

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

PubSub

Introduction

This document describes an ECOA® publish-subscribe example, named “PubSub”.

The publish-subscribe pattern (ref.[2]) is a data exchange pattern modelled on the newspaper or

magazine distribution pattern. Information sources (publishers) do not send data (messages)

directly to receivers (subscribers), but rather make the data available in classified topics to which an

interested party subscribes and withdraws the information. Thus the publishers have no knowledge

of which (if any) subscribers there are, and the subscribers have no knowledge of which publisher

has produced the data. Figure 1 illustrates the conventional abstract view of the publish-subscribe

pattern. In practise Subscribers to one data set might well be publishers of another…

Figure 1 Publish-Subscribe Data Distribution Pattern

The “Global Data Space” of Figure 1, may, or may not, have a physical existence depending on the

implementation. Some implementations use a broker or agent known to both the publisher and

subscriber and to which the data is published and temporarily held (fulfilling the “newsagent” role in

the magazine analogy). The subscribers then obtain the data from that broker or agent. Other

implementations have no middleman, and the data is exchanged directly between the publisher and

the subscribers according to configuration meta-data discovered and shared either at build,

initialization, or runtime.

It is quite normal for subscribers to subscribe to partial data sets, using either:

• a topic-based mechanism (all subscribers get all updates to the data structured under a

topic), and/or

Global Data Space

Topic: Weather
Data Object

 Publisher

 Publisher

Subscriber

Subscriber

Topic: Target
Data Object

write

write

read

read

read

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

• a content-based mechanism (a subscriber gets updates to only the data matching attributes

or criteria predefined by the user, e.g. by using a query language to distinguish the content

required).

This document presents the principal user generated artefacts required to create a “PubSub”

publish-subscribe example using the ECOA. It is assumed that the reader is conversant with the

ECOA Architecture Specification (ref.[1]) and the process of defining and declaring ECOA Assemblies,

ASCs (components), Modules, and deployments in XML, and then using code generation to produce

Module framework (stub) code units and ECOA Container and Platform code. An ability to follow

UML diagrams is also assumed.

Aims

This ECOA “PubSub” example is intended to experiment with, and demonstrate, how the ECOA

Versioned Data concept (see ref.[1]), facilitates the implementation of applications using the

publish-subscribe data distribution pattern.

ECOA Features Exhibited

• Composition of an ECOA Assembly of multiple ECOA ASCs (components).

• Multiple cooperating ECOA Protection Domains.

• Publish-subscribe data distribution across a network..

• Experimental ECOA File Access API

• ECOA Logical Interface (ELI) between ECOA Protection Domains.

• ECOA Runtime logging API.

• ECOA Component Properties.

• ECOA Persistent Information (PINFO).

The example is also used as a vehicle for demonstrating that a Component can provide Services that

are not used in a given ECOA Assembly, as may naturally occur when Components are reused.

Design and Definition

ECOA Publish-Subscribe Data Distribution Design

The ECOA “PubSub” publish-subscribe example will demonstrate a basic data distribution

mechanism using ECOA Versioned Data, using two ECOA Protection Domains, possibly distributed

across networked computing hosts.

In order to provide a measure of data scoping, individual data ‘topics’ will be mapped to ECOA

Services, whilst Versioned Data items of a Service will provide access to subsets of the whole data

set. The publisher will periodically update the Versioned Data items within the provided Services,

and the subscriber will periodically read them. Figure 2 illustrates the publish-subscribe pattern (of

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

Figure 1) interpreted, in UML, for this ECOA “PubSub” example, and identifies the topics and data

items used.

Note that in Figure 2 the “read” arrow is reversed when compared with Figure 1, implying that the

subscriber gets (requests) the data item rather than being presented with it. ECOA provides a

Notifying Versioned Data mechanism where a subscriber is notified (by an ECOA Event operation)

when the Versioned Data item is updated
1
, but that mechanism is not used in this example. The

subscriber (“Sub”) must actively request (access to) the data
2
.

Figure 2 ECOA “PubSub” Publish-Subscribe Pattern

Figure 2 also illustrates the publisher (“Pub”) publishing “TopicY” which, in this example, is never

subscribed to; maybe because “Pub” has been re-used from a different system, or perhaps because

the Component that once subscribed to “TopicY” has been removed...

Behaviourally, the publisher and subscriber will be free-running software applications that interact

only in as much as required to exchange data across the “Global Data Space” interface. That is, the

publisher will continuously and periodically publish (update) the “TopicX” and “TopicY” data items.

The subscriber will, independently, periodically read one or more of the “TopicX” data items.

1
 The subscriber, having been notified, must still get (request) the updated data item.

2
 Details of the data delivery mechanism for ECOA Versioned Data are described in ref.[1] (Part 3).

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

Figure 3 ECOA "PubSub" Example Behaviour

Note that in an ECOA implementation there is no runtime “subscribe” activity. The “subscription” is

a design-time action when an ECOA Service provides-references association (Service Link) is declared.

ECOA Assembly Design and Definition

This ECOA “PubSub” example ECOA Assembly comprises two ECOA ASCs named “Pub” and “Sub” (of

ASC types of the same name). The “Pub” ASC provides two ECOA Services, named “TopicX” and

“TopicY”. The “TopicX” Service is referenced by the “Sub” ASC.

The ECOA “PubSub” Assembly is depicted in Figure 4.

Figure 4 ECOA "PubSub" Assembly Diagram

The “Pub” ASC defines two ECOA Component-level Properties, “UpdateRate” and “LogFileSource”:

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

• “Update_Rate” might set the period at which the ASC publishes data (in “TopicX”), and

• “LogFileSource” might name a file to be used to log data within the ASC.
3

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“PubSub” Assembly is as follows (file PubSub_impl.composite), reflecting the Assembly diagram

above:

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0”
name="PubSub_impl" targetNamespace="http://www.ecoa.technology">

 <csa:component name="Pub">
 <ecoa-sca:instance componentType="Pub">
 <ecoa-sca:implementation name="Pub"/>
 </ecoa-sca:instance>
 <csa:reference name="TopicX"/>

 <csa:property name="LogFileSource">
 <csa:value>”pub_LogFile.dat”</csa:value>
 </csa:property>
 <csa:property name="Update_Rate">
 <csa:value>4.0</csa:value>
 </csa:property>
 </csa:component>

 <csa:component name="Sub">
 <ecoa-sca:instance componentType="Sub">
 <ecoa-sca:implementation name="Sub"/>
 </ecoa-sca:instance>
 <csa:service name="TopicX"/>
 </csa:component>

 <!-- System Wiring... -->
 <csa:wire source="Sub/TopicX" target="Pub/TopicX" ecoa-sca:rank="1"/>
</csa:composite>

The Sub ASC type is defined in XML as follows (file Sub.componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="TopicX">
 <ecoa-sca:interface syntax="TopicX"/>
 </reference>
</componentType>

that is, the ASC references a single Service (TopicX).

The Pub ASC type is defined in XML as follows (file Pub.componentType):

3
 In the example code implementation, neither Property is actually used.

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <use library="ECOA.File"/>
 <service name="TopicX">
 <ecoa-sca:interface syntax="TopicX"/>
 </service>
 <service name="TopicY">
 <ecoa-sca:interface syntax="TopicY"/>
 </service>
 <property name="LogFileSource" type="xs:string"

ecoa-sca:type="ECOA.File:FileName">
 </property>
 <property name="Update_Rate" type="xs:string" ecoa-sca:type="float32"/>
</componentType>

that is, in addition to providing the TopicX and TopicY Services, the ASC defines the ECOA

Component Properties (Update_Rate and LogFileSource). Note that the Update_Rate and

LogFileSource Property values are given (uniquely) for each instance of the ASC in the PubSub

Assembly declaration (above), not here in the ASC type definition.

The definition of the data type of the LogFileSource Property (type FileName) is to be found in the

ECOA.File types library.

ECOA Service and Types Definition

The TopicX Service, which is provided by the Pub ASC and referenced by the Sub ASC, is depicted in

UML in Figure 5, and defined in a XML file (TopicX.interface.xml):

Figure 5 ECOA Service "TopicX" Definition (Depicted in UML)

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">
 <use library="data"/>
 <operations>
 <data name="someData" type="data:BLOB"/>
 <data name="notes" type="data:String128"/>
 <data name="log" type="data:LogItem"/>
 <!-- Experimental additions -->
 <event name="unusedEv" direction="SENT_BY_PROVIDER"/>
 </operations>
</serviceDefinition>

The Service comprises three ECOA Versioned Data items (someData, notes, and log) and an ECOA

Event operation (unusedEv). This latter is only present to demonstrate that the development

process, tooling, and particularly the runtime ECOA Software Platform code, allow for ECOA

operations that in any given ECOA Assembly are not used.

The data types of the three Versioned Data items are declared in the (PubSub) “data” types library,

depicted in UML in Figure 6, and defined in XML (file data.types.xml) as:

Figure 6 ECOA Types Library (PubSub) "data" Definition (Depicted in UML)

<library xmlns="http://www.ecoa.technology/types-2.0">
 <types>
 <array name="BLOB" maxNumber="100000" itemType="byte"/>
 <fixedArray name="String128" maxNumber="128" itemType="char8"/>
 <record name="LogItem">
 <field name="seq" type="int64"/>
 <field name="data" type="BLOB"/>
 </record>
 </types>
</library>

The experimental File Access API also requires certain data types, depicted in UML in Figure 7, and

defined in XML in a types library (file ECOA.File.data.types):

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

Figure 7 ECOA Types Library "ECOA.FIle" Definition (Depicted in UML)

<library xmlns="http://www.ecoa.technology/types-2.0">
 <types>
 <record name="Reference">
 <field name="descriptor" type="int32"/>
 </record>
 <fixedArray name="FileName" maxNumber="256" itemType="char8"/>
 <enum name="FileFlag" type="uint16">
 <value name="READ" valnum= "0"/><!-- "0x0000" -->
 <value name="WRITE" valnum= "1"/><!-- "0x0001" -->
 <value name="READWRITE" valnum= "2"/><!-- "0x0002" -->
 <value name="APPEND" valnum= "8"/><!-- "0x0008" -->
 <value name="NONBLOCK" valnum= "128"/><!-- "0x0080" -->
 <value name="CREATE" valnum= "256"/><!-- "0x0100" -->
 <value name="TRUNCATE" valnum= "512"/><!-- "0x0200" -->
 <value name="EXCLUSIVE" valnum= "1024"/><!-- "0x0400" -->
 <value name="NOCTTY" valnum= "2048"/><!-- "0x0800" -->
 <value name="PRIVATE" valnum= "4096"/><!-- "0x1000" -->
 <value name="LARGEFILE" valnum= "8192"/><!-- "0x2000" -->
 <value name="BINARY" valnum="16384"/><!-- "0x4000" -->
 </enum>
 <enum name="SeekBase" type="uint8">
 <value name="SEEK_SET"/>
 <value name="SEEK_CUR"/>
 <value name="SEEK_END"/>
 </enum>
 <enum name="Permission" type="uint8">
 <value name="READ" valnum= "4"/>
 <value name="WRITE" valnum= "2"/>
 <value name="EXECUTE" valnum= "1"/>
 <value name="READEXEC" valnum= "5"/>
 <value name="ALL" valnum= "7"/>
 </enum>

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

 <record name="Permissions">
 <field name="Owner" type="Permission"/>
 <field name="Group" type="Permission"/>
 <field name="Others" type="Permission"/>
 </record>
 <record name="FileSpec">
 <field name="FileName" type ="FileName"/>
 <field name="Access" type="FileFlag"/>
 <field name="CreatePermissions" type="Permissions"/>
 </record>
 </types>
</library>

that is, a number of enumeration and record types are defined that are used to define and control

access to data file objects.

The TopicY ECOA Service is defined only to demonstrate that ECOA Services can be defined,

declared as being provided by an ASC, and then not used (referenced) in any given Assembly. It is

depicted in UML in Figure 8, and defined, as always, in a XML file (TopicY.interface.xml) and

comprises an ECOA Versioned Data item (unusedVD) and an ECOA Request-Response operation

(unusedRR):

Figure 8 ECOA Service "TopicY" Definition (Depicted in UML)

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">
 <use library="data"/>
 <operations>
 <data name="unusedVD" type="data:String128"/>
 <requestresponse name="unusedRR">
 <output name="foo" type="int32"/>
 </requestresponse>
 </operations>
</serviceDefinition>

ECOA Module Design and Definition

The Pub and Sub ASC (component) types are composed of a single ECOA Module each (Module

Implementations Pub_Main_Im and Sub_Main_Im of Module Types Pub_Main_t and Sub_Main_t

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

respectively) as illustrated in UML in Figure 9. Here is depicted in UML the Pub ASC (component)

providing the TopicX ECOA Service, whilst the Sub ASC references the Service. As always in the

ECOA, the Module Implementations implement the Module Lifecycle operations defined by the

ECOA (as represented in UML by the interface class ECOA::Module).

Figure 9 ECOA "PubSub" Module Design (as UML Class Diagram)

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

The Sub ASC

The Sub ASC is declared in XML as follows (file Sub.impl.xml):

<componentImplementation
xmlns="http://www.ecoa.technology/implementation-2.0"
componentDefinition="Sub">

 <use library="ECOA" />
 <use library="data" />
 <moduleType name="Sub_Main_t" hasUserContext="false"
 hasWarmStartContext="false">
 <operations>
 <dataRead name="someData" type="data:BLOB" />
 <dataRead name="notes" type="data:String128" />
 <dataRead name="log" type="data:LogItem" />
 <eventReceived name="Tick" />
 </operations>
 </moduleType>
 <moduleImplementation name="Sub_Main_Im"

moduleType="Sub_Main_t"
language="C" />

 <moduleInstance name="Sub_Main_Instance" implementationName="Sub_Main_Im"
relativePriority="1">

 </moduleInstance>
 <triggerInstance name="Ticker" relativePriority="2"/>
 <dataLink>
 <writers>
 <reference operationName="someData"

instanceName="TopicX"/>
 </writers>
 <readers>
 <moduleInstance operationName="someData"

instanceName="Sub_Main_Instance"/>
 </readers>
 </dataLink>
 <dataLink>
 <writers>
 <reference operationName="notes"

instanceName="TopicX"/>
 </writers>
 <readers>
 <moduleInstance operationName="notes"

instanceName="Sub_Main_Instance"/>
 </readers>
 </dataLink>
 <dataLink>
 <writers>
 <reference operationName="log" instanceName="TopicX"/>
 </writers>
 <readers>
 <moduleInstance operationName="log"

instanceName="Sub_Main_Instance"/>
 </readers>
 </dataLink>

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

 <eventLink>
 <senders>
 <trigger instanceName="Ticker" period="0.5" />
 </senders>
 <receivers>
 <moduleInstance instanceName="Sub_Main_Instance"

operationName="Tick" />
 </receivers>
 </eventLink>
</componentImplementation>

That is, a Module Type (Sub_Main_t) is declared which has three dataRead operations, one for each

ECOA Versioned Data item that is read, “someData”, “notes” and “log”, inherited from the TopicX

ECOA Service (depicted by the UML generalization association). An «eventReceived» operation is

also declared, inherited from the ECOA Trigger Instance (Ticker). This Module Type is implemented

(realized) by a concrete Module Implementation Sub_Main_Im (depicted in the UML expanded in the

form of the code class produced by the code generation process), which in turn is instantiated at

runtime as the Module Instance Sub_Main_Instance.

The Ticker Trigger Instance is introduced so that a periodic polling behaviour of TopicX can be

implemented. Once every period (0.5 seconds as set in the <eventLink> XML
4
) the Trigger will fire

and the Module Operation Tick will be invoked.

The Service Link (<dataLink> and <eventLink>) XML segments logically associate the specific

concrete operations of the runtime Module Instance with the abstract Service operations, or in the

case of the “Tick” operation, associates the concrete Module Operation to the Trigger Instance

operation.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Sub_Main_Im class, and named “Sub_Main_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

The Pub ASC

The Pub ASC is declared in XML as follows (file Pub.impl.xml):

<componentImplementation xmlns=http://www.ecoa.technology/implementation-2.0
componentDefinition="Pub">

 <use library="ECOA" />
 <use library="data" />
 <use library="ECOA.File"/>
 <moduleType name="Pub_Main_t" hasUserContext="true"
 hasWarmStartContext="false">
 <properties>
 <property name="LogFileSource" type="ECOA.File:FileName"/>
 <property name="Update_Rate" type="float32"/>
 </properties>

4
 The UML does not explicitly depict Service Links. The period attribute is therefore depicted as a UML

property of the «ecoa.triggerInstance» UML interface class.

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 13

 <pinfo>
 <privatePinfo name="LogFile"/>
 <privatePinfo name="InitDataSource"/>
 </pinfo>
 <operations>
 <dataWritten name="someData" type="data:BLOB" />
 <dataWritten name="notes" type="data:String128" />
 <dataWritten name="log" type="data:LogItem" />
 <eventReceived name="Tick" />
 <!-- Experimental additions -->
 <dataWritten name="unusedVD" type="data:String128" />
 <eventSent name="unusedEv"/>
 <requestReceived name="unusedRR">
 <output name="foo" type="int32"/>
 </requestReceived>
 </operations>
 </moduleType>
 <moduleImplementation name="Pub_Main_Im"

moduleType="Pub_Main_t"
language="C" />

 <moduleInstance name="Pub_Main_Instance"
implementationName="Pub_Main_Im"
relativePriority="1">

 <propertyValues>
 <propertyValue name="LogFileSource">$LogFile</propertyValue>
 <propertyValue name="Update_Rate">$Update_Rate</propertyValue>
 </propertyValues>
 <pinfo>
 <privatePinfo name="LogFile">"LogFile.pinfo"</privatePinfo>
 <privatePinfo name="InitDataSource">"InitData.pinfo"
 </privatePinfo>
 </pinfo>
 </moduleInstance>
 <triggerInstance name="Ticker" relativePriority="2"/>
 <dataLink>
 <writers>
 <moduleInstance operationName="someData"

instanceName="Pub_Main_Instance"/>
 </writers>
 <readers>
 <service operationName="someData" instanceName="TopicX"/>
 </readers>
 </dataLink>
 <dataLink>
 <writers>
 <moduleInstance operationName="notes"

instanceName="Pub_Main_Instance"/>
 </writers>
 <readers>
 <service operationName="notes" instanceName="TopicX"/>
 </readers>
 </dataLink>
 <dataLink>
 <writers>
 <moduleInstance operationName="log"

instanceName="Pub_Main_Instance"/>
 </writers>
 <readers>
 <service operationName="log" instanceName="TopicX"/>
 </readers>
 </dataLink>

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

 <eventLink>
 <senders>
 <trigger instanceName="Ticker" period="0.100" />
 </senders>
 <receivers>
 <moduleInstance instanceName="Pub_Main_Instance"

operationName="Tick" />
 </receivers>
 </eventLink>
 <dataLink>
 <writers>
 <moduleInstance operationName="unusedVD"

instanceName="Pub_Main_Instance"/>
 </writers>
 <readers>
 <service operationName="unusedVD"

instanceName="TopicY"/>
 </readers>
 </dataLink>
 <eventLink>
 <senders>
 <moduleInstance operationName="unusedEv"

instanceName="Pub_Main_Instance"/>
 </senders>
 <receivers>
 <service operationName="unusedEv"

instanceName="TopicX"/>
 </receivers>
 </eventLink>
 <requestLink>
 <clients>
 <service operationName="unusedRR"

instanceName="TopicY"/>
 </clients>
 <server>
 <moduleInstance operationName="unusedRR"

instanceName="Pub_Main_Instance"/>
 </server>
 </requestLink>
</componentImplementation>

That is, a Module Type (Pub_Main_t) is declared which has four dataWritten operations, one for

each ECOA Versioned Data item that is written (published), “someData”, “notes” and “log”,

inherited from the TopicX ECOA Service, and “unusedVD” inherited from the TopicY ECOA Service

(depicted by the UML generalization associations). An «eventReceived» operation is also declared,

inherited from the ECOA Trigger Instance (Ticker). An «eventSent» and a «requestReceived»

operation are also declared, inherited from the TopicY ECOA Service.

The two Component-level ECOA Properties (LogFileSource and Update_Rate) are also declared,

mapping the Component-level definitions into the Module Type, and then referencing the values

given at Assembly-level into the Module Instance (using the “$LogFileSource” syntax).

In addition, the Module Type declares two ECOA PINFO entities, “LogFile” and “InitDataSource”,

“private” PINFOs because they are declared only at Module Type level.

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 15

This Module Type is implemented (realized) by a concrete Module Implementation Pub_Main_Im

(depicted in the UML expanded in the form of the code class produced by the code generation

process), which in turn is instantiated at runtime as the Module Instance Pub_Main_Instance.

The Module Instance declaration, as mentioned previously, references the ECOA Property values

(LogFileSource and Update_Rate) set at Assembly-level. It also gives values (that is, external

names) to the two (Module-level) private PINFOs declared in the Module Type (LogFile and

InitDataSource).

The Ticker Trigger Instance is introduced so that a periodic publish behaviour of TopicX can be

implemented. Once every period (100 milliseconds as set in the <eventLink> XML
5
) the Trigger will

fire and the Module Operation Tick will be invoked. In the UML diagram (Figure 9) the Trigger

Instance (which is implemented by the ECOA Infrastructure) is represented as a UML Realization

(named Ticker and stereotyped «ecoa.triggerinstance») of an abstract

ECOA::TriggerImplementation class.

The Service Link (<dataLink>, <eventLink> and <requestLink>) XML segments logically associate

the specific concrete operations of the runtime Module Instance with the abstract Service

operations, or in the case of the “Tick” operation, associates the concrete Module Operation to the

Trigger Instance operation.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Pub_Main_Im class, and named “Pub_Main_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “PubSub” Assembly is deployed (that is, the declared Module and Trigger Instances are

allocated to ECOA Protection Domains, which are themselves allocated to computing nodes) by the

following XML (file deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0" finalAssembly="PubSub"
logicalSystem="hostbased">

 <protectionDomain name="pub">
 <executeOn computingNode="cpu1" computingPlatform="host"/>
 <deployedModuleInstance componentName="Pub"

moduleInstanceName="Pub_Main_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="Pub" triggerInstanceName="Ticker"
triggerPriority="51"/>

 </protectionDomain>

5
 The UML of Figure 9 does not depict Service Links. The period attribute is therefore depicted as a UML

property of the ECOA::TriggerImplementation abstract class.

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

16

 <protectionDomain name="sub">
 <executeOn computingNode="cpu2" computingPlatform="host"/>
 <deployedModuleInstance componentName="Sub"

moduleInstanceName="Sub_Main_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="Sub" triggerInstanceName="Ticker"
triggerPriority="51"/>

 </protectionDomain>
 <platformConfiguration faultHandlerNotificationMaxNumber ="8"

computingPlatform="host" />
</deployment>

Thus two ECOA Protection Domains are declared (pub and sub) executing on ECOA Computing Node

cpu1, in ECOA Computing Platform host. Though conceived as able to run in separate Computing

Nodes on separate Computing Platforms, the more normal case represented here is for the two

Protection Domains to be running on the same host (e.g. a Windows® or Linux desk or laptop PC, or

a demonstration VxWorks SBC). This single-host deployment is represented as a UML Deployment

Diagram in Figure 10:

Figure 10 ECOA “PubSub” Assembly Deployment

The (UDP) Transport Binding (file udpbinding.xml) for this single Computing Node, single

Computing Platform, deployment therefore invokes the local loop-back address “127.0.0.1”, which

means that communicated data passes directly between the ECOA Protection Domains:

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 17

<ecoa:UDPBinding xmlns:ecoa="http://www.ecoa.technology/udpbinding-2.0">
 <ecoa:platform name="host" receivingMulticastAddress="127.0.0.1"

receivingPort="60421"
platformId="1"/>

</ecoa:UDPBinding>

Service Availability Considerations

In a robust system, it might be necessary for clients to have a mechanism for determining if a Service

is, at any given time, being provided, that is, that the Service is available. In this simple example

such a mechanism is not included, with the consequence that the PubSub Assembly will not be

robust to (say) the introduction of a second or more subscriber.

For an example where a Service Availability indication is provided, see the Dining Philosophers

example (ref.[4]).

Experimental File Access API Design

As part of the “PubSub” publish-subscribe example it was decided to experiment with File Access

within an ECOA context. Two possible methods of providing file I/O were identified:

• a Service and Provider-ASC mechanism; or

• an ECOA Platform provided API
6
 mechanism.

The Service and Provider-ASC mechanism is explored elsewhere (ref.[3]). The “PubSub” publish-

subscribe example explores only the File Access API mechanism.

The experimental File Access API defines a minimal set of six operations:

i. open(…) takes a FileName and attempts to open the named file according to a set of

FileFlags and Permissions, and returns a FileReference handle.

ii. close(…) closes the file referenced by a FileReference handle.

iii. read(…) (attempts to) read byteCount bytes from the file referenced by a

FileReference handle, and stores them in a buffer. Returns the actual

number of bytesRead.

iv. write(…) (attempts to) write byteCount bytes taken from a buffer to the file referenced

by a FileReference handle. Returns the actual number of bytesWritten .

v. seek(…) (attempts to) move the current read or write point (within the file referenced

by a FileReference handle) to the position specified by a SeekBase reference

and an offset value (relative to the SeekBase).

vi. delete(…) deletes the file named by a FileName parameter.

These operations would be made available to ECOA Module source code as ECOA Container

Operations, prefixed with the name of the using Module Implementation, in the same manner as the

Service APIs defined in ref.[1] (Part 4). The rationale behind this mechanism, rather than simply

using the underlying Operating System’s file I/O operations, is that the using Module

6
 Application Programming Interface

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

18

Implementation becomes fully portable, and isn’t dependent on a specific (for instance) open() API

operation such as that defined by the POSIX standard. The open operation will ALWAYS be provided

by the Module code calling (for instance) the #module_implementation_-

name#_container__open() API operation.

In the specific case here, the source code that will be using File Access API is that of the Pub ASC’s

Pub_Main_Im Module Implementation, so the experiment calls for six operations named

Pub_Main_Im_container__open() to Pub_Main_Im_container__delete().

The experimental File Access API is therefore an extension to the Pub_Main_Im container, illustrated

in UML in Figure 11. This depicts the Module Container as a (concrete) UML class

(Pub_Main_Im_container), implementing (dashed line with a closed arrowhead) the ECOA standard

service API interfaces (FaultManagement, Logging, and Time are depicted), EXTENDED by the

experimental FileAccess service API interface, and used by (dashed line with an open arrowhead)

the Module Implementation class (Pub_Main_Im). Omitted for clarity from the diagram are some

additional service API interfaces (see ref.[1] Part 4) that complete the Module-Container Interface,

as well as the parameters of the standard ECOA service API operations.

Figure 11 Experimental File Access API as an Extension to the Module Container

This experimental File Access API requires the data types previously defined in the ECOA.File Types

Library, and illustrated in Figure 7, for its operation parameters. Each operation of the experimental

File Access API returns an ECOA return_status code.

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 19

Implementation

The Sub ASC

On invocation of the START operation, the Sub ASC has nothing to do. That START operation is

implemented by the code function Sub_Main_Im__START__received:

void Sub_Main_Im__START__received(Sub_Main_Im__context *context)
{
}

There being no other Module Lifecycle operation we need to handle (STOP, RESTART etc.), all we

need to do now is to program the subscriber behaviour, which is to periodically read the TopicX

data, and is therefore implemented in the periodically invoked code function

Sub_Main_Im__Tick__received:

void Sub_Main_Im__Tick__received(Sub_Main_Im__context *context)
{
 Sub_Main_Im_container__someData_handle data_hndl;
 Sub_Main_Im_container__notes_handle notes_hndl;
 Sub_Main_Im_container__log_handle log_hndl;
 data__LogItem itm;
 //
 Sub_Main_Im_container__someData__get_read_access(context, &data_hndl);
 Sub_Main_Im_container__someData__release_read_access(context, &data_hndl);
 //
 Sub_Main_Im_container__notes__get_read_access(context, ¬es_hndl);
 printf("Accessed \"%s\"\n", *(notes_hndl.data));
 Sub_Main_Im_container__notes__release_read_access(context, ¬es_hndl);
 //
 Sub_Main_Im_container__log__get_read_access(context, &log_hndl);
 itm = *(log_hndl.data);
 Sub_Main_Im_container__log__release_read_access(context, &log_hndl);
}

Each period, each of the three TopicX data items is accessed. In the case of the notes item, the

value is printed to the console. In the case of the log item, the current value is simply copied (to the

local variable itm). In the presented implementation, the data item is read, but ignored.

The Pub ASC

The Pub ASC provides data to the TopicX Service simply by reading it from a file – in fact one of a

number of files opened in sequence as the end of each is read. The names of the data files, and the

order in which they are opened, are themselves read from the contents of an Initialization File. A

Log File is opened and progress messages are written to it.

The name of the Initialization File and the Log File, and the parameters to the File Access API

functions for each, are obtained by the ASC from two PINFO sources, InitDataSource and LogFile

respectively. Each PINFO source contains an ECOA::File::FileSpec structure.

The ASC also defines two ECOA Component Properties (LogFileSource and UpdateRate).

LogFileSource is declared and defined to illustrate an alternative means of conveying the LogFile

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

20

filename into the ASC. ECOA Module Properties however do not allow for giving a value to any data

type more complicated than an array of characters (i.e. a string). Record structures, such as

ECOA::File::FileSpec, cannot be given a value using ECOA Properties. In this presented

implementation of the Pub ASC, neither Module Property is used – they are only declared in the XML

Module definition for illustration.

Following Module initialization, each time the ASC’s Ticker trigger fires, invoking the Tick

operation, the ASC reads an item of data (“itm”) from the current data file, populates the TopicX

and TopicY data items (i.e. the Versioned Data items of the TopicX and TopicY Services) from that

data item, and publishes the updated topics (Versioned Data items).

Each time the end of a data file is reached, the file is closed. The next data file is opened on the next

Tick, and a message is written to the Log File to that effect.

These principal functional activities of the Pub ASC are depicted in the UML Activity diagram Figure

12.

Figure 12 Pub ASC Principal Functional Activities

In order to retain the list of data files, as well as the ECOA__File__Reference handle
7
 for the

current data file and the Log File, the Pub_Main_Im Module Implementation defines a user context

structure in the source code (header) file Pub_Main_Im_user_context.h:

7
 In a C code implementation, the design data type name ECOA.File.Reference becomes the

implementation data type name ECOA__File__Reference.

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 21

typedef struct
{

 ECOA__File__Reference inf, logf;
 ECOA__int32 whichFile;
 ECOA__File__FileName files[10];

} Pub_Main_Im_user_context;

This specifies that a list of up to 10 data file names can be stored (“files[10]”). The current data

file, once open, is referenced by the “inf” ECOA__File__Reference handle. The Log File is

referenced by the ECOA__File__Reference “logf”.

The INITIALIZE Lifecycle operation (of the Pub ASC – i.e. Module Implementation Pub_Main_Im) is

implemented by the code function Pub_Main_Im__INITIALIZE__received of the (C) code unit

Pub_Main_Im.c, which opens the Log File, reads the Initialization File, and initializes the user context

variables as discussed above:

void Pub_Main_Im__INITIALIZE__received(Pub_Main_Im__context *context)
{
 ECOA__File__FileSpec initFileSpec, logFileSpec;
 ECOA__File__Reference initFile;
 ECOA__log msg;
 ECOA__int32 indx = 0;
 ECOA__char8 bigbuf[32768], tmpbuf[1024], *p;
 ECOA__uint64 bc;
 //
 // Get the LogFile FileSpec from PINFO and open the LogFile
 Pub_Main_Im_container__read_LogFile(context, (ECOA__byte*)&logFileSpec,

sizeof(ECOA__File__FileSpec), &size);
 if(Pub_Main_Im_container__open(context, logFileSpec.FileName, &(context-

>user.logf), logFileSpec.Access,
logFileSpec.CreatePermissions) !=
ECOA__return_status_OK){

 msg.current_size = sprintf(msg.data, "%s: %s", logFileSpec.FileName,
"Open failed.");

 Pub_Main_Im_container__raise_error(context, msg);
 }
 // Open the initialisation data source
 Pub_Main_Im_container__read_InitDataSource(context,

(ECOA__byte*)&initFileSpec,
sizeof(ECOA__File__FileSpec), &size)

 if(Pub_Main_Im_container__open(context, initFileSpec.FileName, &initFile,
initFileSpec.Access, initFileSpec.CreatePermissions
) != ECOA__return_status_OK){

 msg.current_size = sprintf(msg.data, "%s: %s", initFileSpec.FileName,
"Open failed.");

 Pub_Main_Im_container__raise_error(context, msg);
 }
 // Read the initialisation data
 if(Pub_Main_Im_container__read(context, &initFile, &bigbuf, 32767, &bc) !=

ECOA__return_status_OK){
 msg.current_size = sprintf(msg.data, "%s: %s", initFileSpec.FileName,

"Read failed.");
 Pub_Main_Im_container__raise_error(context, msg);
 }

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

22

 // Parse the initialisation data
 p = strtok(bigbuf, "\n");
 for(;;){
 p = strtok(NULL, "\n");
 if(!p || sscanf(p, "%d, %s", &indx, tmpbuf) < 2)
 break;
 else
 strcpy(context->user.files[indx], tmpbuf);
 }
 Pub_Main_Im_container__close(context, &initFile);
 //
 // Other initialisations
 context->user.inf.descriptor = -1;
 context->user.whichFile = 1;
}

On invocation of the START operation, the Pub ASC has nothing to do. That START operation is

implemented by the code function Pub_Main_Im__START__received:

void Pub_Main_Im__START__received(Pub_Main_Im__context *context)
{
}

Other Module Lifecycle state transitions, such as transitioning from the READY to the RUNNING

state (as a result of a START operation) are ignored in this example.

The “unusedRR” Service Operation is handled by the code function

Pub_modMain_Im__unusedRR__request_received. Whilst in the “PubSub” publish-subscribe

example this request-response operation is unused, it is necessary to send a response, should the

Pub ASC ever be reused in an application where the TopicY Service is invoked. The required return

value (of type ECOA__int32) is, for the current purposes, simply a numerical copy of the request-

response sequence number (ID).

void Pub_Main_Im__unusedRR__request_received
 (Pub_Main_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__int32 foo = ID;
 Pub_Main_Im_container__unusedRR__response_send(context, ID, foo);
}

All we need do now is to program what to do when the Ticker Trigger fires, i.e. to populate the

Pub_modMain_Im__Tick__received function stub (see over page) according to the required

activities of Figure 12.

That is, the data file reference (inf
8
) is checked to see if a new data file needs to be opened

(inf.descriptor has the “magic” value “-1”). If so, a message is logged to the ECOA software

platform logging mechanism (using the log_info API) and is written to the Pub ASC’s own log file

8
 Since the inf file reference is held in the Module Implementation’s user context, it is referenced in the C

code using “context->user.inf”.

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 23

(referenced by file reference logf). The data file whose name is in the list at position

files[whichFile] is the opened, and inf is changed to reference this new file.

The next (or first if the file has just been opened) data item (of type data__LogItem, i.e. type

LogItem defined in Types Library data) is read from the data file. For portability of the data file,

numerical values read from the file are checked, and if necessary corrected, for byte and word

endianness.

The four ECOA Versioned Data items are then populated using the read data item.

Finally the unusedEv ECOA Event operation is triggered, which, of course, in the present example

has no receiver.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 24

v
o
i
d

P
u
b
_
M
a
i
n
_
I
m
_
_
T
i
c
k
_
_
r
e
c
e
i
v
e
d
(
P
u
b
_
M
a
i
n
_
I
m
_
_
c
o
n
t
e
x
t

*
c
o
n
t
e
x
t
)

{

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
s
o
m
e
D
a
t
a
_
h
a
n
d
l
e

d
a
t
a
_
h
n
d
l
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
n
o
t
e
s
_
h
a
n
d
l
e

n
o
t
e
s
_
h
n
d
l
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
h
a
n
d
l
e

l
o
g
_
h
n
d
l
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
u
n
u
s
e
d
V
D
_
h
a
n
d
l
e

u
n
u
s
e
d
V
D
_
h
n
d
l
;

E
C
O
A
_
_
l
o
g

m
s
g
;

d
a
t
a
_
_
L
o
g
I
t
e
m

i
t
m
;

E
C
O
A
_
_
u
i
n
t
6
4

b
c
;

/
/

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
i
n
f
.
d
e
s
c
r
i
p
t
o
r

=
=

-
1

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
O
p
e
n
i
n
g

d
a
t
a

f
i
l
e

'
%
s
'
"
,

c
o
n
t
e
x
t
-
>
u
s
e
r
.
f
i
l
e
s
[
c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e
]
)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
i
n
f
o
(

c
o
n
t
e
x
t
,

m
s
g

)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
w
r
i
t
e
(

c
o
n
t
e
x
t
,

&
(
c
o
n
t
e
x
t
-
>
u
s
e
r
.
l
o
g
f
)
,

&
m
s
g
.
d
a
t
a
,

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e
,

&
b
c

)
;

i
f
(

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
o
p
e
n
(

c
o
n
t
e
x
t
,

c
o
n
t
e
x
t
-
>
u
s
e
r
.
f
i
l
e
s
[
c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e
]
,

&
(
c
o
n
t
e
x
t
-
>
u
s
e
r
.
i
n
f
)
,

E
C
O
A
_
_
F
i
l
e
_
_
F
i
l
e
F
l
a
g
_
R
E
A
D
|
E
C
O
A
_
_
F
i
l
e
_
_
F
i
l
e
F
l
a
g
_
B
I
N
A
R
Y
,

(
E
C
O
A
_
_
F
i
l
e
_
_
P
e
r
m
i
s
s
i
o
n
s
)
{

E
C
O
A
_
_
F
i
l
e
_
_
P
e
r
m
i
s
s
i
o
n
_
A
L
L
,

E
C
O
A
_
_
F
i
l
e
_
_
P
e
r
m
i
s
s
i
o
n
_
R
E
A
D
E
X
E
C
,

E
C
O
A
_
_
F
i
l
e
_
_
P
e
r
m
i
s
s
i
o
n
_
R
E
A
D

}

)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

m
s
g
.
c
u
r
r
e
n
t
_
s
i
z
e

=

s
p
r
i
n
t
f
(

m
s
g
.
d
a
t
a
,

"
%
s
:

%
s
"
,

c
o
n
t
e
x
t
-
>
u
s
e
r
.
f
i
l
e
s
[
c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e
]
,

"
O
p
e
n

f
a
i
l
e
d
.
"
)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
a
i
s
e
_
e
r
r
o
r
(

c
o
n
t
e
x
t
,

m
s
g

)
;

r
e
t
u
r
n
;

}

}

/
/

i
f
(

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
r
e
a
d
(

c
o
n
t
e
x
t
,

&
(
c
o
n
t
e
x
t
-
>
u
s
e
r
.
i
n
f
)
,

(
E
C
O
A
_
_
b
y
t
e
*
)
&
i
t
m
,

s
i
z
e
o
f
(
i
t
m
)
,

&
b
c

)

!
=

E
C
O
A
_
_
r
e
t
u
r
n
_
s
t
a
t
u
s
_
O
K

)
{

i
f
(

c
o
n
t
e
x
t
-
>
u
s
e
r
.
f
i
l
e
s
[
c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e
+
1
]
[
0
]

=
=

'
\
0
0
0
'

)

c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e

=

1
;

e
l
s
e

c
o
n
t
e
x
t
-
>
u
s
e
r
.
w
h
i
c
h
F
i
l
e

+
=

1
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
c
l
o
s
e
(

c
o
n
t
e
x
t
,

&
(
c
o
n
t
e
x
t
-
>
u
s
e
r
.
i
n
f
)

)
;

c
o
n
t
e
x
t
-
>
u
s
e
r
.
i
n
f
.
d
e
s
c
r
i
p
t
o
r

=

-
1
;

r
e
t
u
r
n
;

}

i
t
m
.
s
e
q

=

n
t
o
h
l
l
(

i
t
m
.
s
e
q

)
;

i
t
m
.
d
a
t
a
.
c
u
r
r
e
n
t
_
s
i
z
e

=

n
t
o
h
l
(

i
t
m
.
d
a
t
a
.
c
u
r
r
e
n
t
_
s
i
z
e

)
;

/
/

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
s
o
m
e
D
a
t
a
_
_
g
e
t
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
d
a
t
a
_
h
n
d
l

)
;

m
e
m
c
p
y
(

(
d
a
t
a
_
h
n
d
l
.
d
a
t
a
)
,

&
i
t
m
.
d
a
t
a
,

s
i
z
e
o
f
(
d
a
t
a
_
_
B
L
O
B
)
)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
s
o
m
e
D
a
t
a
_
_
p
u
b
l
i
s
h
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
d
a
t
a
_
h
n
d
l

)
;

/
/

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
n
o
t
e
s
_
_
g
e
t
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
n
o
t
e
s
_
h
n
d
l

)
;

s
p
r
i
n
t
f
(

*
(
n
o
t
e
s
_
h
n
d
l
.
d
a
t
a
)
,

"
E
n
t
r
y

%
l
l
d
"
,

i
t
m
.
s
e
q

)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
n
o
t
e
s
_
_
p
u
b
l
i
s
h
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
n
o
t
e
s
_
h
n
d
l

)
;

/
/

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
_
g
e
t
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
l
o
g
_
h
n
d
l

)
;

m
e
m
c
p
y
(

(
l
o
g
_
h
n
d
l
.
d
a
t
a
)
,

&
i
t
m
,

s
i
z
e
o
f
(
d
a
t
a
_
_
L
o
g
I
t
e
m
)
)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
l
o
g
_
_
p
u
b
l
i
s
h
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
l
o
g
_
h
n
d
l

)
;

/
/

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
u
n
u
s
e
d
V
D
_
_
g
e
t
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
u
n
u
s
e
d
V
D
_
h
n
d
l

)
;

s
p
r
i
n
t
f
(

*
(
u
n
u
s
e
d
V
D
_
h
n
d
l
.
d
a
t
a
)
,

"
E
n
t
r
y

%
l
l
d
"
,

i
t
m
.
s
e
q

)
;

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
u
n
u
s
e
d
V
D
_
_
p
u
b
l
i
s
h
_
w
r
i
t
e
_
a
c
c
e
s
s
(

c
o
n
t
e
x
t
,

&
u
n
u
s
e
d
V
D
_
h
n
d
l

)
;

/
/

P
u
b
_
M
a
i
n
_
I
m
_
c
o
n
t
a
i
n
e
r
_
_
u
n
u
s
e
d
E
v
_
_
s
e
n
d
(

c
o
n
t
e
x
t

)
;

}

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 25

The Experimental ECOA File Access API

The implementation of the experimental File Access API will not be described in full. Think of it as an

exercise for the reader. Suffice it to say that for the experiment, the various operations simply map

to an equivalent POSIX operation API.

ECOA__return_status Pub_Main_Im_container__open(
 Pub_Main_Im__context *context,
 ECOA__File__FileName path,
 ECOA__File__Reference *fileRef,
 ECOA__File__FileFlag flags,
 ECOA__File__Permissions perms);

The experimental implementation maps the flags and perms onto POSIX values, and calls the

POSIX open() API.

ECOA__return_status Pub_Main_Im_container__close(
 Pub_Main_Im__context *context,
 ECOA__File__Reference *fileRef);

The experimental implementation calls the POSIX close() API on the file referenced by fileRef.

ECOA__return_status Pub_Main_Im_container__read(
 Pub_Main_Im__context *context,
 ECOA__File__Reference *fileRef,
 ECOA__byte *buffer,
 ECOA__uint64 byteCount,
 ECOA__uint64 *bytesRead);

The experimental implementation calls the POSIX read() API on the file referenced by fileRef to

read (up to) byteCount bytes into buffer.

ECOA__return_status Pub_Main_Im_container__write(
 Pub_Main_Im__context *context,
 ECOA__File__Reference *fileRef,
 ECOA__byte *buffer,
 ECOA__uint64 byteCount,
 ECOA__uint64 *bytesWritten);

The experimental implementation calls the POSIX write() API on the file referenced by fileRef to

write (up to) byteCount bytes from buffer.

ECOA__return_status Pub_Main_Im_container__seek(
 Pub_Main_Im__context *context,
 ECOA__File__Reference *fileRef,
 ECOA__int64 seekPosn,
 ECOA__File__SeekBase base,
 ECOA__int64 *actualPosn);

The experimental implementation calls the POSIX lseek() API on the file referenced by fileRef to

position the current read/write point, mapping the base and seekPosn values to the POSIX

equivalent.

ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

26

ECOA__return_status Pub_Main_Im_container__delete(
 Pub_Main_Im__context *context,
 ECOA__File__FileName path);

Deletes the file named by path using the POSIX unlink() API.

Program Output

When the ECOA “PubSub” Assembly is built and run, an output similar to Figure 13 should be

achieved. This shows two Windows® Command Prompt panes, one running the “Pub” Protection

Domain, and one running the “Sub” protection Domain. The Pub and Sub ASC trace messages are

output to their respective console panes, in the case of the Pub ASC prefixed by miscellaneous

logging data (time stamp, logging type, etc.) because the ECOA logging API is used. Each Pub ASC

trace message reports a switch from one data file to another. Each Sub ASC message reports the

ASC accessing a particular Versioned Data record, and shows how only some updates of the

Versioned Data item are read by the Sub (since the Pub ASC publishes a continuous sequence of

numbered “Entry N” item values). These outputs are interleaved with ECOA Platform logging

messages (the 10 second periodic “alive” messages in the example shown):

Figure 13 ECOA “PubSub” Assembly in Execution

 ECOA Examples: PubSub

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 27

References

1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Publish-subscribe pattern

https://en.wikipedia.org/wiki/Publish/subscribe

3 European Component Oriented Architecture (ECOA) Collaboration Programme:

Guidance Document: Data Servers

4 ECOA Examples: Dining Philosophers

BAE Systems (Operations) Limited, Electronic Systems.

