

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 1

Modules Example

Introduction
This document describes an ECOA® client-server example named “Modules Example”. This example

is an extension to the “Simple Example” (ref. [3]) which uses the same system design, but replaces

the server component with a different implementation.

The client-server model (ref. [2]) is one of the most basic data, task, or workload, distribution

mechanisms in computing. Clients and servers may be distributed across a network, or they may

reside on the same computing system. Service oriented concepts, which form a basis behind the

ECOA, naturally fit with the client-server model, the clients referencing (using) the services provided

by the server. Service orientation, and therefore the ECOA, goes on a step extra, in that a

component can be a client (service user) to one or more other components, whilst simultaneously

being a server (service provider) to others.

This document presents the principal user generated artefacts required to create the “Modules

Example” client-server example using the ECOA. It is assumed that the reader is conversant with the

ECOA Architecture Specification (ref. [1]) and the process of defining and declaring ECOA Assemblies,

ASCs (components), Modules, and deployments in XML, and then using code generation to produce

Module framework (stub) code units and ECOA Container and Platform code.

Aims
This ECOA “Modules Example” client-server example is intended to demonstrate an alternative

implementation of a server component to that presented in the “Simple Example”. The system

design is exactly the same as that example with the only changes being the Server component

implementation (and required deployment changes as a result).

ECOA Features Exhibited
 Composition of an ECOA Assembly of multiple ECOA ASCs (components).

 Contention-free resource sharing within an ECOA Assembly.

 Use of the ECOA runtime logging API.

 Module to Module operations

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2

Design and Definition

Client-Server Functional Design
The “Modules Example” client-server example will simply demonstrate a basic request-response

mechanism. The client will periodically perform a request, from the server and will receive a data

item in return (Figure 1).

Figure 1 - ECOA "Modules Example" Client-Server Behaviour

The data content of the request will be the current absolute time and the response will be of a user

defined type.

The Client will set a local variable to zero and output this to the log prior to performing the request.

The result will be returned into this variable and logged.

The Client will be periodically activated at a rate of 0.5Hz (once every 2 seconds).

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 3

ECOA Assembly Design and Definition
This ECOA “Modules Example” client-server example ECOA Assembly comprises two ECOA ASCs

named “Client” and “Server”. The “Client” ASC type is instantiated once within the ECOA Assembly

as “Client_Inst”. The “Server” ASC is instantiated once within the ECOA Assembly as “Server_Inst”

and provides the “Provide_Value_Service” ECOA Service, which is referenced (used) by the

“Client_Inst” ASC (Figure 2).

Figure 2 - ECOA "Modules Example" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Modules Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="example"
 targetNamespace="http://www.ecoa.technology/dassault">

 <csa:component name="Client_Inst">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client_Im" />
 </ecoa-sca:instance>
 </csa:component>

 <csa:component name="Server_Inst">
 <ecoa-sca:instance componentType="Server">
 <ecoa-sca:implementation name="Server_Im" />
 </ecoa-sca:instance>
 </csa:component>

 <csa:wire source="Client_Inst/Request_Value_Service"
target="Server_Inst/Provide_Value_Service" />

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4

</csa:composite>

The Server ASC type is defined in XML as follows (file Server.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value" />
 </service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

Provide_Value_Service ECOA Service.

The Client ASC type is defined in XML as follows (file Client.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value" />
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

Request_Value_Service ECOA Service.

ECOA Service and Types Definition
The svc_Value Service, which is provided by the Server ASC and referenced by the Client ASC, is

defined in a XML file (svc_Value.interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="example" />

 <operations>
 <requestresponse name="Request_Value">
 <input name="Time" type="global_time" />
 <output name="Value" type="example:value_type" />
 </requestresponse>
 </operations>

</serviceDefinition>

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 5

The Service comprises a single ECOA Request-Response Operation called Request_Value which has

one input parameter (Time which is passed from the requesting client to the server), and one output

parameter (Value which is the response from the server to the client). The first parameter is

defined as being of type global_time, which is a pre-defined ECOA type. The second parameter is

defined as being of type example:value_type, where example names a data types library used by

the service definition. The data types library is, unsurprisingly, also defined in XML (file

example.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <simple name="value_type" type="uint32" />
 </types>

</library>

The data type example:value_type is therefore an unsigned 32 bit integer type.

ECOA Module Design and Definition
The Server ASC (component) is composed of two Modules (Module Implementations

Server_Func1_Im and Server_Func2_Im of Module Types Server_Func1_Type and

Server_Func2_Type respectively) as illustrated in UML in Figure 3.

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6

Figure 3 “Server” Module Design (as UML Composite Structure Diagram)

The Client ASC (component) is composed of a single ECOA Module (Module Implementations

Client_Module_Im of Module Type Client_Module_Type) as illustrated in UML in Figure 4.

Figure 4 – “Client” Module Design (as UML Composite Structure Diagram)

Figure 5 and Figure 6 depict in UML the internal design of the Server ASC (component) providing

the svc_Value ECOA Service, whilst the Client ASC references the Service. As always in the ECOA,

the Module Implementations implement the Module Lifecycle operations defined by the ECOA.

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 7

Figure 5 - "Server” Component Design (as UML Composite Structure Diagram)

Figure 6 - "Client” Component Design (as UML Composite Structure Diagram)

The Server ASC

The Server ASC is declared in XML as follows (file Server_Im.impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Server">

 <use library="example" />

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8

 <moduleType name="Server_Func1_Type" hasUserContext="true"
 hasWarmStartContext="false">
 <operations>
 <requestReceived name="Request_for_Val">
 <input name="time" type="global_time" />
 <output name="val" type="example:value_type" />
 </requestReceived>

 <eventSent name="sendCommand">
 <input name="new_time" type="global_time" />
 </eventSent>

 <eventReceived name="receiveResult">
 <input name="result" type="uint32" />
 </eventReceived>
 </operations>
 </moduleType>

 <moduleType name="Server_Func2_Type" hasUserContext="true"
 hasWarmStartContext="false">
 <operations>
 <eventReceived name="receiveCommand">
 <input name="new_time" type="global_time" />
 </eventReceived>

 <eventSent name="sendResult">
 <input name="result" type="uint32" />
 </eventSent>
 </operations>
 </moduleType>

 <moduleImplementation name="Server_Func1_Im"
 language="C" moduleType="Server_Func1_Type" />
 <moduleImplementation name="Server_Func2_Im"
 language="C" moduleType="Server_Func2_Type" />
 <moduleInstance name="Server_Func1_Instance"
 implementationName="Server_Func1_Im" relativePriority="2" />
 <moduleInstance name="Server_Func2_Instance"
 implementationName="Server_Func2_Im" relativePriority="3" />

 <requestLink>
 <clients>
 <service operationName="Request_Value"
instanceName="Provide_Value_Service" />
 </clients>
 <server>
 <moduleInstance operationName="Request_for_Val"
 instanceName="Server_Func1_Instance" />
 </server>
 </requestLink>

 <eventLink>
 <senders>
 <moduleInstance operationName="sendCommand"

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 9

 instanceName="Server_Func1_Instance" />
 </senders>
 <receivers>
 <moduleInstance operationName="receiveCommand"
 instanceName="Server_Func2_Instance" />
 </receivers>
 </eventLink>

 <eventLink>
 <senders>
 <moduleInstance operationName="sendResult"
 instanceName="Server_Func2_Instance" />
 </senders>
 <receivers>
 <moduleInstance operationName="receiveResult"
 instanceName="Server_Func1_Instance" />
 </receivers>
 </eventLink>

</componentImplementation>

 That is, two Module Types (Server_Func1_Type and Server_Func2_Type) are declared.

Server_Func1_Type is a Module which has three operations specified:

 a requestReceived operation “Request_for_Val”;

 an eventSent operation “sendCommand”;

 an eventReceived operation “receiveResult”.

This Module Type is implemented by a concrete Module Implementation Server_Func1_Im which in

turn is instantiated once as the Module Instance Server_Func1_Instance.

Server_Func2_Type is a Module which has two operations specified:

 an eventReceived operation “receiveCommand”;

 an eventSent operation “sendResult”.

This Module Type is implemented by a concrete Module Implementation Server_Func2_Im which in

turn is instantiated once as the Module Instance Server_Func2_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_for_Val” module

operation (of Server_Func1_Type) is connected to the “Request_Value” service operation of the

“Provide_Value_Service” service instance.

The two <eventLink> XML fragments logically associate the event send operation of

Server_Func1_Type to the event received operation of Server_Func2_Type and vice-versa.

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10

Two functional code units will be produced by the code generation process, implementing in code

the concrete Server_Func1_Im and Server_Func2_Im classes, named “Server_Func1_Im.c” and

“Server_Func2_Im.c” respectively (assuming the Module Implementation declaration has set the

language property to “C”).

The Client ASC

The Client ASC is declared in XML as follows (file Client_Im.impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Client">

 <use library="example" />

 <moduleType name="Client_Module_Type" hasUserContext="false"
 hasWarmStartContext="false">
 <operations>
 <eventReceived name="tick" />

 <requestSent name="Request_Val" isSynchronous="true"
 timeout="2">
 <input name="time" type="global_time" />
 <output name="val" type="example:value_type" />
 </requestSent>
 </operations>
 </moduleType>

 <moduleImplementation name="Client_Module_Im"
 language="C" moduleType="Client_Module_Type" />
 <moduleInstance name="Client_Module_Instance"
 implementationName="Client_Module_Im" relativePriority="1" />
 <triggerInstance name="Internal_Trigger_Instance"
 relativePriority="2" />

 <requestLink>
 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
 operationName="Request_Val" />
 </clients>
 <server>
 <reference instanceName="Request_Value_Service"
 operationName="Request_Value" />
 </server>
 </requestLink>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"
/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Client_Module_Instance"
 operationName="tick" />

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 11

 </receivers>
 </eventLink>

</componentImplementation>

 That is, a Module Type (Client_Module_Type) is declared which has two operations:

 A “Request_Val” requestSent operation;

 The eventReceived operation “tick”.

A timeout is defined for the “Request_Val” operation. This is to ensure that if the response is never

received, the Module will not be blocked indefinitely. This scenario may occur if the request or

response is lost, or if the Server Component fails to respond (in this example this may occur, as the

receipt of the request causes the server to send an event and only respond once another event is

received – as events are “fire and forget” this is not a robust server implementation!).

The Internal_Trigger_Instance Trigger Instance is introduced because the Client needs to

“periodically request a data item” and so an ECOA periodic trigger is required. Once every period (2

seconds as set in the <eventLink> XML) the Trigger will fire and the Module Operation tick will be

invoked.

This Module Type is implemented by a concrete Module Implementation Client_Module_Im, which

in turn is instantiated once as the Module Instance Client_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_Val” module

operation is connected to the “Request_Value” service operation of the

“Request_Value_Service” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Client_Module_Im class, and named “Client_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “Modules Example” Assembly is deployed (that is, the declared Module and Trigger

Instances are allocated to a single ECOA Protection Domain, which is then allocated to a computing

node) by the following XML (file example.deployment.xml):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
 finalAssembly="example" logicalSystem="example">

 <protectionDomain name="Ex1">
 <executeOn computingPlatform="Example_Platform"
 computingNode="card1_bae" />

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12

 <deployedModuleInstance componentName="Client_Inst"
 moduleInstanceName="Client_Module_Instance"
modulePriority="11" />
 <deployedTriggerInstance componentName="Client_Inst"
 triggerInstanceName="Internal_Trigger_Instance"
triggerPriority="12" />

 <deployedModuleInstance componentName="Server_Inst"
 moduleInstanceName="Server_Func1_Instance" modulePriority="3"
/>
 <deployedModuleInstance componentName="Server_Inst"
 moduleInstanceName="Server_Func2_Instance" modulePriority="3"
/>

 </protectionDomain>

 <platformConfiguration
 faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA
Computing Node, on a single ECOA Computing Platform.

Implementation

The Server ASC
The behaviour of each module of the Server ASC is described in detail in the following sections.

Figure 7 depicts the behaviour of the component in the form of a UML sequence diagram.

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 13

Figure 7 - Server ASC Behaviour (as UML Sequence Diagram)

Server_Func1_Im Module

The “Request_Value_Service” Service request handler is implemented by the code function

Server_Func1_Im__Request_for_Val__request_received in the (C) code unit

Server_Func1_Im.c:

void Server_Func1_Im__Request_for_Val__request_received(Server_Func1_Im__context*
context, const ECOA__uint32 ID, const ECOA__global_time* time)
{
 context->user.ID = ID;

 Server_Func1_Im_container__sendCommand__send(context, time);
}

This function sends the “sendCommand” event operation (which is connected to the

Server_Func2_Instance) by invoking the ECOA Container API function

Server_Func1_Im_container__sendCommand__send. A response to the service request is not

provided until the “receiveResult” event is received (from the Server_Func2_Instance) therefore

the implementation of the server is asynchronous (note that the ID of the request is stored in the

user context so it can be used when the response is sent. This implementation only supports one

request being received at a time, as the ID will be overwritten if subsequent requests where

received before the response is sent).

The “receiveResult” is implemented by the following (C) code:

void Server_Func1_Im__receiveResult__received(Server_Func1_Im__context *context,
const ECOA__uint32 result)

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14

{
 ECOA__return_status return_status;

 return_status =
Server_Func1_Im_container__Request_for_Val__response_send(context, context-
>user.ID, result);
}

Server_Func2_Im Module

During initialisation, the module sets the user context data item to an initial value of 10. This is

implemented by the code function Server_Func2_Im__INITIALIZE__received in the (C) code

unit Server_Func2_Im.c:

void Server_Func2_Im__INITIALIZE__received(Server_Func2_Im__context *context)
{
 context->user.value = 10;
}

On receipt of the “receiveCommand” event (from Server_Func1_Instance) the module increments

the current “value” and sends this back using the Container operation

Server_Func2_Im_container__sendResult__send. This is implemented by the code function

Server_Func2_Im__receiveCommand__received:

void Server_Func2_Im__receiveCommand__received(Server_Func2_Im__context *context,
const ECOA__global_time *new_time)
{
 context->user.value += 1;

 Server_Func2_Im_container__sendResult__send(context, context->user.value);
}

The Client ASC
All we need to do is program what to do when the Internal_Trigger_Instance Trigger Instance

fires, i.e. to populate the Client_SM_Im__tick__received function stub.

void Client_Module_Im__tick__received(Client_Module_Im__context *context)
{
 ECOA__global_time time;
 ECOA__return_status return_status;
 example__value_type val;
 ECOA__log log;

 return_status = Client_Module_Im_container__get_absolute_system_time(context,
&time);

 val = 0;

 log.current_size = sprintf((char *) &log.data, "val before request = %d", val);
 Client_Module_Im_container__log_info(context, log);

 ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 15

 return_status = Client_Module_Im_container__Request_Val__request_sync(context,
&time, &val);

 log.current_size = sprintf((char *) &log.data, "val from response = %d", val);
 Client_Module_Im_container__log_info(context, log);
}

That is, the val variable is zeroed and logged prior to invoking the

Client_SM_Im_container__Request_Val__request_sync API, and because a synchronous

Request-Response call is made, the response (in variable val) is immediately available to log.

Program Output
When the ECOA “Modules Example” Assembly is built and run (in a single Node deployment), an

output similar to Figure 8 should be achieved. The Client ASC outputs, at each iteration, both the

value before sending the request message, and the value after receiving the response (note that the

value is incremented with each request).

Figure 8 - ECOA "Modules Example" in Execution

ECOA Examples: Modules Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16

References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification
(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Client-server model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

3 Simple Example.
http://www.ecoa.technology/tutorials.html

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://www.ecoa.technology/tutorials.html

