

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

EmbedWithECOA

Introduction
This document describes an ECOA® example of using the ECOA for an embedded program.

This document presents information about the principal user generated artefacts required to create

an “EmbedWithECOA” program using the ECOA. It is assumed that the reader is thoroughly

conversant with the ECOA Architecture Specification (ref.[1]) and the process of defining and

declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using

code generation to produce Module framework (stub) code units and ECOA Container and Platform

code. If not, then let me suggest working through some of the other examples/samples provided,

starting with “Hello World” and working your way up to “Pub Sub”.

The ECOA has been predominantly designed with complex aerospace Mission System software in

mind, executing on a modern operating system or runtime kernel, on high performance multi-

processing hardware. But what about the other end of the computing spectrum? Can the ECOA be

used, and bestow benefits, to small scale, embedded, applications – such as a washing machine

controller.

This document will explore this realm by describing an example application that can be programmed

into a microcontroller chip interfaced to “real world” push-buttons and lights.

Aims

This ECOA EmbedWithECOA example is intended to show how ECOA ASCs (Components) can be used

for small-scale embedded programs whilst still achieving the benefits expounded for the ECOA

(application code reusability, ease of integration, etc.).

The example is also intended to show the explicit invocation of ECOA Operations without breaking

Inversion of Control (ref.[1]).

ECOA Features Exhibited

• The ECOA External Interface capability.

• Separation of functional behaviour implementation (in an ECOA ASC) from platform specific

inter-process and interfacing code.

• Comparison of ECOA ASCs running in a microcontroller chip and in a general purpose

computer (with an operating system).

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

Design and Definition

System Design

The widely available Velleman VM111 Programmer and Experiment Board (ref.[2]) as well as

allowing a microcontroller to be programmed easily, provides four push-buttons and six LED lights

that interface directly to a PIC microcontroller (e.g. ref.[3]). With a suitably programmed chip, it

therefore provides an easy to use demonstration of software-hardware interfacing.

Figure 1 Vellemen VM111 Programmer & Experiment Board

Each LED is driven from an output pin of the microcontroller (through a current limit resistor. When

the pin is set to “on” (5v) the LED comes on; when the pin is set “off” (0v) the LED is extinguished.

Each push-button, when pressed, pulls an input pin of the microcontroller to 5v (“on”) (again

through a current limit resistor). When the push-button is un-pressed, the input pin is pulled to 0v

(“off”).

In order to demonstrate the software application behaviour in the microcontroller AND in a general

purpose computer (with an operating system/runtime kernel), it is necessary to interface that

computer to the same hardware configuration. This can be done replicating the push-buttons and

lights using a prototyping breadboard, interfaced to the computer. In Figure 2 the four push-buttons

are horizontal along the front of the board (with red, yellow, green, and blue caps) and the six red

LEDs sit vertically to the right of the push-buttons.

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

Figure 2 Prototyping Breadboard Push-Buttons-and-LEDs

This example was developed using a Raspberry Pi (e.g. ref.[4]) as the “general purpose computer”,

interfaced to the breadboard using a T-Cobbler Breakout (e.g. ref.[5]).

Figure 3 Raspberry Pi and Breadboard

So we now need a software EmbedWithECOA application that we can sit in the microcontroller and

the computer and have do something with the LEDs and push-buttons:

LEDs

Push-Buttons

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

Figure 4 "EmbedWithECOA" Application

That application will simply sequence the LEDS in one of four patterns, a pattern selected by the four

push-buttons:

Pattern A: Each LED will turn on and then off again in the sequence 0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4…

Pattern B: The LEDs will light in a binary count from 0 (no LEDs on) to 63 (all LEDs on), and then

repeat from 0.

Pattern C: LEDs 2 and 3 will go on then off, then LEDs 1 and 4 will do the same, and then LEDs 0 and

5. The pattern then repeats. The light therefore starts in the middle of the array an

moves out to the edges, and then repeats.

Pattern D: Each LED will turn on and then off again in sequence 0,1,2,3,4,5,4,3,2,1,0,1,2,3,4,5,4,3,2…

ECOA Assembly Design and Definition

In order to isolate the hardware (push-buttons and LEDs) interfacing from the application logic (the

sequencer) the EmbedWithECOA application will comprise two ECOA ASCs, “EwECOA” and

“EwECOAIF”. The EwECOA ASC will be completely independent of the execution hardware – it will be

a “pure” ECOA ASC. All the interfacing will be in the EwECOAIF ASC. A single ECOA Service is defined,

“IO”, provided by the interface ASC.

EmbedWithECOA

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

Figure 5 ECOA "EmbedWithECOA" Assembly Diagram

Figure 6 "EmbedWithECOA" Assembly in Context

The ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

EmbedWithECOA Assembly is as follows (file EwECOA.impl.composite):

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="EwECOA" targetNamespace="http://www.ecoa.technology">

 <csa:component name="EwECOA">
 <ecoa-sca:instance componentType="EwECOA">
 <ecoa-sca:implementation name="EwECOA"/>
 </ecoa-sca:instance>
 </csa:component>
 <csa:component name="EwECOAIF">
 <ecoa-sca:instance componentType="EwECOAIF">
 <ecoa-sca:implementation name="EwECOAIF"/>
 </ecoa-sca:instance>
 </csa:component>
 <!-- System Wiring... -->
 <csa:wire source="EwECOA/IO" target="EwECOAIF/IO"/>
</csa:composite>

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

I will spare much detail and repetition in this description of material presented with other examples,

trusting you to have worked your way through other ECOA examples.

ECOA Service and Types Definition

The IO Service, which is provided by the EwECOAIF ASC and referenced by the EwECOA ASC, is (of

course) defined in a XML file (IO.interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">
 <operations>
 <event name="PatternASelected" direction="SENT_BY_PROVIDER"/>
 <event name="PatternBSelected" direction="SENT_BY_PROVIDER"/>
 <event name="PatternCSelected" direction="SENT_BY_PROVIDER"/>
 <event name="PatternDSelected" direction="SENT_BY_PROVIDER"/>

 <event name="DisplayCode" direction="RECEIVED_BY_PROVIDER">
 <input name="displayCode" type="uint8"/>
 </event>

 </operations>
</serviceDefinition>

It defines four ECOA Event “SENT_BY_PROVIDER” Operations which tell the sequence controller

recipient (i.e. EwECOA) that a push-button has been pressed, selecting a new pattern. It also defines

a “RECEIVED_BY_PROVIDER” Event Operation by which the sequence controller (EwECOA) requests a

particular LED light displayCode pattern. The displayCode is given as an 8-bit unsigned integer

(byte), of which bits 0 to 5 will be mapped onto the 6 LEDs.

ECOA Module Design and Definition

The EwECOA and EwECOAIF ASC (component) types are composed of a single ECOA Module each

(Module Implementations EwECOA_modMain_Im and EwECOAIF_modMain_Im of Module Types

EwECOA_modMain_t and EwECOAIF_modMain_t respectively) as illustrated in UML in Figure 5. Here is

depicted in UML the EwECOAIF ASC (component) providing the IO ECOA Service, whilst the EwECOA

ASC references the Service. As always in the ECOA, the Module Implementations implement the

Module Lifecycle operations defined by the ECOA (as represented in UML by the abstract class

ECOA::Module).

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

Figure 7 "EmbedWithECOA" Module Design (as UML Class Diagram)

The EwECOA ASC

The EwECOA ASC is defined as a normal ECOA Component Implementation, with Module Operations

defined in a Module Type (EwECOA_modMain_t) declaration:

 <moduleType name="EwECOA_modMain_t" hasUserContext="true"
hasWarmStartContext="false">

 <operations>
 <eventReceived name="PatternASelected"/>
 <eventReceived name="PatternBSelected"/>
 <eventReceived name="PatternCSelected"/>
 <eventReceived name="PatternDSelected"/>
 <eventSent name="DisplayCode">
 <input name="displayCode" type="uint8"/>
 </eventSent>
 <eventReceived name="Tick"/>
 </operations>
 </moduleType>

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

The Module Type is implemented by the concrete Module Implementation EwECOA_modMain_Im

(depicted in the UML expanded in the form of the code class produced by the code generation

process), which in turn is instantiated at runtime as the Module Instance EwECOA_modMain_Inst.

The IO Service Operations are linked to Module Operations with <eventLink> XML tags, e.g.:

 <eventLink>
 <senders>
 <reference instanceName="IO" operationName="PatternASelected"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="EwECOA_modMain_Inst"

operationName="PatternASelected"/>
 </receivers>
 </eventLink>

The Module Type also declares a Tick operation which is linked to an ECOA Trigger Instance

(Ticker), and is called periodically (every 0.1 seconds):

 <eventLink>
 <senders>
 <trigger instanceName="Ticker" period="0.1"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="EwECOA_modMain_Inst"

operationName="Tick"/>
 </receivers>
 </eventLink>

The EwECOAIF ASC

The EwECOAIF ASC is also defined as an ECOA Component Implementation, with Module Operations

defined in a Module Type (EwECOAIF_modMain_t) declaration:

 <moduleType name="EwECOAIF_modMain_t" hasUserContext="false"
hasWarmStartContext="false">

 <operations>
 <!-- Service Operations -->
 <eventSent name="PatternASelected"/>
 <eventSent name="PatternBSelected"/>
 <eventSent name="PatternCSelected"/>
 <eventSent name="PatternDSelected"/>
 <eventReceived name="DisplayCode">
 <input name="displayCode" type="uint8"/>
 </eventReceived>
 <!-- Interface operations -->
 <eventReceived name="ButtonA" />
 <eventReceived name="ButtonB" />
 <eventReceived name="ButtonC" />
 <eventReceived name="ButtonD" />
 </operations>
 </moduleType>

The Module Type is implemented by a concrete Module Implementation EwECOAIF_modMain_Im

(depicted in the UML expanded in the form of the code class produced by the code generation

process), which in turn is instantiated at runtime as the Module Instance EwECOAIF_modMain_Inst.

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

The IO Service Operations are again linked to Module Operations with <eventLink> XML tags, e.g.:

 <eventLink>
 <senders>
 <moduleInstance instanceName="EwECOAIF_modMain_Inst"

operationName="PatternASelected"/>
 </senders>
 <receivers>
 <service instanceName="IO" operationName="PatternASelected"/>
 </receivers>
 </eventLink>

The EwECOAIF ASC also has a set of External Interfaces declared, again using <eventLink> elements,

linking to the four Interface Module Operations, ButtonA to ButtonD, e.g.:

 <eventLink>
 <senders>
 <external operationName="ButtonA" language="C"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="EwECOAIF_modMain_Inst"

operationName="ButtonA"/>
 </receivers>
 </eventLink>

That is, in each case, an external interface function ButtonA is defined that, when called, invokes the

Module Operation ButtonA.

The external interfaces become defined in a source code header file, in this case for C, as:

 void EwECOAIF__ButtonA();

 void EwECOAIF__ButtonB();

 void EwECOAIF__ButtonC();

 void EwECOAIF__ButtonD();

and allow these functions, implemented in the EwECOAIF_modMain_Im Module Implementation, to

be called from software outside of the ECOA “Inversion Of Control” domain (see ref.[1]).

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

ECOA Deployment Definition

The ECOA EmbedWithECOA Assembly is deployed (that is, the declared Module and Trigger

Instances are allocated to ECOA Protection Domains, which are themselves allocated to computing

nodes) by the following XML (file EwECOA.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0" finalAssembly="EwECOA"
logicalSystem="hostbased">

 <protectionDomain name="pdEwECOA">
 <executeOn computingNode="cpu" computingPlatform="host"/>
 <deployedModuleInstance componentName="EwECOA"

moduleInstanceName="EwECOA_modMain_Inst"
modulePriority="50"/>

 <deployedTriggerInstance componentName="EwECOA"
triggerInstanceName="Ticker"
triggerPriority="40"/>

 <deployedModuleInstance componentName="EwECOAIF"
moduleInstanceName="EwECOAIF_modMain_Inst"
modulePriority="50"/>

 </protectionDomain>
 <platformConfiguration faultHandlerNotificationMaxNumber="8"

computingPlatform="host" />
</deployment>

That is, the two Module Instances (EwECOA_modMain_Inst and EwECOAIF_modMain_Inst) and the

Trigger Instance (Ticker), are deployed into an ECOA Protection Domain, pdEwECOA, executing on

the Computing Node cpu, which is part of the ECOA Computing Platform host.

Figure 8 "EmbedWithECOA" Deployment

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

Service Availability Considerations

Since the EwECOAIF ASC provides an ECOA Service (IO) it might be useful that the Service be declared

(at runtime) as “available” or as (currently) “not available”. Clients of the Service (i.e. EwECOA) could

then check and take alternate action if the Service is not currently being provided. In the present

simple example, availability of the IO Service has not been implemented – it is just assumed to be

available once the Protection Domain (executable) has started.

Implementation

The EwEOA ASC

The function of the EwECOA ASC (and therefore the Module Implementation EwECOA_modMain_Im) is

to sequence the LEDs. This is done by the Tick Module Operation; each time the Ticker Trigger

Instance fires, the Tick Module Operation calls DisplayCode IO Service Operation with a new

displayCode. The displayCode is set according to the next step in the currently selected

sequence.

void EwECOA_modMain_Im__Tick__received(EwECOA_modMain_Im__context *context)
{
 switch(context->user.curPattern){
 case A:
 if(context->user.displayCode == 0){
 context->user.displayCode = 0x01;
 }else{
 context->user.displayCode = context->user.displayCode << 1;
 if(context->user.displayCode > 0x20)
 context->user.displayCode = 0x01;
 }
 break;
 case B:
 context->user.displayCode += 1;
 if(context->user.displayCode > 63)
 context->user.displayCode = 0;
 break;
 case C:
 switch(context->user.displayCode){
 case 0x00:
 context->user.displayCode = 0x0C;
 break;
 case 0x0C:
 context->user.displayCode = 0x12;
 break;
 case 0x12:
 context->user.displayCode = 0x21;
 break;
 case 0x21:
 context->user.displayCode = 0x00;
 break;
 }
 break;
 case D:
 context->user.displayCode = codes[context->user.seqNo];
 context->user.seqNo = (++(context->user.seqNo)) % 12;
 break;

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

 }
 EwECOA_modMain_Im_container__DisplayCode__send(context,
 context->user.displayCode);
}

In order to maintain the current displayCode (and two other variables) across invocations of the

EwECOA_modMain_Im__Tick__received() function, it is included in the “User Context” (see

ref.[1]), and accessed as context->user.displayCount. The User Context is declared in the (C)

code header file EwECOA_modMain_Im_user_context.h:

typedef struct {
 ECOA__uint8 curPattern;
 ECOA__uint8 displayCode;
 ECOA__uint8 seqNo;
} EwECOA_modMain_Im_user_context;

The EwECOAIF ASC

The function of the EwECOAIF ASC (and therefore the Module Implementation

EwECOAIF_modMain_Im) is to associate the IO Service Operations with the physical platform specific

hardware.

If you have been following closely, and have worked your way through (some of) the other ECOA

samples, you may have noticed that up until now everything has been totally in the ECOA domain.

Module Implementation EwECOAIF_modMain_Im marks the end of that road. Well, almost.

In order to be able to maximise the ability to host EmbedWithECOA on different hardware, even

EwECOAIF_modMain_Im is abstracted onto another API layer (called “EwECOAIF”), a very simple one,

comprising just three APIs:

void ioinit();
void pollButtons();
void putLights(unsigned char x);

• ioint() initialises (if/as necessary) the hardware to be used.

• putlights() turns on or off the LEDs according to the displayCode given.

• pollButtons() scans the four push-buttons. If a push-button is pressed, pollButtons()

will call directly the appropriate ECOA External Interface function implemented by the

Module Implementation (i.e. for C code, the functions EwECOAIF__ButtonA() &co.)

Not all implementations will need the push-buttons to be explicitly polled – some hardware

implementations may cause an interrupt when a push-button is pressed and the interrupt

handler will call the ECOA External Interface function.

The Module Implementation EwECOAIF_modMain_Im itself is therefore the same for all hosting

hardware, only the implementation of the low-level EwECOAIF API layer changes for each specific

hardware. The implementation of the DisplayCode Service Operation, as an ECOA

<eventReceived> Module Operation is therefore (in C):

void EwECOAIF_modMain_Im__DisplayCode__received(EwECOAIF_modMain_Im__context
*context,

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 13

 const ECOA__uint8 displayCode)
{
 /* Light the lights... */
 putLights(displayCode);
}

The implementation of the ECOA External Interface functions simply map to the corresponding IO

Service Operation. So, for instance, when the ButtonA() External Interface function is called

(implemented in C as EwECOIF__ButtonA()), the ButtonA Module Operation (declared in the

EwECOAIF_modMain_t Module Type) is invoked, which in turn invokes the PatternASelected

Service Operation. In C the implementation code for this Module Operation is:

void EwECOAIF_modMain_Im__ButtonA__received(EwECOAIF_modMain_Im__context *context)
{
 EwECOAIF_modMain_Im_container__PatternASelected__send(context);
}

EwECOAIF API Layer Implementation for Desktop Computer

A desktop computer tends not to have LEDs that can be arbitrarily turned on and off. They do

normally have push-button switches that can be pressed though – called a keyboard. So we can

devise an implementation of the low-level API layer that maps LEDs onto a screen display, and looks

for specific key presses to use as push-buttons.

For the LEDs we will simply display a line of six dots (‘.’) and ohs (‘o’) – a ‘.’ for an off LED, and an ‘o’

for an on LED:

..o.o.

putLights() therefore becomes:

void putLights(unsigned char x)
{
 unsigned char i;
 unsigned char xc = x;
 char res[9];
 //
 for(i = 0; i < 8; i++){
 if(xc & 0x80)
 res[i] = 'o';
 else
 res[i] = '.';
 xc = xc << 1;
 }
 res[i] = '\000';
 //
 printf("%s \r", res); fflush(stdout);
}

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

The keyboard reader for a desktop computer needs to wait for key presses and then handle them.

Normally a key press needs to be followed by the ‘Enter’ key, so we create a separate thread that

can wait indefinitely for a key+Enter to be typed
1
:

void* keyReader(void* p)
{
 int key;
 // Wait for key presses...
 for(;;){
 key = getchar();
 switch(key){
 case 'A': case 'a':
 EwECOAIF__ButtonA();
 break;
 case 'B': case 'b':
 EwECOAIF__ButtonB();
 break;
 case 'C': case 'c':
 EwECOAIF__ButtonC();
 break;
 case 'D': case 'd':
 EwECOAIF__ButtonD();
 break;
 default:
 break;
 }
 nanosleep(&Zzzz, NULL);
 }
 return NULL;
}

ioinit() therefore needs to spin off the keyboard reader thread:

void ioinit()
{
 static pthread_t keythrd;
 //
 // Spin the button (keyboard) reader
 pthread_create(&keythrd, NULL, keyReader, NULL);
}

EwECOAIF API Layer Implementation for the Raspberry Pi

The Raspberry Pi can be used as a (small scale) desktop computer so the previous implementation

would work quite happily. However, we want the more interesting case of interfacing to the

prototyping breadboard with “real” push-buttons and LEDs.

The breadboard is interfaced to the Raspberry Pi’s GPIO pins, so we need a way to set and read the

GPIO hardware. The following code uses the “Wiring Pi” library (ref.[7]).

ioint() is similar to the previous, but also initialises the WiringPi library:

1
 Most runtime systems will offer a means to read single key presses without the ‘Enter’ key being pressed,

such as the curses (ref.[6]) library’s getch() function. However for generality, the described

implementation sticks with just the standard C library getchar() function which does require ‘Enter’…

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 15

void ioinit()
{
 static pthread_t keythrd;
 unsigned char i;
 //
 // Setup the wiringPi library
 wiringPiSetup();
 //
 // Setup the GPIOs we want as inputs...
 pinMode(0, INPUT);
 pinMode(2, INPUT);
 pinMode(4, INPUT);
 pinMode(5, INPUT);
 //
 // Setup the GPIOs we want as outputs
 for(i = 23 ; i < 29 ; ++i)
 pinMode(i, OUTPUT);
 //
 // Spin the button poller
 pthread_create(&keythrd, NULL, buttonPoller, NULL);
}

The push-button state is read by polling the appropriate GPIO input pins:

void* buttonPoller(void* p)
{
 // Poll the buttons...
 for(;;){
 if(digitalRead(0)){
 EwECOAIF__ButtonA();
 }
 else if(digitalRead(2)){
 EwECOAIF__ButtonB();
 }
 else if(digitalRead(4)){
 EwECOAIF__ButtonC();
 }
 else if(digitalRead(5)){
 EwECOAIF__ButtonD();
 }
 nanosleep(&Zzzz, NULL);
 }
 return NULL;
}

In similar vein putLights() sets the appropriate GPIO output pins:

void putLights(unsigned char displayCode)
{
 digitalWrite(28, (displayCode & 0x01 ? 1 : 0));
 digitalWrite(27, (displayCode & 0x02 ? 1 : 0));
 digitalWrite(26, (displayCode & 0x04 ? 1 : 0));
 digitalWrite(25, (displayCode & 0x08 ? 1 : 0));
 digitalWrite(24, (displayCode & 0x10 ? 1 : 0));
 digitalWrite(23, (displayCode & 0x20 ? 1 : 0));
}

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

16

EwECOAIF API Layer Implementation for the PIC Microcontroller

In the case of the PIC microcontroller, we cannot spin separate threads, so the push-buttons are

periodically polled by the low-level API layer pollButtons() API, and reads an input pin for each

push-button. These input pins set bits in the BTNPORT register:

void pollButtons()
{
 switch(BTNPORT & 0x1F){
 case 0x01:
 EwECOAIF__ButtonA();
 break;
 case 0x02:
 EwECOAIF__ButtonB();
 break;
 case 0x04:
 EwECOAIF__ButtonC();
 break;
#if PIC==0x16f627
 case 0x08:
#elif PIC==0x16f873
 case 0x10:
#elif PIC==0x16f876
 case 0x10:
#elif PIC==0x16f876a
 case 0x10:
#endif
 EwECOAIF__ButtonD();
 break;
 }
}

putLights() for the PIC microcontroller is very simple – because of the way the displayCode

parameter is defined:

void putLights(unsigned char displayCode)
{
 LEDPORT = displayCode;
}

There is no initialisation to do as far as the low-level API layer is concerned:

void ioinit ()
{
}

Program Output

When the ECOA EmbedWithECOA Assembly is built for, and run on, a desktop computer, an output

similar to Figure 9 should be achieved. The LED simulation is output to the system console,

interleaved with any ECOA Platform logging messages (such as the 5 second periodic “alive”

message in the example shown):

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 17

Figure 9 ECOA "EmbedWithECOA" in Execution (Desktop Computer Host)

It would of course be necessary to resort to video to show EmbedWithECOA in operation properly –

particularly the Raspberry Pi and microcontroller builds…

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

18

References

1 European Component Oriented Architecture (ECOA®) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 VM111
2
: PIC® Programmer & Experiment Board

Velleman Inc.

3 PIC16F87X Data Sheet

Microchip Technology Inc.

4 Raspberry Pi 2 Model B

Raspberry Pi Foundation

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

5 Pi T-Cobbler Plus – GPIO Breakout

Adafruit

https://www.adafruit.com/product/1754

6 curses (programming library)

https://en.wikipedia.org/wiki/Curses_%28programming_library%29

 - also -

“Screen Updating and Cursor Movement Optimization: A Library Package"

University of California, Berkeley

Arnold, K. C. R. C. (1977).

 - also -

"Screen Updating and Cursor Movement Optimization: A Library Package"

Kenneth C. R. C. Arnold; Elan Amir (December 1992).

7 Wiring Pi

GPIO Interface library for the Raspberry Pi

http://wiringpi.com/

2
 Also as “K8048” when bought in kit form.

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 19

Appendix I

Microcontroller Container & ECOA Platform Implementation
ECOA applications are implemented as collections of ECOA ASCs that are built and run in ECOA

Containers, integrated with an ECOA Platform infrastructure (see ref.[1]), which provides the

communications links between ASCs, and the support functionality (logging, time, Trigger Instance

implementations, etc.) The ASC application specific Container code and the host platform specific

infrastructure code are normally generated by an ECOA Platform Code Generator
3
.

And this is the case for desktop computer and Raspberry Pi implementations of EmbedWithECOA,

where an ECOA Platform Code Generator for POSIX can be used. For the microcontroller

implementation (at least for the size of microcontroller that can be used with the Velleman board

(ref.[2])) a POSIX runtime kernel is not practicable; so the Container and the ECOA Software Platform

(infrastructure) code must be created explicitly “by hand”. Figure 10 depicts the EmbedWithECOA

Logical Architecture (comprising the two ASCs), and the Physical (implementation) Architecture

(comprising the Module Implementations, the Containers, and the ECOA Platform), while Figure 11

interprets the same into UML.

Figure 10 "EmbedWithECOA" Logical and Physical Architectures

3
 This is usually separate from the ECOA “API” Code Generator that would be used to create the language

specific data type header files and the framework (stub) code for the ASC Module Implementations.

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

20

Figure 11 "EmbedWithECOA" ECOA Software Platform Structure

ECOA Container Implementation

The two ECOA ASCs (EwECOA and EwECOAIF) are depicted at the top of Figure 11, and “comprise” (for

the purposes of representation) their respective Module Implementations (EwEOCA_modMain_Im and

EwEOCAIF_modMain_Im). As described in ref.[1], ECOA Module Implementation code invokes

functions implemented in its Container through its Module Interface. The ECOA “API” Code

Generator used for all these examples generates framework code for the ECOA Container for each

Module Implementation (represented in the diagram as EwECOA_modMain_Im_container and

EwECOAIF_modMain_Im_container), which can be populated with functional code to create the

application specific Containers necessary
4
.

Similarly, functionality implemented in the Module Implementation code is invoked (normally by the

Container code) through its Container Interface. In the implementation described here, a short-cut

is used. The Module Implementation code is invoked directly from the ECOA Platform

implementation code.

In practise, the Containers implemented for this example are a very thin binding onto the ECOA

Platform code, which in this case can be specific to the application – class EwECOA_platform. For

4
 Normally the Container code would be created by the ECOA Platform Code Generator.

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 21

instance in the EwECOA_modMain_Im_container the get_relative_local_time() ECOA API is

implemented as:

void EwECOA_modMain_Im_container__get_relative_local_time
 (EwECOA_modMain_Im__context* context, ECOA__hr_time* relative_local_time)
{
 hrClock(relative_local_time);
}

where hrClock() is a function implemented in the EwECOA_platform.

Similarly, in the EwECOAIF_modMain_Im_container the PatternCSelected Service Operation

invocation is implemented as:

void EwECOAIF_modMain_Im_container__PatternCSelected__send
 (EwECOAIF_modMain_Im__context* context)
{
 EwECOA_platform_PatternCSelected_send();
}

ECOA Platform Implementation

The ECOA Platform has four jobs to perform. One is to provide the communications path from one

Module Implementation and Container to the other (as in Figure 11). The second is to provide the

ECOA infrastructure functions such as time and logging. The third is to provide the “main” function,

the program entry point.

Finally, the ECOA Platform declares and maintains the ECOA Module Context variables (as ever, see

ref.[1]) for each Module Instance of the Assembly. In the present case there are only two Module

Instances, one instance of each of the Module Implementations (EwECOA_modMain_Im and

EwECOAIF_modMain_Im). The Module Instances are EwECOA_modMain_Inst and

EwECOAIF_modMain_Inst shown way back in Figure 7.

The ECOA Platform for EmbedWithECOA on the microcontroller can be represented in UML as

Figure 12 "EmbedWithECOA" Application Specific ECOA Platform

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

22

ASC-to-ASC Communications

Figure 13 illustrates, as a UML Sequence Diagram, the actions for two particular interactions. The

first covers the interactions when the EwECOA ASC updates the LEDs by invoking the DisplayCode

Service Operation – that is when the EwECOA_modMain_Im Module Implementation invokes its

DisplayCode_send() Container function. That Container function in turn calls the ECOA Platform

DisplayCode_send() function; which calls (directly) the DisplayCode__received() function of the

EwECOAIF_modMain_Im Module Implementation, hence fulfilling the DisplayCode Service

Operation. The EwECOAIF_modMain_Im Module Implementation completes the operation by calling

the putLights() function of its low-level interface API layer.

Figure 13 "EmbedWithECOA" ECOA Platform ASC-to-ASC Comms.

The second interaction illustrated is the converse, where the ECOA Platform invokes the

pollButtons() function of the EwECOAIF ASC low-level interface API layer; which invokes the ECOA

External Interface function ButtonA__received() of the EwECOAIF_modMain_Im Module

Implementation; which calls the PatternASelected_send() function of the EwECOAIF_modMain_Im

Container (hence logically invoking the PatternASelected Service Operation); which calls the

PatternASelected__send() function of the ECOA Platform; which calls the

PatternASelected__received() operation of the EwECOA_modMain_Im Module Implementation

and hence, finally, fulfilling the PatternASelected Service Operation.

As you may tell from these sequences, the ASC-to-ASC communications functions of the ECOA

Platform are again very thin bindings. For instance:

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 23

void EwECOA_platform_PatternASelected_send()
{
 EwECOA_modMain_Im__PatternASelected__received(&EwECOA_modMain_Inst_context);
}

ECOA Platform Services

For the purposes of providing the necessary ECOA infrastructure services (functions), the ECOA

Platform for the microcontroller implementation is once more subdivided down, isolating out a

number of very low level functions (Figure 14), functions that might in other circumstances be

provided by a runtime kernel or operating system.

Figure 14 "EmbedWithECOA" ECOA Platform Implementation for Microcontroller

For instance, the ECOA Platform function hrclock() returns a time value in the ECOA hr_time data

type (seconds and nanoseconds), and composes that value by getting a time value incremented by a

hardware clock and accessed using the clock() function of the low-level “bspPIC” class. The ECOA

Platform level hrclock() implementation is:

void hrClock(ECOA__hr_time *hr_time)
{
 clock_t now = clock();
 if(hr_time){
 hr_time->seconds = now/CLOCKS_PER_SEC;
 hr_time->nanoseconds = now *
 (1000000000L/CLOCKS_PER_SEC) % 1000000000L;
 }
}

ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

24

That is, it gets a clock() reading (as some number of ticks) and converts it into seconds and

nanoseconds, the number of ticks occurring in one second being given by the constant

CLOCKS_PER_SEC.

Program Control

Every program needs a start point. When written in C this is normally a function called “main()”. To

maintain the software layering view, a functional main() is provided by the ECOA Platform (in C as

EwECOA_platform__main()). Its job is to INITIALIZE and then START each Module and Trigger

Instance, and to then to loop “forever” periodically “firing” any Trigger Instances – having this job to

do because the microcontroller is single threaded:

int EwECOA_platform__main()
{
 // Initialize the Trigger & Module states
 EwECOA_modMain_Inst_pContext.tickerState = ECOA_Platform__module_states_type_IDLE;
 EwECOA_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_IDLE;
 EwECOAIF_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_IDLE;
 //
 // INITIALIZE the Triggers & Modules themselves
 EwECOA_modMain_Inst_pContext.tickerState = ECOA_Platform__module_states_type_READY;
 EwECOA_modMain_Im__INITIALIZE__received(&EwECOA_modMain_Inst_context);
 EwECOA_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_READY;
 EwECOAIF_modMain_Im__INITIALIZE__received(&EwECOAIF_modMain_Inst_context);
 EwECOAIF_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_READY;
 //
 // START the Triggers & Modules
 EwECOA_modMain_Inst_pContext.tickerState = ECOA_Platform__module_states_type_RUNNING;
 EwECOA_modMain_Im__START__received(&EwECOA_modMain_Inst_context);
 EwECOA_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_RUNNING;
 EwECOAIF_modMain_Im__START__received(&EwECOAIF_modMain_Inst_context);
 EwECOAIF_modMain_Inst_pContext.moduleState = ECOA_Platform__module_states_type_RUNNING;
 //
 for(;;){
 if(EwECOA_modMain_Inst_pContext.tickerState ==
 ECOA_Platform__module_states_type_RUNNING){
 EwECOA_modMain_Im__Tick__received(&EwECOA_modMain_Inst_context);
 }
 pollButtons();
 msleep(100/*msecs*/); // This needs fixing...
 }
}

Note that in this implementation there are no explicit INITIALIZE or START functions for the Trigger

Instance. The Trigger starts to “fire” as soon as this functional main() starts to loop, calling

EwECOA_modMain_Im__Tick__received() on each cycle. Note also that the implementation as

presented is flawed in that the loop period does not take account of the time taken by the

EwECOA_modMain_Im__Tick__received() and pollButtons() functions.

This functional main() is called, in C, by the “real” main():

int main()
{
 return EwECOA_platform__main();
}

 ECOA Examples: EmbedWithECOA

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 25

Microcontroller “BSP”5

At the very lowest level of the software structure is the “bspPIC”

layer, a small set of software

functions providing commonly available routines that interface directly (or nearly so) to the system

hardware. In the present case these routines are limited to clock and delay functions and IO port

access (Figure 14).

For example, the “bspPIC” level clock() function counts occurrences of a hardware interrupt linked

to a timer provided by the microcontroller chip itself – and therefore to the crystal controlled

processor clock:

void Timer0_ISR() __interrupt
{
 if(T0IE && T0IF){
 TMR0 = TMRCOUNT;
 T0IF = 0; // clear bit
 ++clockc; // Note: will wrap at some point
 }
}

clock_t clock()
{
 return clockc;
}

In the present implementation the interrupt is configured to occur every 100µsecs – hence the

CLOCKS_PER_SEC constant referred to earlier has the value 10000.

In similar vein, the layer provides a usleep() function where processing stops for a given number of

microseconds. The implementation uses a second hardware timer provided by the microcontroller

to achieve an accurate delay. The msleep() function (stop for a given number of milliseconds)

simply compounds calls of usleep(), whilst the sleep() function (given number of seconds)

compounds calls of msleep():

unsigned sleep(unsigned secs)
{
 while(secs > 0){
 msleep(1000);
 --secs;
 }
 return 0;
}

5
 “BSP” is an acronym for “Board Support Package”, a layer of software providing the low-level hardware

drivers and interface software – the very boundary between software and hardware. The acronym is normally

applied to embedded system single board computers, but is a useful handle in the present context too.

