

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

GimmeGimmeGimme

Introduction

This document describes an ECOA® client-server example, named “GimmeGimmeGimme”.

The client-server model (ref.[2]) is one of the most basic data, task, or workload, distribution

mechanisms in computing. Clients and servers may be distributed across a network, or they may

reside on the same computing system. Service oriented concepts, which form a basis behind the

ECOA, naturally fit with the client-server model, the clients referencing (using) the services provided

by the server. Service orientation, and therefore the ECOA, goes on a step extra, in that a

component can be a client (service user) to one or more other components, whilst simultaneously

being a server (service provider) to others.

This document presents the principal user generated artefacts required to create the

“GimmeGimmeGimme” client-server example using the ECOA. It is assumed that the reader is

conversant with the ECOA Architecture Specification (ref.[1]) and the process of defining and

declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using

code generation to produce Module framework (stub) code units and ECOA Container and Platform

code.

Aims

This ECOA “GimmeGimmeGimme” client-server example is intended to demonstrate a minimum

effort example of data distribution from a single data server to multiple data-accessing clients.

Hence the example’s name – “Gimme data (and lots of it)”.

ECOA Features Exhibited

• Composition of an ECOA Assembly of multiple ECOA ASCs (components).

• Contention-free resource sharing within an ECOA Assembly.

• Multiple cooperating ECOA Protection Domains.

• Use of the ECOA Logical Interface (ELI) between ECOA Computing Platforms.

• Use of the ECOA runtime logging API.

Design and Definition

Client-Server Functional Design

The “GimmeGimmeGimme” client-server example will simply demonstrate a basic remote data

access and retrieval mechanism. Each client will periodically request a data item from the server and

will receive a data item in return (Figure 1).

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

Figure 1 ECOA "GimmeGimmeGimme" Client-Server Example Behaviour

For the current purposes, the data content of the request and the response does not matter, but will

simulate a database access. The request message will therefore be in the form of an SQL statement,

and the response will be in the form of a numerical data item (expressed in text).

The SQL statement send will be of the form:

select * from iTable where <X> = <seq>

where <X> is either “A” for Client1, or “B” for Client2, and <seq> is a sequence number increasing by

one each time a request by the particular client is made.

The response returned by the Server will be of the form:

<X>[<seq>]: <num

where <X> is either “A” or “B” depending on which client made the request, <seq> is the sequence

number provided with the request, and <num> is the total number of requests handled by the server

(from any client) so far. This response form should allow the response stream to be analysed to

check that the client requests are being handled by the server equally and correctly.

ECOA Assembly Design and Definition

This ECOA “GimmeGimmeGimme” client-server example ECOA Assembly comprises three ECOA ASCs

named “Client1”, “Client2” (which are instances of the same ASC type) and “Server”. The “Client”

ASC type is instantiated twice within the ECOA Assembly, once as “Client1” with the ECOA Property

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

“Id” set to “1”, and once as “Client2” with it set to “2”. The “Server” ASC provides the “svc_Gimme”

ECOA Service, which is referenced (used) by the two “Client” ASCs. Each ASC is allocated to a

separate ECOA Protection Domain so as to invoke the ELI in passing data between the ASCs, and to

represent networked clients accessing a remote server.

Figure 2 ECOA "GimmeGimmeGimme" Assembly Diagram

Figure 3 ECOA "GimmeGimmeGimme" Assembly Diagram (as UML Composite Structiure)

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“GimmeGimmeGimme” Assembly is as follows (file GimmeGimmeGimme_impl.composite):

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="GimmeGimmeGimme_impl" targetNamespace="http://www.ecoa.technology">

 <!-- -->
 <csa:component name="Server">
 <ecoa-sca:instance componentType="Server">
 <ecoa-sca:implementation name="Server"/>
 </ecoa-sca:instance>
 <csa:service name="svc_Gimme"/>
 </csa:component>
 <!-- -->
 <csa:component name="Client1">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_Gimme"/>
 <csa:property name="Id"><csa:value>1</csa:value></csa:property>
 </csa:component>
 <!-- -->
 <csa:component name="Client2">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_Gimme"/>
 <csa:property name="Id"><csa:value>2</csa:value></csa:property>
 </csa:component>
 <!-- -->
 <!-- System Wiring... -->
 <csa:wire source="Client1/svc_Gimme" target="Server/svc_Gimme"/>
 <csa:wire source="Client2/svc_Gimme" target="Server/svc_Gimme"/>
</csa:composite>

The Server ASC type is defined in XML as follows (file Server.componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="svc_Gimme">
 <ecoa-sca:interface syntax="svc_Gimme" qos="Provided-svc_Gimme"/>
 </service>
</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

svc_Gimme ECOA Service.

The Client ASC type is defined in XML as follows (file Client.componentType):

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="svc_Gimme">
 <ecoa-sca:interface syntax="svc_Gimme" qos="Required-svc_Gimme"/>
 </reference>
 <property name="Id" type="xs:string" ecoa-sca:type="int32"/>
</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

svc_Gimme ECOA Service, and it also defines the Id ECOA Property. Note that the Property value is

given in the Assembly declaration (above), not here in the ASC type definition.

In the above ASC definitions a “qos” attribute is declared. “Quality of Service” (QoS) in ECOA is a

matter on on-going work and definition. For the present, this attribute is optional and is ignored.

QoS source names are included in this example only as an illustration.

ECOA Service and Types Definition

The svc_Gimme Service, which is provided by the Server ASC and referenced by the Client ASCs, is

defined in a XML file (svc_Gimme.interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">
 <use library="sql"/>
 <operations>
 <requestresponse name="Gimme">
 <input name="statement" type="sql:string"/>
 <output name="data" type="sql:string"/>
 </requestresponse>
 </operations>
</serviceDefinition>

The Service comprises a single ECOA Request-Response Operation called Gimme which has one input

parameter (statement which is passed from the requesting client to the server), and one output

parameter (data which is the response from the server to the client). These parameters are both

defined as being of data type sql:string, where sql names a data types library used by the service

definition. The data types library is, unsurprisingly, also defined in XML (file sql.types.xml):

<library xmlns="http://www.ecoa.technology/types-2.0">
 <types>
 <array name="string" maxNumber="65536" itemType="char8" />
 </types>
</library>

The data type sql:string is therefore an ECOA array of (up to) 65536 8-bit characters.

ECOA Module Design and Definition

The Server and Client ASC (component) types are composed of a single ECOA Module each

(Module Implementations modServer and modClient of Module Types modServer_t and

modClient_t respectively) as illustrated in UML in Figure 4. Here is depicted in UML the Server ASC

(component) providing the svc_Gimme ECOA Service, whilst the Client ASC references the Service,

and possesses the ECOA Property Id. As always in the ECOA, the Module Implementations

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

implement the Module Lifecycle operations defined by the ECOA (as represented in UML by the

abstract class ECOA::Module).

Figure 4 ECOA "GimmeGimmeGimme" Module Design (as UML Class Diagram)

The Server ASC

The Server ASC is declared in XML as follows (file Server.impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
componentDefinition="Server">

 <use library="sql"/>
 <!-- -->
 <moduleType name="modServer_t" hasUserContext="true"
 hasWarmStartContext="false">
 <operations>
 <requestReceived name="Gimme">
 <input name="statement" type="sql:string"/>
 <output name="data" type="sql:string"/>
 </requestReceived>
 </operations>
 </moduleType>
 <!-- -->
 <moduleImplementation name="modServer" moduleType="modServer_t"

 language="C" />
 <!-- -->

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

 <moduleInstance name="modServerInst"
 implementationName="modServer"
 relativePriority="1"/>

 <!-- -->
 <requestLink>
 <clients>
 <service instanceName="svc_Gimme" operationName="Gimme"/>
 </clients>
 <server>
 <moduleInstance instanceName="modServerInst"

 operationName="Gimme"/>
 </server>
 </requestLink>
</componentImplementation>

That is, a Module Type (modServer_t) is declared which has a requestReceived operation “Gimme”

declaration inherited from the ECOA Service (depicted by the UML generalization association). This

Module Type is implemented by a concrete Module Implementation modServer (depicted in the

UML expanded in the form of the code class produced by the code generation process), which in

turn is instantiated at runtime as the Module Instance modServerInst.

The <requestLink> XML logically associates the specific concrete operations of the runtime Module

Instance with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete modServer class, and named “modServer.c” (assuming the Module Implementation

declaration has set the language property to “C”).

The Client ASC

The Client ASC is declared in XML as follows (file Client.impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
componentDefinition="Client">

 <use library="sql"/>
 <!-- -->
 <moduleType name="modClient_t" hasUserContext="true"
 hasWarmStartContext="false">
 <properties>
 <property name="Id" type="int32"/>
 </properties>
 <operations>
 <eventReceived name="Tick" />
 <requestSent name="Gimme" isSynchronous="true" timeout="-1.0">
 <input name="statement" type="sql:string"/>
 <output name="data" type="sql:string"/>
 </requestSent>
 </operations>
 </moduleType>

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

 <!-- -->
 <moduleImplementation name="modClient" moduleType="modClient_t"

 language="C" />
 <!-- -->
 <moduleInstance name="modClientInst"

 implementationName="modClient"
 relativePriority="1">

 <propertyValues>
 <propertyValue name="Id">$Id</propertyValue>
 </propertyValues>
 </moduleInstance>
 <!-- -->
 <triggerInstance name="Ticker" relativePriority="2" />
 <!-- -->
 <requestLink>
 <clients>
 <moduleInstance instanceName="modClientInst"

 operationName="Gimme"/>
 </clients>
 <server>
 <reference instanceName="svc_Gimme" operationName="Gimme"/>
 </server>
 </requestLink>
 <!-- -->
 <eventLink>
 <senders>
 <trigger instanceName="Ticker" period="0.05" />
 </senders>
 <receivers>
 <moduleInstance instanceName="modClientInst"

 operationName="Tick"/>
 </receivers>
 </eventLink>
</componentImplementation>

That is, a Module Type (modClient_t) is declared which has two operations:

• A “Gimme” requestSent operation inherited from the ECOA Service.

• The eventReceived operation “Tick” to handle output event from the “Ticker” Trigger

Instance;

The Ticker Trigger Instance is introduced because the Client needs to “periodically request a data

item” and so an ECOA periodic trigger is required. Once every period (0.05 seconds as set in the

<eventLink> XML
1
) the Trigger will fire and the Module Operation Tick will be invoked.

The Module Type is implemented by a concrete Module Implementation modClient (depicted in the

UML expanded in the form of the code class produced by the code generation process), which in

turn is instantiated at runtime as the Module Instance modClientInst.

1
 The UML does not explicitly depict Service Links. The period attribute is therefore depicted as a UML

property of the «ecoa.triggerInstance» UML interface class.

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

A single functional code unit will be produced by the code generation process, implementing in code

the concrete modClient class, and named “modClient.c” (assuming the Module Implementation

declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “GimmeGimmeGimme” Assembly is deployed (that is, the declared Module and Trigger

Instances are allocated to ECOA Protection Domains, which are themselves allocated to computing

nodes) by the following XML (file GimmeGimmeGimme.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="GimmeGimmeGimme " logicalSystem="hostbased ">

 <!-- -->
 <protectionDomain name="dbServer">
 <executeOn computingNode="env1" computingPlatform="host1"/>
 <deployedModuleInstance componentName="Server"

 moduleInstanceName="modServerInst" modulePriority="50"/>
 </protectionDomain>
 <!-- -->
 <protectionDomain name="dbClient1">
 <executeOn computingNode="env2" computingPlatform="host2"/>
 <deployedModuleInstance componentName="Client1"

 moduleInstanceName="modClientInst" modulePriority="50"/>
 <deployedTriggerInstance componentName="Client1"

 triggerInstanceName="Ticker" triggerPriority="50"/>
 </protectionDomain>
 <!-- -->
 <protectionDomain name="dbClient2">
 <executeOn computingNode="env3" computingPlatform="host3"/>
 <deployedModuleInstance componentName="Client2"

 moduleInstanceName="modClientInst" modulePriority="50"/>
 <deployedTriggerInstance componentName="Client2"

 triggerInstanceName="Ticker" triggerPriority="50"/>
 </protectionDomain>
 <platformConfiguration faultHandlerNotificationMaxNumber="8"
 computingPlatform="host1" />
 <platformConfiguration faultHandlerNotificationMaxNumber="8"
 computingPlatform="host2" />
 <platformConfiguration faultHandlerNotificationMaxNumber="8"
 computingPlatform="host3" />
</deployment>

Thus in this case, three separate ECOA Protection Domains are declared (dbClient1, dbClient2,

and dbServer) each executing on a separate ECOA Computing Node, each of which is in a different

ECOA Computing Platform. This deployment therefore potentially represents three independent,

networked computing resources with one running the server, and two running a client each (as

represented as a UML Deployment Diagram in Figure 5).

For (ECOA) Fault Management purposes, a «platformConfiguration» declaration must be made

for each ECOA Platform. A basic default configuration is illustrated in this example.

More often, the three Protection Domains (in such a simple example) would be hosted on a common

Computing Node (such as a desktop PC) as in Figure 6. This is accomplished by modifying the

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

Deployment Definition XML, and then re-generating and rebuilding the ECOA Software Platform

code.

Figure 5 ECOA "GimmeGimmeGimme" Deployment Across a Network

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

Figure 6 ECOA "GimmeGimmeGimme" Deployment on a Single Node

The UDP Transport Binding (file udpbinding.xml) for the multi-Node case (as in Figure 5) might be:

<ecoa:UDPBinding xmlns:ecoa="http://www.ecoa.technology/udpbinding-2.0">
 <ecoa:platform name="host1"

receivingMulticastAddress="192.168.0.101"
receivingPort="60424"
platformId="1"/>

 <ecoa:platform name="host2"
receivingMulticastAddress="192.168.0.102"
receivingPort="60425"
platformId="2"/>

 <ecoa:platform name="host3"
receivingMulticastAddress="192.168.0.103"
receivingPort="60426"
platformId="3"/>

</ecoa:UDPBinding>

where the receivingMulticastAddress is set to each platform’s own unique IP Address.

Service Availability Considerations

Since the Server ASC provides an ECOA Service (svc_Gimme) it can be useful that the Service be

declared (at runtime) as “available”. Clients of the Service can then check and take alternate action

if the Service is not currently being provided. In the present simple example, availability of the

svc_Gimme Service has not been implemented, and a crude approach of making sure the Server is

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

ready before the Clients try to access it will be used – simply starting the dbServer executable

before either of the dbClient executables.

Implementation

The Server ASC

On invocation of the START operation, the Server ASC will simply announce its presence. That

START operation is implemented by the (C) code function modServer__START__received in the (C)

code unit modServer.c:

void modServer__START__received(modServer__context* context)
{
 printf("Server is running...\n");
}

The “Gimme” Service request handler is implemented by the code function

modServer__Gimme__request_received. For the purposes of this example it is trivial. It makes no

attempt to parse received SQL (indeed it understands only one statement!) and returns an equally

trivial response:

void modServer__Gimme__request_received(modServer__context* context,
const ECOA__uint32 ID,
const sql__string* statement)

{
 ECOA__char8 src;
 ECOA__int32 value;
 sql__string data;
 //

 sscanf(statement->data, "select * from iTable where %c = %d",
&src, &value);

 data.current_size = sprintf(data.data, "%c[%d]: %d",
src, value, context->user.count++);

 modServer_container__Gimme__response_send(context, ID, &data);
}

This function extracts the source client and sequence number information from the request (into the

local variables src and value respectively), builds the response message in the variable data, which

is then returned to the calling client using the ECOA Container API function

modServer_container__Gimme__response_send.

In order to maintain the total number of requests made across invocations of the

modServer__Gimme__request_received function, a variable (count) is included in the “User

Context” (see ref.[1]), and accessed as context->user.count. The User Context is declared in the

(C) code header file modServer_user_context.h:

typedef struct
{
 ECOA__int32 count;
} modServer_user_context;

 ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 13

This count is initialized (to zero) when the Module is initialized:

void modServer__INITIALIZE__received(modServer__context* context)
{
 context->user.count = 0;
}

The Client ASC

On invocation of the START operation, the Client ASC has nothing to do – even less so than the

Server. That START operation is implemented by the (C) code function

modClient__START__received in the (C) code unit modClient.c:

void modClient__START__received(modClient__context* context)
{
}

We do now need to program what to do when the Ticker Trigger Instance fires, i.e. to populate the

modClient__Tick__received function stub.

void modClient__Tick__received(modClient__context* context)
{
 ECOA__int32 IAm;
 ECOA__return_status errc;
 sql__string requestStmt, responseData;
 //
 modClient_container__get_Id_value(context, &IAm);
 //
 requestStmt.current_size = sprintf(requestStmt.data,

 "select * from iTable where %c = %d;",
 (IAm==1?'A':'B'), context->user.Count++);

 printf("Request: %s\n", requestStmt.data);
 errc = modClient_container__Gimme__request_sync(context,

 &requestStmt, &responseData);
 if(errc != ECOA__return_status_OK){
 printf("Gimme request failed with errc = %ld\n", (long)errc);
 }else{
 // zero terminate responseData for printf...
 responseData.data[responseData.current_size] = '\000';
 printf("Response: %s\n", responseData.data);
 }
}

That is, the required SQL statement is composed, using the ECOA get_<property>_value API (in

this case for the ”Id” property) to determine whether the “A” or “B” source is selected, and (as with

the Server ASC) using a non-volatile Count variable held in the User Context to provide a sequence

number maintained across calls to modClient__Tick__received.

Once composed, the request is sent to the server using the

modClient_container__Gimme__request_sync API, and because a synchronous Request-Response

call is made, the response (in variable responseData) is immediately available to print as output.

ECOA Examples: GimmeGimmeGimme

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

Program Output

When the ECOA “GimmeGimmeGimme” Assembly is built and run (in a single Node deployment), an

output similar to Figure 7 should be achieved. This shows three Windows® Command Prompt panes

each running one of the three Protection Domains (dbServer, dbClient1, dbClient2). With the

exception of the Server ASC start-up message, the only significant output from the dbServer

Protection Domain is the (10 second) periodic ECOA Software Platform heartbeat (“alive”) message.

Each of the two Client ASCs (running in the dbClient1/2 Protection Domains) outputs, at each

iteration, both the sent SQL request message, and the received data response.

Figure 7 ECOA "GimmeGimmeGimme" in Execution

References

1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Client-server model

https://en.wikipedia.org/wiki/Client%E2%80%93server_model

3 Gimme! Gimme! Gimme! (A Man After Midnight)

ABBA, ©1979

