
Basic example to introduce ECOA concepts – 2017-11-21

Ping pong example

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

This presentation shows how to create, step by step, a basic example using some ECOA concepts :

• Components (ASC) as functional « bricks » to build an application,

• Services that are provided or required by components, and which are composed of elementary operations (three kinds of operations used in

the example : RequestResponse, Event, Data),

• Modules that implement components as technical monothreaded sequences of treatments,

• Different levels of assembly schemas (composites) to define system architectures, or internal component architectures,

• Deployment of modules onto platform resources.

Overview of the PingPong application

with its functional dataflows

2

Introduction

Client

Server

PingPong Request

PingPong Response

Ping Event

Pong Event

Counter
Data

writes reads

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Pingpong example : ECOA view

Service PingPong

<requestresponse name="PingPong">

<event direction="RECEIVED_BY_PROVIDER"
name="Ping"/>

<event direction="SENT_BY_PROVIDER"
name="Pong"/>

<data name="Counter" type="uint32"/>

Component
Instance

Ping

Component
Instance

Pong

requires

provides

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

PingPong Example
Predefined Workspace

0-Types

1-Services

2-ComponentDefinitions

3-InitialAssembly

4-ComponentImplementations

5-Integration

*.types.xml - Type definitions used by operations

*.interface.xml - Service definitions used to functionally link
together components
*.componentType - Component contracts (with QoS)

*.composite - Initial wiring of components

*.impl.xml - Component implementations (XML, source,
binary)

*.impl.composite, logical-system.xml, deployment.xml – Link
between component instances and component
implementations, Logical system, mapping of modules onto
nodes

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Client module Server module

<event direction="RECEIVED_BY_PROVIDER" name="Ping"/>

Service Dependency direction

Dataflow direction

<event direction="SENT_BY_PROVIDER" name="Pong"/>

Service Dependency direction

Dataflow direction

Reminder – services operations (1/2)

In this example « Ping » and
« Pong » are pure events that
do not carry any data.
However ECOA allows events
to carry one or more
arguments (functional data)

Example of
« Ping »
operation =
Equipment
power-on
command

Example of
« Pong »
operation =
Notification
of an
Equipment
failure

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Reminder – services operations (2/2)

<data name="Counter" type="uint32"/>

Service Dependency direction

Dataflow direction

<requestresponse name="PingPong">

Service Dependency direction

Dataflow direction

Dataflow direction

Client module Server module

<input name="Ping_Target" type="pingpong:T_Target_Position"/>

<output name="Pong_Target” type="pingpong:T_Target_Position"/>

Example of
« Counter »
operation =
Publication of
the kinematic
state vector

Example of
« Request
response »
operation =
Query of a
waypoints
database

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « pingpong.types.xml »

7

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <enum name="T_Side" type="uint8">
 <value name="PING"/>
 <value name="PONG"/>
 </enum>

 <simple name="T_Tactical_Item_ID" type="uint32"/>
 <simple name="T_Angle" type="float32" unit="radian"/>

 <record name="T_2D_Position">
 <field name="Latitude" type="T_Angle"/>
 <field name="Longitude" type="T_Angle"/>
 </record>
 <simple name="T_Time" type="int64" unit="nanoseconds"/>

 <record name="T_Target_Position">
 <field name="Tactical_Item_ID" type="T_Tactical_Item_ID"/>
 <field name="Location" type="T_2D_Position"/>
 <field name="Is_Valid" type="boolean8"/>
 </record>

 </types>
</library>

Defined by the system architect

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

This xml file allows declaring functional
datatypes that are being exchanged
through service operations.
Each such xml file is a « library » of
datatypes that each ECOA xml file may
reference in order to use these
datatypes when declaring service
operations.

The name of the library
is « pingpong ».

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « svc_PingPong.interface.xml »

8

<?xml version="1.0"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="pingpong"/>

 <operations>

 <requestresponse name="PingPong">
 <input name="Ping_Target" type="pingpong:T_Target_Position"/>
 <output name="Pong_Target" type="pingpong:T_Target_Position"/>
 </requestresponse>

 <event direction="RECEIVED_BY_PROVIDER" name="Ping"/>
 <event direction="SENT_BY_PROVIDER" name="Pong"/>

 <data name="Counter" type="uint32"/>

 </operations>

</serviceDefinition>

Defined by the system architect

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

These XML files allow declaring ECOA
services.
There is one XML file per ECOA service.
Defining a service consists in defining the
prototype of operations provided by this
service.
At this stage, ECOA services are not yet
instantiated onto provider/user ECOA
components.

Reference to « pingpong » library which contains
datatypes used in this example.

The name of the service is
« svc_PingPong ».

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « Ping.componentType »

9

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="svc_PingPong">
 <ecoa-sca:interface syntax="svc_PingPong" qos=« Required-svc_PingPong"/>
 </reference>

</componentType>

Defined by the system architect

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

« reference » = this means that the
component requires that service.
Syntax parameter must correspond
to a service name as defined by the
name of an *.interface.xml file.

These XML files allow declaring ECOA
component types that can be instantiated in
the ECOA assembly.
There is one such XML file per component
type.
Declaring a component type consists in
declaring which services it provides and which
services it requires, among services declared in
previous slides.

As the component only uses one service
typed « svc_PingPong », the same name is
chosen for the instance name of the service
(but it might have been different).

The name of the
component type
is « Ping ».

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « Pong.componentType »

10

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca">

 <service name="svc_PingPong">
 <ecoa-sca:interface syntax="svc_PingPong" qos="Provided-svc_PingPong"/>
 </service>

</componentType>

« service » = this means that the
component provides that service

Defined by the system architect

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « demo.composite »
(i-e Assembly schema)

11

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="demo"
 targetNamespace="http://www.ecoa.technology/sca_extension-2.0">

 <csa:component name="demoPing">
 <ecoa-sca:instance componentType="Ping"/>
 <csa:reference name="svc_PingPong"/>
 </csa:component>

 <csa:component name="demoPong">
 <ecoa-sca:instance componentType="Pong"/>
 <csa:service name="svc_PingPong"/>
 </csa:component>

 <csa:wire source="demoPing/svc_PingPong" target="demoPong/svc_PingPong" />

</csa:composite>

Defined by the system architect

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

This XML file allows building a logical system
architecture by declaring instances of component
types and by connecting provided/required services
(this is called « wiring »).
At this stage, ECOA components are only manipulated
as « black boxes » with provided/required services.
This is useful at high level system design time.

« wire » = link between two ECOA components, which connects a provided instance of service to a required instance
of service, conformly to compliant service contracts (considering interface prototypes and QoS).
There is one wire to be declared per service contract.

This is how to instantiate
an ECOA component

Names of service

instances

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « myDemoPing.impl.xml » (1/3)

12

<componentImplementation
 xmlns="http://www.ecoa.technology/implementation-2.0" componentDefinition="Ping">

 <!-- list of used libraries -->
 <use library="pingpong"/>

 <!-- module AM to implement provided operations -->
 <moduleType name="myDemoPing_AM_t">
 <operations>
 <requestSent name="PingPong" isSynchronous="true“ timeout="30.0">
 <input name="Ping_Target" type="pingpong:T_Target_Position"/>
 <output name="Pong_Target" type="pingpong:T_Target_Position"/>
 </requestSent>
 <eventSent name="Ping"/>
 <eventReceived name="Pong"/>
 <dataRead type="uint32" name="Counter" maxVersions="8"/>
 <eventReceived name="TriggerPingRequest"/>
 <eventReceived name="TriggerPingEvent"/>
 <eventReceived name="TriggerPingCounter"/>
 </operations>
 </moduleType>

 <moduleImplementation name="myDemoPing_AM" language="C" moduleType="myDemoPing_AM_t"/>
 <moduleInstance name="myDemoPing_AM_I" implementationName="myDemoPing_AM" relativePriority=“20"/>
 <triggerInstance name="Heart_Beat" relativePriority=“10"/>

…

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier Instanciation of module types with their real time attributes
relativePriority defines a priority scale within a component.

Declaration of a module type

Module 2

Module 1

Service = abstraction
of the provider (Pong)

This XML file allows defining a possible software implementation of an ECOA component instance, i-e its internal
breakdown into mono-threaded modules. Therefore a component implementation XML file always references a
component type. Defining a component implementation XML is done by following these steps :
1. First of all, declaring module types in the same fashion as component types : module types are being defined

by their interface (input/ouput operations at the boundary of each module.) At this stage, operations
declared at module type level are not yet related to provided/required services declared at component level.

2. Secondly, this XML file allows defining several possible software implementations of module types (possibly
using different languages: C, C++, Ada).

3. Thirdly, this XML file allows declaring module instances. A module instance is defined by the module type that
it instantiates and the choice of a module implementation

 It is also possible to declare modules called « trigger » that can be used for implementing periodic activations
 of other modules (« Heart_Beat » in this example) or for waking up a module after timeout.

The name of this component implementation is « myDemoPing ». It
defines a possible implementation for components typed « Ping ».
Several implementations may be defined for the same component
type.

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « myDemoPing.impl.xml » (2/3)

13

 <!-- Definition of module operation links -->
 <requestLink>
 <clients><moduleInstance instanceName="myDemoPing_AM_I" operationName="PingPong"/></clients>
 <server><reference instanceName= "svc_PingPong" operationName="PingPong"/></server>
 </requestLink>

 <eventLink>
 <senders><trigger instanceName="Heart_Beat" period="2.000"/></senders>
 <receivers><moduleInstance instanceName="myDemoPing_AM_I" operationName="TriggerPingRequest"/></receivers>
 </eventLink>

 <eventLink>
 <senders><trigger instanceName="Heart_Beat" period="3.000"/></senders>
 <receivers><moduleInstance instanceName="myDemoPing_AM_I" operationName="TriggerPingEvent"/>
 <moduleInstance instanceName="myDemoPing_AM_I" operationName="TriggerPingCounter"/></receivers>
 </eventLink>

 <eventLink>
 <senders><moduleInstance instanceName="myDemoPing_AM_I" operationName="Ping"/></senders>
 <receivers><reference instanceName= "svc_PingPong" operationName="Ping"/></receivers>
 </eventLink>

…

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier

4. Finally this XML file allows connecting module interface with:
• Component interface, in such case it means the module

either implements a service provided by the
component, or requires a service provided by another
component.

• Another module interface, in such case it corresponds
to an internal component interface (not visible outside
of the component)

Connection to a component interface (i-e component external interface),
known by the component service instance name.

Connection to another module interface
(i-e component internal interface), defined by the module instance
name and its associated module type operation name.

Use of a periodic trigger to activate the TriggerPingEvent and
TriggerPingCounter entry points of module instance
« myDemoPing_AM_I »

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « myDemoPing.impl.xml » (3/3)

14

 <eventLink>
 <senders><reference instanceName= "svc_PingPong" operationName="Pong"/></senders>
 <receivers><moduleInstance instanceName="myDemoPing_AM_I" operationName="Pong"/></receivers>
 </eventLink>

 <dataLink>
 <writers><reference instanceName= "svc_PingPong" operationName="Counter"/></writers>
 <readers><moduleInstance instanceName="myDemoPing_AM_I" operationName="Counter"/></readers>
 </dataLink>
</componentImplementation>

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

File « myDemoPong.impl.xml »

15

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

See XML file & source code

Defined by the component supplier

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Ping Applicative Module (1/3)

16

/* @file "myDemoPing_AM.c"
 * This is the user code for Module myDemoPing_AM
 */

#include <stdio.h>
#include <string.h>
#include "myDemoPing_AM.h"

/* The following functions must be implemented by this module: */

/* Entrypoints for lifecycle events */
void myDemoPing_AM__INITIALIZE__received(myDemoPing_AM__context* context) {
 /* One-shot initialisation activities: */
 /* To be implemented */
}

void myDemoPing_AM__START__received(myDemoPing_AM__context* context) {
 /* To be implemented */
}

void myDemoPing_AM__STOP__received(myDemoPing_AM__context* context) {
 /* To be implemented */
}

void myDemoPing_AM__SHUTDOWN__received(myDemoPing_AM__context* context) {
 /* To be implemented */
}

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier

Reminder : module source code is made of
entry points that are activated
either on lifecycle events, or according to
operations.

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Ping Applicative Module (2/3)

17

/* Entrypoints for module operations */
void myDemoPing_AM__Pong__received
(myDemoPing_AM__context* context)
{
 ECOA__log log = { 13, "Pong received" };
 myDemoPing_AM_container__log_trace(context, log);
}

void myDemoPing_AM__TriggerPingRequest__received
(myDemoPing_AM__context* context)
 {
 ECOA__return_status return_status;
 ECOA__log log;
 pingpong__T_Target_Position pingTarget =
 { 1, { 45, 45 }, ECOA__TRUE };
 pingpong__T_Target_Position pongTarget;

 return_status = myDemoPing_AM_container__PingPong__request_sync (context,
 &pingTarget, &pongTarget);

 if (return_status != ECOA__return_status_OK)
 {
 snprintf(log.data, ECOA__LOG_MAXSIZE, "Request return_status : %2d",
 return_status);
 log.current_size = strlen(log.data);
 } else
 {
 snprintf(log.data, ECOA__LOG_MAXSIZE,
 "Pong response : %2d %2.1f %2.1f %d",
 pongTarget.Tactical_Item_ID, pongTarget.Location.Latitude,
 pongTarget.Location.Longitude, pongTarget.Is_Valid);
 log.current_size = strlen(log.data);
 }
 myDemoPing_AM_container__log_trace(context, log);

}

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Ping Applicative Module (3/3)

18

void myDemoPing_AM__TriggerPingEvent__received
(myDemoPing_AM__context* context)
{
 myDemoPing_AM_container__Ping__send(context);
}

void myDemoPing_AM__TriggerPingCounter__received
(myDemoPing_AM__context* context)
{
 ECOA__log log;
 ECOA__log return_status_log = { 14, "Release error" };
 myDemoPing_AM_container__Counter_handle handle;
 ECOA__return_status return_status;

 return_status = myDemoPing_AM_container__Counter__get_read_access(context,
 &handle);
 if (return_status == ECOA__return_status_OK)
 {
 snprintf(log.data, ECOA__LOG_MAXSIZE, "Counter : %2d", *handle.data);
 log.current_size = strlen(log.data);

 myDemoPing_AM_container__log_trace(context, log);

 return_status = myDemoPing_AM_container__Counter__release_read_access
 (context, &handle);
 if (return_status != ECOA__return_status_OK)
 {
 myDemoPing_AM_container__log_debug(context, return_status_log);
 }
 }
 }

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

Defined by the component supplier

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Logical-system.xml

19

<ecoa:logicalSystem id="cs1"
 xmlns:ecoa="http://www.ecoa.technology/logicalsystem-2.0">

 <!--
 Computing Node = « Alienware Aurora » desktop PC
 HyperThreading disabled (BIOS config)
 4 CPU cores
 Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz
 Bogomips : 6785.34 (dmesg | grep BogoMIPS)
 stepDuration = 1/BogoMIPS = 1.47376e-4 s
 -->

 <logicalComputingPlatform id="myPlatform">
 <logicalComputingNode id="machine0">
 <endianess type="BIG" />
 <logicalProcessors number="4" type="x86_64">
 <stepDuration nanoSeconds="147376" />
 </logicalProcessors>
 <os name="linux" />
 <availableMemory gigaBytes="6" />
 <moduleSwitchTime microSeconds="10" />
 </logicalComputingNode>
 </logicalComputingPlatform>

</ecoa:logicalSystem> Provided by the platform supplier

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

This XML file allows declaring high-level
physical characteristics of target ECOA
platforms resources.

Several platforms can be defined to allow
a multi-platforms deployment (supposing
then platforms compliance with optional
ECOA ELI implementation)

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Demo.impl.composite

20

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="demo"
 targetNamespace="http://www.ecoa.technology/sca-extension-2.0">

 <csa:component name="demoPing">
 <ecoa-sca:instance componentType="Ping">
 <ecoa-sca:implementation name="myDemoPing"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_PingPong"/>
 </csa:component>

 <csa:component name="demoPong">
 <ecoa-sca:instance componentType="Pong">
 <ecoa-sca:implementation name="myDemoPong"/>
 </ecoa-sca:instance>
 <csa:service name="svc_PingPong"/>
 </csa:component>

 <csa:wire source="demoPing/svc_PingPong" target="demoPong/svc_PingPong"/>

</csa:composite>

Defined by the system integrator

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

This XML file allows declaring the software level system
architecture. It consists of declaring the assembly of
component instances, taking into account chosen
component implementation for each component
instance.
Consequently this XML file is a software solution to the
logical system architecture previously defined at
component type level (in Demo.composite file).

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Deployment.xml

21

<deployment finalAssembly="demo" logicalSystem="logical_system"
 xmlns="http://www.ecoa.technology/deployment-2.0">

 <protectionDomain name="Ping_PD">
 <executeOn computingNode="machine0" computingPlatform="myPlatform"/>
 <deployedModuleInstance componentName="demoPing" moduleInstanceName="myDemoPing_AM_I" modulePriority="30"/>
 <deployedTriggerInstance componentName="demoPing" triggerInstanceName="Heart_Beat" triggerPriority="10"/>
 </protectionDomain>

 <protectionDomain name="Pong_PD">
 <executeOn computingNode="machine0" computingPlatform="myPlatform"/>
 <deployedModuleInstance componentName="demoPong" moduleInstanceName="myDemoPong_AM_I" modulePriority="30"/>
 </protectionDomain>

 <platformConfiguration computingPlatform="myPlatform" faultHandlerNotificationMaxNumber="8" />

</deployment>

Defined by the system integrator

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

This XML file allows mapping the ECOA SW
architecture onto computing nodes of the target
ECOA computing platforms.
This file is used by each ECOA computing platform
for configuring fault handler notifications, loading
and deploying its associated components
conformly to component implementations stored
in « 4-ComponentImplementations ».

Module priorities are being defined so as to
allow a DMA (Deadline Monotonic Approach)
scheduling of ECOA modules by the platform,
on each computing node (provided this is the
chosen strategy by the system integrator for
scheduling modules).
The system integrator has to choose module
priorities that are compliant with module
relative priorities specified for each
component in component implementation
files.

This ECOA tutorial represents the output of a research programme and is provided solely on an ‘as is’ basis and co-authors of this tutorial make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

Basic example to introduce ECOA concepts – 2017-11-21

Other integration files

22
Defined by the system integrator

0-Types
1-Services
2-ComponentDefinitions
3-InitialAssembly
4-ComponentImplementations
5-Integration

inc/ and src/ directories allow defining files to configure the
ECOA Fault Handler, for platforms on which the ECOA Fault
Handler is implemented as a function within the
infrastructure rather than an ASC.

This example illustrates a platform on which the ECOA Fault
Handler is implemented as a function of the ECOA
infrastructure. In that case, platform documentation gives
ECOA Fault Handler level (platform or node), which allows
defining files and functions names. Files content has then to

be filled conformly to expected behaviour in case of error.

There may be complementary integration files
which are not required by ECOA standard .
In this example, META-INF directory ensures
compliance with SCA standard, as required by
a target platform.
Platform documentation provides information
on specific integration files requirements.

inc

src

META-INF

machine0_fault_handler_user_context.h

machine0_fault_handler.c

sca-contribution.xml

