invoking the Table_modMain_Im_container__take__response_send API function:

void Table_modMain_Im__take__request_received(
Table_modMain_Im__context* context,
const ECOA__uint32 ID,
const ECOA__int32 which,
const ECOA__int32 who)

{
 ECOA__boolean8 taken = 0;
 //
 if(context->user.Stick[which] == FREE){
 taken = ECOA__TRUE;
 context->user.Stick[which] = who;
 }else{
 taken = ECOA__FALSE;
 }
 Table_modMain_Im_container__take__response_send(context, ID, taken);
}

The “surrender” Service Operation is handled by the code function Table_modMain_Im__-

surrender__request_received. The function checks if the nominated chopstick (which) is

allocated to the philosopher (who). If it is, then the chopstick becomes free. Otherwise an error is

signalled.

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

void Table_modMain_Im__surrender__request_received(Table_modMain_Im__context*
context,
const ECOA__uint32 ID,
const ECOA__int32 which,
const ECOA__int32 who)

{
 if(context->user.Stick[which] != who){
 errno = EPERM; perror("surrender");
 fprintf(stderr,

"%d is trying to surrender chopstick %d held by %d...\n",
who, which, context->user.Stick[which]);

 exit(4);
 }else{
 context->user.Stick[which] = FREE;
 }
 Table_modMain_Im_container__surrender__response_send(context, ID);
}

The request-response transaction is completed by the code function by invoking the

Table_modMain_Im_container__surrender__response_send API function. Note that the

request-response transaction must be completed even though, in this case, there is no response

data.

The Philosopher ASC

The implementation behaviour State Machine of the Philosopher ASC, in order to meet the

Resource Hierarchy Solution, is depicted in Figure 6.

Figure 6 ECOA “Dining Philosophers” Implementation State Machine

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 15

On initialization (receipt of the ECOA Module Lifecycle INITIALIZE operation) the philosopher’s

state is “UNDEFINED”. When the ECOA Module Lifecycle START operation is received, the

philosopher’s state is set to “GETTINGSTICKS”. From there on, the state machine is free-running,

PROVIDED that the ready Versioned Data item is true (i.e. that the svc_chopsticks Service is

available):

• when in the ”GETTINGSTICKS” state, the LeftStick and RightStick are taken;

• the philosopher then enters the ”EATING” state;

• when the philosopher has finished eating
4
 the chopsticks are surrendered;

• the philosopher then enters the ”THINKING” state;

• when the philosopher has finished thinking
5
, he enters the ”GETTINGSTICKS” state again.

The INITIALIZE Lifecycle operation is implemented by the code function

Philosopher_modMain_Im__INITIALIZE__received of the (C) code unit Philosopher_-

modMain_Im.c:, and simply initializes philosopher the state variables:

void Philosopher_modMain_Im__INITIALIZE__received
 (Philosopher_modMain_Im__context* context)
{
 context->user.PhiloState = philosopher__State_UNDEFINED;
 context->user.EatUntil =

context->user.ThinkUntil =
 (ECOA__hr_time){ 0, 0 };

 context->user.HaveLeftStick =
context->user.HaveRightStick =
 ECOA__FALSE;

}

On invocation of the START operation, the Philospher ASC will move to (set itself as being “in”) the

“GETTINGSTICKS“ state, find out (by reading the Id ECOA Property value) its identity, and announce

that it is ready to start eating and thinking. That START operation is implemented by the code

function Philosopher_modMain_Im__START__received:

void Philosopher_modMain_Im__START__received
 (Philosopher_modMain_Im__context* context)
{
 ECOA__uint32 IAm;
 ECOA__log msg;
 //
 context->user.PhiloState = philosopher__State_GETTINGSTICKS;
 //
 Philosopher_modMain_Im_container__get_Id_value(context, &IAm);
 msg.current_size = sprintf(msg.data,

"\n\tPhilosopher %d is ready...\n", IAm);
 Philosopher_modMain_Im_container__log_info(context, msg);
}

4
 In this implementation the philosopher has finished eating after 7 seconds – he is VERY hungry!

5
 In this implementation the philosopher has finished thinking after just 11 seconds.

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

16

We just now program the remaining (free-running) part of the philosopher state machine. In order

to preserve ECOA Inversion of Control principals, the state machine is implemented by sampling the

state periodically, triggered by the Philosopher_Ticker ECOA Trigger Instance, and implemented

in the code function Philosopher_modMain_Im__Tick__received (as on the pages following):

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 17

 v
o
i
d

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
_
T
i
c
k
_
_
r
e
c
e
i
v
e
d
(
P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
_
c
o
n
t
e
x
t
*

c
o
n
t
e
x
t
)

{

E
C
O
A
_
_
u
i
n
t
3
2

I
A
m
;

E
C
O
A
_
_
l
o
g

m
s
g
;

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s

e
r
c
;

E
C
O
A
_
_
h
r
_
t
i
m
e

t
i
m
e
N
o
w
;

E
C
O
A
_
_
b
o
o
l
e
a
n
8

T
a
k
e
n
,

T
a
b
l
e
L
a
i
d
;

E
C
O
A
_
_
i
n
t
3
2

L
e
f
t
S
t
i
c
k
,

R
i
g
h
t
S
t
i
c
k
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
e
a
d
y
_
h
a
n
d
l
e

r
d
y
H
n
d
l
;

/
/

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
g
e
t
_
I
d
_
v
a
l
u
e
(

c
o
n
t
e
x
t
,

&
I
A
m

)
;

/
/

L
e
f
t
S
t
i
c
k

=

I
A
m

-

1
;
/
/

I
A
m

i
s

{
1
.
.
5
}

t
h
e
r
e
f
o
r
e

t
h
i
s

i
s

{
0
.
.
4
}

R
i
g
h
t
S
t
i
c
k

=

I
A
m

%

5
;
/
/

I
A
m

i
s

{
1
.
.
5
}

t
h
e
r
e
f
o
r
e

t
h
i
s

i
s

{
1
.
.
4
,
0
}

/
/

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
g
e
t
_
r
e
l
a
t
i
v
e
_
l
o
c
a
l
_
t
i
m
e
(

c
o
n
t
e
x
t
,

&
t
i
m
e
N
o
w

)
;

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
P
h
i
l
o
s
o
p
h
e
r

%
d

T
i
c
k
.

S
t
a
t
e

=

%
s
"
,

I
A
m
,

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
v
a
l
u
e
(

c
o
n
t
e
x
t
-

>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

)

)
;

/
/

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

/
/

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
e
a
d
y
_
_
g
e
t
_
r
e
a
d
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
r
d
y
H
n
d
l

)
;

T
a
b
l
e
L
a
i
d

=

*
(
r
d
y
H
n
d
l
.
d
a
t
a
)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
e
a
d
y
_
_
r
e
l
e
a
s
e
_
r
e
a
d
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
r
d
y
H
n
d
l

)
;

i
f
(

!
T
a
b
l
e
L
a
i
d

)
{

/
/

N
o

p
o
i
n
t

i
n

d
o
i
n
g

a
n
y
t
h
i
n
g

'
t
i
l

t
h
e

C
h
o
p
s
t
i
c
k
s

a
r
e

a
v
a
i
l
a
b
l
e

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
P
h
i
l
o
s
o
p
h
e
r

%
d

T
i
c
k
,

b
u
t

C
h
o
p
s
t
i
c
k
s

n
o
t

a
v
a
i
l
a
b
l
e
.
.
.
"
,

I
A
m

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

r
e
t
u
r
n
;

}

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
g
e
t
_
s
e
r
v
i
c
e
_
a
v
a
i
l
a
b
i
l
i
t
y
(

c
o
n
t
e
x
t
,

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
e
f
e
r
e
n
c
e
_
i
d
_
_
s
v
c
_
C
h
o
p
s
t
i
c
k
s
,

&
a
v
a
i
l
a
b
l
e
)
;

i
f
(

!
T
a
b
l
e
L
a
i
d
)
{

/
/

N
o

p
o
i
n
t

i
n

d
o
i
n
g

a
n
y
t
h
i
n
g

'
t
i
l

t
h
e

C
h
o
p
s
t
i
c
k
s

a
r
e

a
v
a
i
l
a
b
l
e

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
P
h
i
l
o
s
o
p
h
e
r

%
d

T
i
c
k
,

b
u
t

C
h
o
p
s
t
i
c
k
s

n
o
t

a
v
a
i
l
a
b
l
e
.
.
.
"
,

I
A
m

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

r
e
t
u
r
n
;

}

/
/

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

18

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=
=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
G
E
T
T
I
N
G
S
T
I
C
K
S

)
{

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/
/

*

D
i
j
k
s
t
r
a
'
s

R
e
s
o
u
r
c
e

H
i
e
r
a
r
c
h
y

S
o
l
u
t
i
o
n
.
.
.
.

*

/
/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/
/

T
h
e

l
o
w
e
r

n
u
m
b
e
r
e
d

c
h
o
p
s
t
i
c
k

i
s

a
l
w
a
y
s

t
a
k
e
n

f
i
r
s
t
.
.
.

/
*
*
/

i
f
(

R
i
g
h
t
S
t
i
c
k

<

L
e
f
t
S
t
i
c
k

)
{

i
f
(

!
c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
R
i
g
h
t
S
t
i
c
k

)
{

i
f
(
(

e
r
c

=

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
t
a
k
e
_
_
r
e
q
u
e
s
t
_
s
y
n
c
(

c
o
n
t
e
x
t
,

R
i
g
h
t
S
t
i
c
k
,

I
A
m
,

&
T
a
k
e
n

)
)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
t
a
k
e
_
_
r
e
q
u
e
s
t
(

R
i
g
h
t
S
t
i
c
k
=
>
%
d
,

b
y
=
>
%
d

)

f
a
i
l
e
d

w
i
t
h

%
d
"
,

R
i
g
h
t
S
t
i
c
k
,

I
A
m
,

e
r
c

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

}

i
f
(

!
T
a
k
e
n

)
{

r
e
t
u
r
n
;

/
/

W
e
'
l
l

h
a
v
e

a
n
o
t
h
e
r

g
o

o
n

t
h
e

n
e
x
t

t
i
c
k
.
.
.

}
e
l
s
e
{

c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
R
i
g
h
t
S
t
i
c
k

=

E
C
O
A
_
_
T
R
U
E
;

}

}

}

i
f
(

!
c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
L
e
f
t
S
t
i
c
k

)
{

i
f
(
(

e
r
c

=

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
t
a
k
e
_
_
r
e
q
u
e
s
t
_
s
y
n
c
(

c
o
n
t
e
x
t
,

L
e
f
t
S
t
i
c
k
,

I
A
m
,

&
T
a
k
e
n

)
)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
t
a
k
e
_
_
r
e
q
u
e
s
t
(

L
e
f
t
S
t
i
c
k
=
>
%
d
,

b
y
=
>
%
d

)

f
a
i
l
e
d

w
i
t
h

%
d
"
,

L
e
f
t
S
t
i
c
k
,

I
A
m
,

e
r
c

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

}

i
f
(

!
T
a
k
e
n

)
{

r
e
t
u
r
n
;

/
/

W
e
'
l
l

h
a
v
e

a
n
o
t
h
e
r

g
o

o
n

t
h
e

n
e
x
t

t
i
c
k
.
.
.

}
e
l
s
e
{

c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
L
e
f
t
S
t
i
c
k

=

E
C
O
A
_
_
T
R
U
E
;

}

}

i
f
(

R
i
g
h
t
S
t
i
c
k

>

L
e
f
t
S
t
i
c
k

)
{

i
f
(

!
c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
R
i
g
h
t
S
t
i
c
k

)
{

i
f
(
(

e
r
c

=

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
t
a
k
e
_
_
r
e
q
u
e
s
t
_
s
y
n
c
(

c
o
n
t
e
x
t
,

R
i
g
h
t
S
t
i
c
k
,

I
A
m
,

&
T
a
k
e
n

)
)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
t
a
k
e
_
_
r
e
q
u
e
s
t
(

R
i
g
h
t
S
t
i
c
k
=
>
%
d
,

b
y
=
>
%
d

)

f
a
i
l
e
d

w
i
t
h

%
d
"
,

R
i
g
h
t
S
t
i
c
k
,

I
A
m
,

e
r
c

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

}

 ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 19

i
f
(

!
T
a
k
e
n

)
{

r
e
t
u
r
n
;

/
/

W
e
'
l
l

h
a
v
e

a
n
o
t
h
e
r

g
o

o
n

t
h
e

n
e
x
t

t
i
c
k
.
.
.

}
e
l
s
e
{

c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
R
i
g
h
t
S
t
i
c
k

=

E
C
O
A
_
_
T
R
U
E
;

}

}

}

p
r
i
n
t
f
(

"
%
d

b
e
g
i
n

e
a
t
i
n
g
.
\
n
"
,

I
A
m

)
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
E
A
T
I
N
G
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
E
a
t
U
n
t
i
l

=

t
i
m
e
A
d
d
(

t
i
m
e
N
o
w
,

E
a
t
P
e
r
i
o
d

)
;

}

/
/

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=
=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
E
A
T
I
N
G

)
{

i
f
(

t
i
m
e
c
m
p
(

t
i
m
e
N
o
w
,

c
o
n
t
e
x
t
-
>
u
s
e
r
.
E
a
t
U
n
t
i
l

)

<

0

)
{

r
e
t
u
r
n
;

/
/

S
t
i
l
l

c
h
o
m
p
i
n
g
.
.
.

}
e
l
s
e
{

p
r
i
n
t
f
(

"
%
d

f
i
n
i
s
h
e
d

e
a
t
i
n
g
.
\
n
"
,

I
A
m

)
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
S
U
R
R
E
N
D
E
R
I
N
G
;

}

}

/
/

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

20

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=
=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
S
U
R
R
E
N
D
E
R
I
N
G

)
{

i
f
(
(

e
r
c

=

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
s
u
r
r
e
n
d
e
r
_
_
r
e
q
u
e
s
t
_
s
y
n
c
(

c
o
n
t
e
x
t
,

L
e
f
t
S
t
i
c
k
,

I
A
m

)
)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
\
n
\
t
P
h
i
l
o
s
o
p
h
e
r

%
d

f
a
i
l
e
d

t
o

s
u
r
r
e
n
d
e
r

c
h
o
p
s
t
i
c
k

%
d
.
.
.
\
n
"
,

I
A
m
,

L
e
f
t
S
t
i
c
k

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
w
a
r
n
i
n
g
(

c
o
n
t
e
x
t
,

m
s
g

)
;

}

i
f
(
(

e
r
c

=

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
s
u
r
r
e
n
d
e
r
_
_
r
e
q
u
e
s
t
_
s
y
n
c
(

c
o
n
t
e
x
t
,

R
i
g
h
t
S
t
i
c
k
,

I
A
m

)
)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
\
n
\
t
P
h
i
l
o
s
o
p
h
e
r

%
d

f
a
i
l
e
d

t
o

s
u
r
r
e
n
d
e
r

c
h
o
p
s
t
i
c
k

%
d
.
.
.
\
n
"
,

I
A
m
,

R
i
g
h
t
S
t
i
c
k

)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
w
a
r
n
i
n
g
(

c
o
n
t
e
x
t
,

m
s
g

)
;

}

c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
L
e
f
t
S
t
i
c
k

=

c
o
n
t
e
x
t
-
>
u
s
e
r
.
H
a
v
e
R
i
g
h
t
S
t
i
c
k

=

E
C
O
A
_
_
F
A
L
S
E
;

p
r
i
n
t
f
(

"
%
d

b
e
g
i
n

t
h
i
n
k
i
n
g
.
\
n
"
,

I
A
m

)
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
T
H
I
N
K
I
N
G
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
T
h
i
n
k
U
n
t
i
l

=

t
i
m
e
A
d
d
(

t
i
m
e
N
o
w
,

T
h
i
n
k
P
e
r
i
o
d

)
;

}

/
/

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=
=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
T
H
I
N
K
I
N
G

)
{

i
f
(

t
i
m
e
c
m
p
(

t
i
m
e
N
o
w
,

c
o
n
t
e
x
t
-
>
u
s
e
r
.
T
h
i
n
k
U
n
t
i
l

)

<

0

)
{

r
e
t
u
r
n
;

/
/

S
t
i
l
l

c
o
g
i
t
a
t
i
n
g
.
.
.

}

p
r
i
n
t
f
(

"
%
d

f
i
n
i
s
h
e
d

t
h
i
n
k
i
n
g
.
\
n
"
,

I
A
m

)
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
G
E
T
T
I
N
G
S
T
I
C
K
S
;

}

/
/

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

<
=

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
U
N
D
E
F
I
N
E
D

|
|

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

>

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
T
H
I
N
K
I
N
G

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
\
n
\
t
P
h
i
l
o
s
o
p
h
e
r

%
d

h
a
s

i
l
l
e
g
a
l

s
t
a
t
e

%
s
.
.
.
\
n
"
,

I
A
m
,

p
h
i
l
o
s
o
p
h
e
r
_
_
S
t
a
t
e
_
v
a
l
u
e
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
P
h
i
l
o
S
t
a
t
e

)
)
;

P
h
i
l
o
s
o
p
h
e
r
_
m
o
d
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

r
e
t
u
r
n
;

}

}

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 21

The code function Philosopher_modMain_Im__Tick__received requires two constant values that

are used to determine when the philosopher has had enough eating or thinking.

static const ECOA__hr_time EatPeriod = { 7, 0 };
static const ECOA__hr_time ThinkPeriod = { 11, 0 };

In each case, the function records the time that the state is entered (“EATING” or “THINKING”) and

each time it is triggered it checks the current time against the recorded time. Only when the period

set by the constant has passed will the state machine progress (either to the “SURRENDERING” or

“GETTINGSTICKS” states of Figure 6).

Program Output

When the ECOA “Dining Philosophers” (Restaurant) Assembly is built and run, an output similar to

Figure 7 should be achieved. The Philosopher ASC start-up messages are output to the system

console, prefixed by miscellaneous logging data (time stamp, logging type, etc.) (one of which is

shown from “Philosopher 5” (i.e. ASC P5 of the Assembly)). Each philosopher then outputs state

changes, reporting his Id number and whether he is beginning or finishing eating or thinking. These

outputs are interleaved with any other ECOA Platform logging messages (such as the 10 second

periodic “alive” messages in the example shown):

Figure 7 ECOA “Dining Philosophers” (Restaurant) Assembly in Execution

ECOA Examples: Dining Philosophers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

22

References

1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Dining philosophers problem

Dijkstra, Hoare

https://en.wikipedia.org/wiki/Dining_philosophers_problem

