

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 1

Manager Module Example

Introduction
This document describes an ECOA® client-server example named “Manager Module Example”.

The client-server model (ref. [2]) is one of the most basic data, task, or workload, distribution

mechanisms in computing. Clients and servers may be distributed across a network, or they may

reside on the same computing system. Service oriented concepts, which form a basis behind the

ECOA, naturally fit with the client-server model, the clients referencing (using) the services provided

by the server. Service orientation, and therefore the ECOA, goes on a step extra, in that a

component can be a client (service user) to one or more other components, whilst simultaneously

being a server (service provider) to others.

This document presents the principal user generated artefacts required to create the “Manager

Module Example” client-server example using the ECOA. It is assumed that the reader is conversant

with the ECOA Architecture Specification (ref. [1]) and the process of defining and declaring ECOA

Assemblies, ASCs (components), Modules, and deployments in XML, and then using code generation

to produce Module framework (stub) code units and ECOA Container and Platform code.

Aims
This ECOA “Manager Module Example” client-server example is based upon the “Service Availability

Example” (ref. [3]), and is intended to demonstrate one design patterns which can be used by an

ECOA system designer in order to implement a functional manager module within a Component.

ECOA Features Exhibited
 Composition of an ECOA Assembly of multiple ECOA ASCs (components).

 Contention-free resource sharing within an ECOA Assembly.

 Use of the ECOA runtime logging API.

 Management of services using a “functional availability”

 Management of multi-module Component using a “manager module”

Design and Definition

Client-Server Functional Design
The “Manager Module Example” client-server example will demonstrate the use of a “manager”

module which controls the behaviour of a Component. This includes the functional startup of the

Component and the service availability management. The example uses 2 services, each containing a

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2

number of request-response operations to perform simple mathematic functions. Figure 1 shows

the behaviour of the example system.

Figure 1 - ECOA "Manager Module Example" Client-Server Behaviour

The Client will perform a number of request operations in order to perform simple mathematic

operations:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Power

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 3

6. Square Root

The Server will be split into 3 modules, a “Manager” module which manages the behaviour of both

the “Basic Math” and the “Complex Math” modules.

ECOA Assembly Design and Definition
This ECOA “Manager Module Example” client-server example ECOA Assembly comprises two ECOA

ASCs named “Client” and “MathServer”. The “Client” ASC type is instantiated once within the ECOA

Assembly as “Client_Inst”. The “Server” ASC is instantiated once within the ECOA Assembly as

“MathServer_Inst” and provides the “ProvidedBasicMath” and “ProvidedComplextMath” ECOA

Services, both of which are referenced (used) by the “Client_Inst” ASC (Figure 2).

Figure 2 - ECOA "Manager Module" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Manager Module Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite
 xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="example"
 targetNamespace="http://www.ecoa.technology">

 <csa:component name="Client_Inst">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client_Im"/>
 </ecoa-sca:instance>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4

 <csa:reference name="RequiredBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </csa:reference>

 <csa:reference name="RequiredComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </csa:reference>

 </csa:component>

 <csa:component name="MathServer_Inst">
 <ecoa-sca:instance componentType="MathServer">
 <ecoa-sca:implementation name="MathServer_Im"/>
 </ecoa-sca:instance>

 <csa:service name="ProvidedBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </csa:service>

 <csa:service name="ProvidedComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </csa:service>

 </csa:component>

 <csa:wire source="Client_Inst/RequiredBasicMath"
target="MathServer_Inst/ProvidedBasicMath"/>

 <csa:wire source="Client_Inst/RequiredComplexMath"
target="MathServer_Inst/ProvidedComplexMath"/>

</csa:composite>

The MathServer ASC type is defined in XML as follows (file MathServer.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="ProvidedBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </service>

 <service name="ProvidedComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

ProvidedBasicMath and ProvidedComplexMath ECOA Services.

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 5

The Client ASC type is defined in XML as follows (file Client.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="RequiredBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </reference>

 <reference name="RequiredComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

RequiredBasicMath and RequiredComplexMath ECOA Services.

ECOA Service and Types Definition
The svc_BasicMath Service, which is provided by the MathServer ASC and referenced by the

Client ASC, is defined in a XML file (svc_BasicMath.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="BasicMath"/>

 <operations>
 <requestresponse name="add">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="subtract">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="multiply">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="divide">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6

 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestresponse>

 <data name="available" type="ECOA:boolean8"/>

 </operations>
</serviceDefinition>

The Service comprises four ECOA Request-Response Operations called add, subtract, multiply and

divide. In addition, an ECOA Versioned Data Operation called available is defined.

The svc_ComplexMath Service, which is provided by the MathServer ASC and referenced by the

Client ASC, is defined in a XML file (svc_ComplexMath.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <operations>
 <requestresponse name="power">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="squareRoot">
 <input name="value" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 </operations>
</serviceDefinition>

The Service comprises two ECOA Request-Response Operations called power and squareRoot.

 The data types library (used in the svc_BasicMath) is, unsurprisingly, also defined in an XML (file

BasicMath.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <enum name="Divide_Status_Type" type="ECOA:uint32">
 <value name="OK" valnum="0"/>
 <value name="Error" valnum="1"/>
 <value name="Divide_By_Zero" valnum="2"/>
 <value name="Unavailable" valnum="3"/>
 </enum>

 </types>

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 7

</library>

The data type BasicMath:Divide_Status_Type is therefore an enumeration type, with 4 possible

values.

ECOA Module Design and Definition
The MathServer ASC (component) is composed of three Modules (Module Implementations

Manager_Im, BasicMath_Im and ComplexMath_Im of Module Types BasicMath_Type,

BasicMath_Type and ComplexMath_Type respectively) as illustrated in UML in Figure 3.

Figure 3 “MathServer” Module Design (as UML Composite Structure Diagram)

The Client ASC (component) is composed of a single ECOA Module (Module Implementations

Client_Module_Im of Module Type Client_Module_Type) as illustrated in UML in Figure 4.

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8

Figure 4 – “Client” Module Design (as UML Composite Structure Diagram)

Figure 5 and Figure 6 depict in UML the internal design of the MathServer ASC (component)

providing the svc_BasicMath and svc_ComplexMath ECOA Services, whilst the Client ASC

references the Services. As always in the ECOA, the Module Implementations implement the

Module Lifecycle operations defined by the ECOA.

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 9

Figure 5 - "MathServer” Component Design (as UML Composite Structure Diagram)

Figure 6 - "Client” Component Design (as UML Composite Structure Diagram)

The MathServer ASC

The MathServer ASC is declared in XML as follows (file MathServer_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="MathServer">

 <use library="BasicMath"/>

 <moduleType name="BasicMath_Type" hasUserContext="true"
hasWarmStartContext="false">

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10

 <operations>

 <requestReceived name="add" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="subtract" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="multiply" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="divide" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestReceived>

 <requestReceived name="functionalInitialize" maxConcurrentRequests="1">
 </requestReceived>

 <requestReceived name="functionalStart" maxConcurrentRequests="1">
 </requestReceived>

 <dataRead name="available" type="ECOA:boolean8" notifying="true"/>

 </operations>

 </moduleType>

 <moduleType name="ComplexMath_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="power" maxConcurrentRequests="10">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="squareRoot" maxConcurrentRequests="10">
 <input name="value" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 11

 </requestReceived>

 <requestReceived name="functionalInitialize" maxConcurrentRequests="1">
 </requestReceived>

 <requestReceived name="functionalStart" maxConcurrentRequests="1">
 </requestReceived>

 </operations>

 </moduleType>

 <moduleType name="Manager_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <dataWritten name="available" type="ECOA:boolean8"/>

 <eventReceived name="publish">
 </eventReceived>

 <requestSent name="initializeBasicMath" isSynchronous="false" timeout="-
1.0" maxConcurrentRequests="1">
 </requestSent>

 <requestSent name="initializeComplexMath" isSynchronous="false"
timeout="-1.0" maxConcurrentRequests="1">
 </requestSent>

 <requestSent name="startBasicMath" isSynchronous="false" timeout="-1.0"
maxConcurrentRequests="1">
 </requestSent>

 <requestSent name="startComplexMath" isSynchronous="false" timeout="-1.0"
maxConcurrentRequests="1">
 </requestSent>

 </operations>

 </moduleType>

 <moduleImplementation name="BasicMath_Im" language="C"
moduleType="BasicMath_Type"/>
 <moduleImplementation name="ComplexMath_Im" language="C"
moduleType="ComplexMath_Type"/>
 <moduleImplementation name="Manager_Im" language="C"
moduleType="Manager_Type"/>

 <moduleInstance name="BasicMath_Instance" implementationName="BasicMath_Im"
relativePriority="2">

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12

 </moduleInstance>
 <moduleInstance name="ComplexMath_Instance" implementationName="ComplexMath_Im"
relativePriority="3">

 </moduleInstance>
 <moduleInstance name="Manager_Instance" implementationName="Manager_Im"
relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Publish_Trigger" relativePriority="2"/>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="add"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance" operationName="add"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="subtract"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="subtract"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <moduleInstance instanceName="Manager_Instance"
operationName="available"/>
 </writers>
 <readers>
 <service instanceName="ProvidedBasicMath" operationName="available"/>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="available"/>
 </readers>
 </dataLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="multiply"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="multiply"/>

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 13

 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="divide"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="divide"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedComplexMath" operationName="power"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="power"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedComplexMath" operationName="squareRoot"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="squareRoot"/>
 </server>
 </requestLink>

 <eventLink>
 <senders>
 <trigger instanceName="Publish_Trigger" period="1"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Manager_Instance" operationName="publish"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Instance"
operationName="initializeBasicMath"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="functionalInitialize"/>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14

 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Instance"
operationName="startBasicMath"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="functionalStart"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Instance"
operationName="initializeComplexMath"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="functionalInitialize"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Instance"
operationName="startComplexMath"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="functionalStart"/>
 </server>
 </requestLink>

</componentImplementation>

 That is, three Module Types (Manager_Type, BasicMath_Type and ComplexMath_Type) are
declared.

The Publish_Trigger Trigger Instance is introduced because the Server needs to change its

behaviour over time, and this trigger sequences the changes. Once every period (1 second as set in

the <eventLink> XML) the Trigger will fire and the Module Operation publish will be invoked.

Manager_Type is a Module which has six operations specified:

 a requestSent operation “initializeBasicMath”;

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 15

 a requestSent operation “initializeComplexMath”;

 a requestSent operation “startBasicMath”;

 a requestSent operation “startComplexMath”;

 a dataWritten operation “available”;

 the eventReceived operation “publish”.

This Module Type is implemented by a concrete Module Implementation Manager_Im which in turn

is instantiated once as the Module Instance Manager_Instance.

BasicMath_Type is a Module which has six operations specified:

 a requestReceived operation “add”;

 a requestReceived operation “subtract”;

 a requestReceived operation “multiply”;

 a requestReceived operation “divide”;

 a requestReceived operation “functionalInitialize”;

 a requestReceived operation “functionalStart”;

 a dataRead operation “available”;

This Module Type is implemented by a concrete Module Implementation BasicMath_Im which in

turn is instantiated once as the Module Instance BasicMath_Instance.

ComplexMath_Type is a Module which has two operations specified:

 a requestReceived operation “power”;

 a requestReceived operation “squareRoot”;

 a requestReceived operation “functionalInitialize”;

 a requestReceived operation “functionalStart”.

This Module Type is implemented by a concrete Module Implementation ComplexMath_Im which in

turn is instantiated once as the Module Instance ComplexMath_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations.

Three functional code units will be produced by the code generation process, implementing in code

the concrete Manager_Im, BasicMath_Im and ComplexMath_Im classes, named “Manager_Im.c”

“BasicMath_Im.c” and “ComplexMath_Im.c” respectively (assuming the Module Implementation

declaration has set the language property to “C”).

The Client ASC

The Client ASC is declared in XML as follows (file Client_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Client">

 <use library="BasicMath"/>

 <moduleType name="Client_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <eventReceived name="tick">
 </eventReceived>

 <requestSent name="add" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="subtract" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="multiply" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="divide" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestSent>

 <requestSent name="power" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="squareRoot" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="value" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 17

 </requestSent>

 <dataRead name="BasicMathServiceAvailable" type="ECOA:boolean8"
notifying="true"/>

 </operations>

 </moduleType>

 <moduleImplementation name="Client_Module_Im" language="C"
moduleType="Client_Module_Type"/>

 <moduleInstance name="Client_Module_Instance"
implementationName="Client_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Internal_Trigger_Instance" relativePriority="2"/>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="tick"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="add"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="add"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="subtract"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="subtract"/>
 </server>
 </requestLink>

 <requestLink>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

18

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="multiply"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="multiply"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="divide"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="divide"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="power"/>
 </clients>
 <server>
 <reference instanceName="RequiredComplexMath" operationName="power"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="squareRoot"/>
 </clients>
 <server>
 <reference instanceName="RequiredComplexMath"
operationName="squareRoot"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="RequiredBasicMath" operationName="available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="BasicMathServiceAvailable"/>
 </readers>
 </dataLink>

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 19

</componentImplementation>

 That is, a Module Type (Client_Module_Type) is declared which has eight operations:

 An “add” requestSent operation;

 An “subtract” requestSent operation;

 An “multiply” requestSent operation;

 An “divide” requestSent operation;

 An “power” requestSent operation;

 An “squareRoot” requestSent operation;

 A “BasicMathServiceAvailable” dataRead operation;

 The eventReceived operation “tick”.

The Internal_Trigger_Instance Trigger Instance is introduced because the Client needs to

“periodically request mathematical calculations” and so an ECOA periodic trigger is required. Once

every period (2 seconds as set in the <eventLink> XML) the Trigger will fire and the Module

Operation tick will be invoked.

This Module Type is implemented by a concrete Module Implementation Client_Module_Im, which

in turn is instantiated once as the Module Instance Client_Module_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Client_Module_Im class, and named “Client_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “Manager Module Example” Assembly is deployed (that is, the declared Module and

Trigger Instances are allocated to a single ECOA Protection Domain, which is then allocated to a

computing node) by the following XML (file example.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="example" logicalSystem="example">

 <protectionDomain name="Ex1">
 <executeOn computingPlatform="Example_Platform" computingNode="card1_bae"/>

 <deployedModuleInstance componentName="Client_Inst"
moduleInstanceName="Client_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="Client_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
 <deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="ComplexMath_Instance" modulePriority="3"/>

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

20

 <deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="BasicMath_Instance" modulePriority="3"/>
 <deployedTriggerInstance componentName="MathServer_Inst"
triggerInstanceName="Publish_Trigger" triggerPriority="12"/>
 <deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="Manager_Instance" modulePriority="1"/>
 </protectionDomain>

 <platformConfiguration faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA
Computing Node, on a single ECOA Computing Platform.

Implementation

The MathServer ASC
The behaviour of each module of the MathServer ASC is described in detail in the following sections.

Manager_Im Module

The Manager_Im module is responsible for functionally initialising and starting the “functional”

modules BasicMath_Im and ComplexMath_Im. In addition, the Manager Module is responsible for

declaring the ProvidedBasicMath service as available when the Component is in the correct

functional state to perform its (this is based upon the state of the BasicMath_Instance module

being “functionally” running.

During initialisation time, the Manager module defaults state data and publishes the (unavailable)

state of the ProvidedBasicMath. This functionality is implemented by the following (C) code:

void Manager_Im__INITIALIZE__received(Manager_Im__context *context)
{
 context->user.basicMathState = UNINITIALIZED;
 context->user.complexMathState = UNINITIALIZED;

 context->user.basicMathServiceAvailable = ECOA__FALSE;
 Publish_Functional_Service_Availability(context);
}

The function “Publish_Functional_Service_Availability” is defined as follows:

static void Publish_Functional_Service_Availability(Manager_Im__context* context)
{
 ECOA__return_status status;
 Manager_Im_container__available_handle basicMathAvailableHandle;

 status = Manager_Im_container__available__get_write_access(context,
&basicMathAvailableHandle);

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 21

 if (status == ECOA__return_status_OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)
 {
 *(basicMathAvailableHandle.data) = context->user.basicMathServiceAvailable;
 }

 ECOA__log log;

 if (context->user.basicMathServiceAvailable)
 {
 log.current_size = sprintf((char *) &log.data, "- - - - Publishing basicMath
service available");
 }
 else
 {

 log.current_size = sprintf((char *) &log.data, "- - - - Publishing basicMath
service unavailable");
 }
 Manager_Im_container__log_info(context, log);

 status = Manager_Im_container__available__publish_write_access(context,
&basicMathAvailableHandle);

}

The main logic of the Manager module is implemented on the periodic trigger operation “publish”.

This function performs different actions depending on the current “count” state data.

The BasicMath_Instance module will not handle correctly handle any math operation requests in

the until the service is set as functionally available (each operation will act in a different manner to

show different ways of managing operations being called in the wrong state). The

ComplexMath_Instance module has no premise of an availability state, so will respond to

operations as soon as they are queued (i.e. once the module is “technically” running – even though

it may not be “functionally” running).

When count is equal to 1, the Manager requests both the BasicMath_Instance and

ComplexMath_Instance modules to initialize.

When count is equal to 2, the Manager requests both the BasicMath_Instance and

ComplexMath_Instance modules to start.

At this point, the ProvidedBasicMath is set as available and the modules will begin handling

requests.

When count is 6, the Manager requests both the BasicMath_Instance and ComplexMath_Instance

modules to re-initialize. This has the effect of setting the ProvidedBasicMath service as

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

22

unavailable. The count is also reset, at which point the sequence of behaviours described above is

repeated.

void Manager_Im__publish__received(Manager_Im__context *context)
{
 ECOA__log log;

 context->user.count++;

 ECOA__uint32 ID;

 // Initialize modules on count 1
 if (context->user.count == 1)
 {
 log.current_size = sprintf((char *) &log.data, "1 - - - - requesting
initialisation of modules");
 Manager_Im_container__log_info(context, log);

 Manager_Im_container__initializeBasicMath__request_async(context, &ID);
 Manager_Im_container__initializeComplexMath__request_async(context, &ID);
 }
 // Start modules on count 2
 if (context->user.count == 2)
 {
 log.current_size = sprintf((char *) &log.data, "2 - - - - requesting start
of modules");
 Manager_Im_container__log_info(context, log);

 Manager_Im_container__startBasicMath__request_async(context, &ID);
 Manager_Im_container__startComplexMath__request_async(context, &ID);
 }
 // Reinitialize modules on count 6 (set to not running...)
 if (context->user.count == 6)
 {
 log.current_size = sprintf((char *) &log.data, "4 - - - - requesting
reinitialise of modules");
 Manager_Im_container__log_info(context, log);
 context->user.basicMathState = UNINITIALIZED;
 context->user.complexMathState = UNINITIALIZED;
 Manager_Im_container__initializeBasicMath__request_async(context, &ID);
 Manager_Im_container__initializeComplexMath__request_async(context, &ID);
 // Publish functional availability of service.
 context->user.basicMathServiceAvailable = ECOA__FALSE;
 context->user.count = 0;
 }

 // Always republish the current availability
 Publish_Functional_Service_Availability(context);
}

The responses to the requests for modules BasicMath_Instance and ComplexMath_Instance

simply update the current functional state of the modules:

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 23

void Manager_Im__initializeBasicMath__response_received
 (Manager_Im__context* context,
 const ECOA__uint32 ID, const ECOA__return_status status)
{
 context->user.basicMathState = INITIALIZED;
}
void Manager_Im__initializeComplexMath__response_received
 (Manager_Im__context* context,
 const ECOA__uint32 ID, const ECOA__return_status status)
{
 context->user.complexMathState = INITIALIZED;
}
void Manager_Im__startBasicMath__response_received
 (Manager_Im__context* context,
 const ECOA__uint32 ID, const ECOA__return_status status)
{
 context->user.basicMathState = RUNNING;
 context->user.basicMathServiceAvailable = ECOA__TRUE;
}
void Manager_Im__startComplexMath__response_received
 (Manager_Im__context* context,
 const ECOA__uint32 ID, const ECOA__return_status status)
{
 context->user.complexMathState = RUNNING;
}

BasicMath_Im Module

The “ProvidedBasicMath” Service operation request operation handlers are implemented in the (C)

code unit BasicMath_Im.c. Each operation handler demonstrates a different method of handling

functional service availability.

The “add” functionality is implemented by the following (C) code:

void BasicMath_Im__add__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the add operation is:
 // Undefined if the service is not "functionally" available. The module does
not check the state before responding!

 ECOA__return_status status;

 ECOA__int32 result = value1 + value2;
 status = BasicMath_Im_container__add__response_send(context, ID, result);
}

This function performs a simple addition operation on the two input parameter values. A response is

then sent immediately to the client containing the result of the addition. Note that this function

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

24

does not take into account the functional availability of the service and so the operation will

complete successfully even if the service has not been set functionally available.

The “subtract” functionality is implemented by the following (C) code:

void BasicMath_Im__subtract__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the subtract operation is:
 // Check if the service is available.
 // If it is available, send a response.
 // If it is not available, do not send a response.

 ECOA__return_status status;

 if (context->user.available)
 {
 ECOA__int32 result = value1 - value2;
 status = BasicMath_Im_container__subtract__response_send(context, ID,
result);
 }
}

This function checks to ensure that the service has been set as functionally available prior to

performing a simple subtraction operation on the two input parameter values. A response is then

sent immediately to the client containing the result of the subtraction. This implementation may

mean that a client will not receive a response if it has attempted to send a request when the service

is set as unavailable. A client using this service operation should use a timeout to ensure the request

does not block indefinitely or overflow the maximum concurrent request.

The “multiply” functionality is implemented by the following (C) code:

void BasicMath_Im__multiply__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the multiply operation is:
 // Check if the service is available.
 // If it is available, send a response.
 // If it is not available, send a response, but with a default value.

 ECOA__return_status status;
 ECOA__int32 result = 0;

 if (context->user.available)
 {

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 25

 result = value1 * value2;
 status = BasicMath_Im_container__multiply__response_send(context, ID,
result);
 }
 else
 {
 status = BasicMath_Im_container__multiply__response_send(context, ID,
result);
 }
}

This function checks to ensure that the service has been set as functionally available prior to

performing a simple multiplication operation on the two input parameter values. A response is then

sent immediately to the client containing the result of the multiplication. If the service is not

available, a response is sent with a default value of 0 for the result. Note that this is not a robust

solution for this functionality, as a 0 value could be a valid result, but the intent is to show that a

default value could be used in appropriate situations.

The “divide” functionality is implemented by the following (C) code:

void BasicMath_Im__divide__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the divide operation is:
 // Check if the service is available.
 // If it is available, send a response.
 // If it is not available, send a response, but with an "Unavailable" status
and default value.

 ECOA__return_status status;
 ECOA__int32 result = 0;
 BasicMath__Divide_Status_Type divideStatus = BasicMath__Divide_Status_Type_OK;

 if (context->user.available)
 {
 ECOA__int32 result = value1 / value2;
 status = BasicMath_Im_container__divide__response_send(context, ID, result,
divideStatus);
 }
 else
 {
 // Return not available.
 divideStatus = BasicMath__Divide_Status_Type_Unavailable;
 status = BasicMath_Im_container__divide__response_send(context, ID, result,
divideStatus);
 }
}

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

26

This function checks to ensure that the service has been set as functionally available prior to

performing a simple division operation on the two input parameter values. A response is then sent

immediately to the client containing the result of the division and an “OK” status. If the service is not

available, a response is sent with a default value of 0 for the result and a “Not Available” status.

The “functionalInitialize” is implemented by the following (C) code:

void BasicMath_Im__functionalInitialize__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID)
{
 // Add an artificial delay (to mimic a heavy-weight initialisation process).
 int i,j;
 for (i; i <= 500000000; i++)
 {
 while (j <= 500000000)
 {
 j++;
 }
 }
 BasicMath_Im_container__functionalInitialize__response_send(context, ID);
}

This function mimics a heavy-weight (or time intensive task). Once this task is completed, a response

is sent to the Manager module to confirm initialization is complete.

The “functionalStart” is implemented by the following (C) code:

void BasicMath_Im__functionalStart__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID)
{
 BasicMath_Im_container__functionalStart__response_send(context, ID);
}

This function does no functional work other than sending a response to the Manager to confirm that

the start operation is complete.

The module also gets notified of changes to the service availability state (which is set by the

Manager module) in the following (C) code:

void BasicMath_Im__available__updated(BasicMath_Im__context* context)
{
 BasicMath_Im_container__available_handle availableHandle;

 ECOA__return_status status =
BasicMath_Im_container__available__get_read_access(context, &availableHandle);

 if (status == ECOA__return_status_OK)
 {
 // Update user context state.

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 27

 context->user.available = *(availableHandle.data);
 status = BasicMath_Im_container__available__release_read_access(context,
&availableHandle);
 }
}

This function simply gets the latest available state and stores it in user context for use when
handling operations.

ComplexMath_Im Module

The “ProvidedComplexMath” Service operation request operation handlers are implemented in the

(C) code unit ComplexMath_Im.c. This service does not have the concept of functional availability. A

client is free to call the operation at any time.

The “power” functionality is implemented by the following (C) code:

void ComplexMath_Im__power__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 base,
 const ECOA__int32 exponent)
{
 ECOA__return_status status;

 ECOA__int32 result = pow(base, exponent);
 status = ComplexMath_Im_container__power__response_send(context,ID, result);
}

The “squareRoot” functionality is implemented by the following (C) code:

void ComplexMath_Im__squareRoot__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value)
{
 ECOA__return_status status;

 ECOA__int32 result = sqrt(value);
 status = ComplexMath_Im_container__squareRoot__response_send(context,ID,
result);
}

The “functionalInitialize” is implemented by the following (C) code:

void ComplexMath_Im__functionalInitialize__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID)
{
 // Add an artificial delay (to mimic a heavy-weight initialisation process).
 int i,j;
 for (i; i <= 500000000; i++)
 {

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

28

 while (j <= 500000000)
 {
 j++;
 }
 }

 ComplexMath_Im_container__functionalInitialize__response_send(context, ID);
}

This function mimics a heavy-weight (or time intensive task). Once this task is completed, a response

is sent to the Manager module to confirm initialization is complete.

The “functionalStart” is implemented by the following (C) code:

void ComplexMath_Im__functionalStart__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID)
{
 ComplexMath_Im_container__functionalStart__response_send(context, ID);
}

This function does no functional work other than sending a response to the Manager to confirm that

the start operation is complete.

The Client ASC
All we need to do is program what to do when the Internal_Trigger_Instance Trigger Instance

fires, i.e. to populate the Client_Module_Im__tick__received function stub.

void Client_Module_Im__tick__received(Client_Module_Im__context *context)
{
 ECOA__return_status status;

 // Basic math should only be used if the service has been set as functionally
available...
 // However, we can use any except subtract as the other service operations are
designed to send a response regardless.
 testAddition(context);
 testSubtraction(context);
 testMultiplication(context);
 testDivision(context);

 // The exponential math can be used anytime...
 testPower(context);
 testSquareRoot(context);

 ECOA__log log;
 log.current_size = sprintf((char *) &log.data, "-------------------------------
-------------------");
 Client_Module_Im_container__log_info(context, log);

}

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 29

At each period, a synchronous Request-Response call is made to each of the math operations

available in “RequiredBasicMath” and “RequiredComplexMath”. This is done by the invocation of a

number of user-written methods which are detailed below. In each method, a log is made before

invoking the respective container operation. In this example, the functional availability of the

“RequiredBasicMath” is not taken into consideration with the exception of the subtract operation

(“testSubtraction()”).

Before sending the subtract request, the “BasicMathServiceAvailable” versioned data is

interrogated to check if the service has been set as functionally available. This is due to the fact that

the server requirement for this operation is to not send a response. If the request is made

regardless, the module would become blocked indefinitely. Note that there is a race-condition

which means the service could be available when the request is made, but unavailable when it

reaches the server; it is therefore always advisable to set a timeout on the client request operation

to cater for this scenario.

static void testAddition(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 5;
 ECOA__int32 value2 = 10;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting addition of %d and
%d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__add__request_sync(context, value1, value2,
&result);

 log.current_size = sprintf((char *) &log.data, "result of addition of %d and %d
= %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
}

static void testSubtraction(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;
 Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

 ECOA__int32 value1 = 50;
 ECOA__int32 value2 = 10;
 ECOA__int32 result = 0;

 // The division operation should check if the service is functionally
available, as the server

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

30

 // behaviour is defined to not respond if a request is received when
functionally unavailable.
 // This could lead to the client module being blocked indefinitely if no
timeout is specified!
 status =
Client_Module_Im_container__BasicMathServiceAvailable__get_read_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK)
 {
 if (*(availableHandle.data) == ECOA__TRUE)
 {
 log.current_size = sprintf((char *) &log.data, "requesting subtraction of
%d minus %d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__subtract__request_sync(context,
value1, value2, &result);

 log.current_size = sprintf((char *) &log.data, "result of subtraction of
%d minus %d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "cannot perform
subtraction as service unavailable");
 Client_Module_Im_container__log_info(context, log);
 }

 status =
Client_Module_Im_container__BasicMathServiceAvailable__release_read_access(context
, &availableHandle);
 }
}

Before sending the multiplication request, the “BasicMathServiceAvailable” versioned data is
interrogated to check if the state data has been updated since the last time (by checking the
‘stamp’). The request will be sent irrespective of the actual state of the service availability, but will
only be sent if the state has not become stale. Since initially the service is set as unavailable but the
state is being continually published, then the server will respond with a default value. Once the
service is set as available, then the correct multiplication result will be returned. Finally, when the
server stops publishing the state, the client will detect it has become stale and no-longer send the
request.

static void testMultiplication(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;
 Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

 ECOA__int32 value1 = 7;

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 31

 ECOA__int32 value2 = 8;
 ECOA__int32 result = 0;

 // When the server is declaring its service as unavailable, then it will return
a default value for the multiplication.
 // When the server stops periodically publishing its availability then assume
the service is not available
 status =
Client_Module_Im_container__BasicMathServiceAvailable__get_read_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK)
 {
 if(availableHandle.stamp != context->user.previousStamp)
 {
 context->user.previousStamp = availableHandle.stamp;
 log.current_size = sprintf((char *) &log.data, "requesting multiplication
of %d by %d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__multiply__request_sync(context,
value1, value2, &result);

 log.current_size = sprintf((char *) &log.data, "result of multiplication
of %d by %d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);

 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "server availability is
stale - not requesting multiplication");
 Client_Module_Im_container__log_info(context, log);
 }
 }
}

static void testDivision(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 1000;
 ECOA__int32 value2 = 20;
 ECOA__int32 result = 0;
 BasicMath__Divide_Status_Type divideStatus;

 log.current_size = sprintf((char *) &log.data, "requesting division of %d by
%d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__divide__request_sync(context, value1,
value2, &result, ÷Status);

ECOA Examples: Manager Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

32

 if (divideStatus == BasicMath__Divide_Status_Type_OK)
 {
 log.current_size = sprintf((char *) &log.data, "result of division of %d by
%d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "Failed to divide - status =
%d", divideStatus);
 Client_Module_Im_container__log_info(context, log);
 }
}

static void testPower(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 base = 3;
 ECOA__int32 exponent = 4;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting %d raised to the
power %d", base, exponent);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__power__request_sync(context, base,
exponent, &result);

 log.current_size = sprintf((char *) &log.data, "result of %d raised to the
power %d = %d", base, exponent, result);
 Client_Module_Im_container__log_info(context, log);
}

static void testSquareRoot(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 25;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting square root of %d",
value1);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__squareRoot__request_sync(context, value1,
&result);

 log.current_size = sprintf((char *) &log.data, "result of square root of %d =
%d", value1, result);
 Client_Module_Im_container__log_info(context, log);
}

 ECOA Examples: Manager Module Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 33

Program Output
When the ECOA “Manager Module Example” Assembly is built and run (in a single Node

deployment), an output similar to Figure 7 should be achieved. The Client ASC outputs, at each

iteration, the values before sending each request message, and the value after receiving the

corresponding response.

Figure 7 - ECOA "Manager Module Example" in Execution

References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification
(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Client-server model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

3 Service Availability Example
http://www.ecoa.technology/tutorials.html

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://www.ecoa.technology/tutorials.html

