

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 1

Service Availability Example

Introduction
This document describes an ECOA® client-server example named “Service Availability Example”.

The client-server model (ref. [2]) is one of the most basic data, task, or workload, distribution

mechanisms in computing. Clients and servers may be distributed across a network, or they may

reside on the same computing system. Service oriented concepts, which form a basis behind the

ECOA, naturally fit with the client-server model, the clients referencing (using) the services provided

by the server. Service orientation, and therefore the ECOA, goes on a step extra, in that a

component can be a client (service user) to one or more other components, whilst simultaneously

being a server (service provider) to others.

This document presents the principal user generated artefacts required to create the “Service

Availability Example” client-server example using the ECOA. It is assumed that the reader is

conversant with the ECOA Architecture Specification (ref. [1]) and the process of defining and

declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using

code generation to produce Module framework (stub) code units and ECOA Container and Platform

code.

Aims
This ECOA “Service Availability Example” client-server example is intended to demonstrate a number

of design patterns which can be used by an ECOA system designer in order to provide a functional

view of the availability of services.

ECOA Features Exhibited
 Composition of an ECOA Assembly of multiple ECOA ASCs (components).

 Contention-free resource sharing within an ECOA Assembly.

 Use of the ECOA runtime logging API.

 Management of services using a “functional availability”

Design and Definition

Client-Server Functional Design
The “Service Availability Example” client-server example will demonstrate functional service

availability using 2 services, each containing a number of request-response operations to perform

simple mathematic functions. Figure 1 shows the behaviour of the example system.

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2

Figure 1 - ECOA "Service Availability Example" Client-Server Behaviour

The Client will perform a number of request operations in order to perform simple mathematic

operations:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Power

6. Square Root

ECOA Assembly Design and Definition
This ECOA “Service Availability Example” client-server example ECOA Assembly comprises two ECOA

ASCs named “Client” and “MathServer”. The “Client” ASC type is instantiated once within the ECOA

Assembly as “Client_Inst”. The “Server” ASC is instantiated once within the ECOA Assembly as

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 3

“MathServer_Inst” and provides the “ProvidedBasicMath” and “ProvidedComplextMath” ECOA

Services, both of which are referenced (used) by the “Client_Inst” ASC (Figure 2).

Figure 2 - ECOA "Service Availability" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Service Availability Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite
 xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="example"
 targetNamespace="http://www.ecoa.technology">

 <csa:component name="Client_Inst">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client_Im"/>
 </ecoa-sca:instance>

 <csa:reference name="RequiredBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </csa:reference>

 <csa:reference name="RequiredComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </csa:reference>

 </csa:component>

 <csa:component name="MathServer_Inst">

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4

 <ecoa-sca:instance componentType="MathServer">
 <ecoa-sca:implementation name="MathServer_Im"/>
 </ecoa-sca:instance>

 <csa:service name="ProvidedBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </csa:service>

 <csa:service name="ProvidedComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </csa:service>

 </csa:component>

 <csa:wire source="Client_Inst/RequiredBasicMath"
target="MathServer_Inst/ProvidedBasicMath"/>

 <csa:wire source="Client_Inst/RequiredComplexMath"
target="MathServer_Inst/ProvidedComplexMath"/>

</csa:composite>

The MathServer ASC type is defined in XML as follows (file MathServer.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="ProvidedBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </service>

 <service name="ProvidedComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

ProvidedBasicMath and ProvidedComplexMath ECOA Services.

The Client ASC type is defined in XML as follows (file Client.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="RequiredBasicMath">
 <ecoa-sca:interface syntax="svc_BasicMath"/>
 </reference>

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 5

 <reference name="RequiredComplexMath">
 <ecoa-sca:interface syntax="svc_ComplexMath"/>
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

RequiredBasicMath and RequiredComplexMath ECOA Services.

ECOA Service and Types Definition
The svc_BasicMath Service, which is provided by the MathServer ASC and referenced by the

Client ASC, is defined in a XML file (svc_BasicMath.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="BasicMath"/>

 <operations>
 <requestresponse name="add">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="subtract">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="multiply">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="divide">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestresponse>

 <data name="available" type="ECOA:boolean8"/>

 </operations>
</serviceDefinition>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6

The Service comprises four ECOA Request-Response Operations called add, subtract, multiply and

divide. In addition, an ECOA Versioned Data Operation called available is defined.

The svc_ComplexMath Service, which is provided by the MathServer ASC and referenced by the

Client ASC, is defined in a XML file (svc_ComplexMath.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <operations>
 <requestresponse name="power">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 <requestresponse name="squareRoot">
 <input name="value" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestresponse>

 </operations>
</serviceDefinition>

The Service comprises two ECOA Request-Response Operations called power and squareRoot.

 The data types library (used in the svc_BasicMath) is, unsurprisingly, also defined in an XML (file

BasicMath.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <enum name="Divide_Status_Type" type="ECOA:uint32">
 <value name="OK" valnum="0"/>
 <value name="Error" valnum="1"/>
 <value name="Divide_By_Zero" valnum="2"/>
 <value name="Unavailable" valnum="3"/>
 </enum>

 </types>
</library>

The data type BasicMath:Divide_Status_Type is therefore an enumeration type, with 4 possible

values.

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 7

ECOA Module Design and Definition
The MathServer ASC (component) is composed of two Modules (Module Implementations

BasicMath_Im and ComplexMath_Im of Module Types BasicMath_Type and ComplexMath_Type

respectively) as illustrated in UML in Figure 3.

Figure 3 “MathServer” Module Design (as UML Composite Structure Diagram)

The Client ASC (component) is composed of a single ECOA Module (Module Implementations

Client_Module_Im of Module Type Client_Module_Type) as illustrated in UML in Figure 4.

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8

Figure 4 – “Client” Module Design (as UML Composite Structure Diagram)

Figure 5 and Figure 6 depict in UML the internal design of the MathServer ASC (component)

providing the svc_BasicMath and svc_ComplexMath ECOA Services, whilst the Client ASC

references the Services. As always in the ECOA, the Module Implementations implement the

Module Lifecycle operations defined by the ECOA.

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 9

Figure 5 - "MathServer” Component Design (as UML Composite Structure Diagram)

Figure 6 - "Client” Component Design (as UML Composite Structure Diagram)

The MathServer ASC

The MathServer ASC is declared in XML as follows (file MathServer_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="MathServer">

 <use library="BasicMath"/>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10

 <moduleType name="BasicMath_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="add" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="subtract" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="multiply" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="divide" maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestReceived>

 <dataWritten name="available" type="ECOA:boolean8"/>

 <eventReceived name="publish">
 </eventReceived>

 </operations>

 </moduleType>

 <moduleType name="ComplexMath_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="power" maxConcurrentRequests="10">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 <requestReceived name="squareRoot" maxConcurrentRequests="10">
 <input name="value" type="ECOA:int32"/>

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 11

 <output name="result" type="ECOA:int32"/>
 </requestReceived>

 </operations>

 </moduleType>

 <moduleImplementation name="BasicMath_Im" language="C"
moduleType="BasicMath_Type"/>
 <moduleImplementation name="ComplexMath_Im" language="C"
moduleType="ComplexMath_Type"/>

 <moduleInstance name="BasicMath_Instance" implementationName="BasicMath_Im"
relativePriority="2">

 </moduleInstance>
 <moduleInstance name="ComplexMath_Instance" implementationName="ComplexMath_Im"
relativePriority="3">

 </moduleInstance>

 <triggerInstance name="Publish_Trigger" relativePriority="2"/>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="add"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance" operationName="add"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="subtract"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="subtract"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="available"/>
 </writers>
 <readers>
 <service instanceName="ProvidedBasicMath" operationName="available"/>
 </readers>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12

 </dataLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="multiply"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="multiply"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedBasicMath" operationName="divide"/>
 </clients>
 <server>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="divide"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedComplexMath" operationName="power"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="power"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="ProvidedComplexMath" operationName="squareRoot"/>
 </clients>
 <server>
 <moduleInstance instanceName="ComplexMath_Instance"
operationName="squareRoot"/>
 </server>
 </requestLink>

 <eventLink>
 <senders>
 <trigger instanceName="Publish_Trigger" period="1"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="BasicMath_Instance"
operationName="publish"/>
 </receivers>

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 13

 </eventLink>

</componentImplementation>

 That is, two Module Types (BasicMath_Type and ComplexMath_Type) are declared.

The Publish_Trigger Trigger Instance is introduced because the Server needs to change its

behaviour over time, and this trigger sequences the changes. Once every period (1 second as set in

the <eventLink> XML) the Trigger will fire and the Module Operation publish will be invoked.

BasicMath_Type is a Module which has five operations specified:

 a requestReceived operation “add”;

 a requestReceived operation “subtract”;

 a requestReceived operation “multiply”;

 a requestReceived operation “divide”;

 a dataWritten operation “available”.

 The eventReceived operation “publish”.

This Module Type is implemented by a concrete Module Implementation BasicMath_Im which in

turn is instantiated once as the Module Instance BasicMath_Instance.

ComplexMath_Type is a Module which has two operations specified:

 a requestReceived operation “power”;

 a requestReceived operation “squareRoot”.

This Module Type is implemented by a concrete Module Implementation ComplexMath_Im which in

turn is instantiated once as the Module Instance ComplexMath_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations.

Two functional code units will be produced by the code generation process, implementing in code

the concrete BasicMath_Im and ComplexMath_Im classes, named “BasicMath_Im.c” and

“ComplexMath_Im.c” respectively (assuming the Module Implementation declaration has set the

language property to “C”).

The Client ASC

The Client ASC is declared in XML as follows (file Client_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Client">

 <use library="BasicMath"/>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14

 <moduleType name="Client_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <eventReceived name="tick">
 </eventReceived>

 <requestSent name="add" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="subtract" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="multiply" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="divide" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="value1" type="ECOA:int32"/>
 <input name="value2" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 <output name="status" type="BasicMath:Divide_Status_Type"/>
 </requestSent>

 <requestSent name="power" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="base" type="ECOA:int32"/>
 <input name="exponent" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <requestSent name="squareRoot" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <input name="value" type="ECOA:int32"/>
 <output name="result" type="ECOA:int32"/>
 </requestSent>

 <dataRead name="BasicMathServiceAvailable" type="ECOA:boolean8"/>

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 15

 </operations>

 </moduleType>

 <moduleImplementation name="Client_Module_Im" language="C"
moduleType="Client_Module_Type"/>

 <moduleInstance name="Client_Module_Instance"
implementationName="Client_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Internal_Trigger_Instance" relativePriority="2"/>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="tick"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="add"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="add"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="subtract"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="subtract"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="multiply"/>
 </clients>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16

 <server>
 <reference instanceName="RequiredBasicMath" operationName="multiply"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="divide"/>
 </clients>
 <server>
 <reference instanceName="RequiredBasicMath" operationName="divide"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="power"/>
 </clients>
 <server>
 <reference instanceName="RequiredComplexMath" operationName="power"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="squareRoot"/>
 </clients>
 <server>
 <reference instanceName="RequiredComplexMath"
operationName="squareRoot"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="RequiredBasicMath" operationName="available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="BasicMathServiceAvailable"/>
 </readers>
 </dataLink>

</componentImplementation>

 That is, a Module Type (Client_Module_Type) is declared which has eight operations:

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 17

 An “add” requestSent operation;

 An “subtract” requestSent operation;

 An “multiply” requestSent operation;

 An “divide” requestSent operation;

 An “power” requestSent operation;

 An “squareRoot” requestSent operation;

 A “BasicMathServiceAvailable” dataRead operation;

 The eventReceived operation “tick”.

The Internal_Trigger_Instance Trigger Instance is introduced because the Client needs to

“periodically request mathematical calculations” and so an ECOA periodic trigger is required. Once

every period (2 seconds as set in the <eventLink> XML) the Trigger will fire and the Module

Operation tick will be invoked.

This Module Type is implemented by a concrete Module Implementation Client_Module_Im, which

in turn is instantiated once as the Module Instance Client_Module_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Client_Module_Im class, and named “Client_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “Service Availability Example” Assembly is deployed (that is, the declared Module and

Trigger Instances are allocated to a single ECOA Protection Domain, which is then allocated to a

computing node) by the following XML (file example.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="example" logicalSystem="example">

 <protectionDomain name="Ex1">
 <executeOn computingPlatform="Example_Platform" computingNode="card1_bae"/>

 <deployedModuleInstance componentName="Client_Inst"
moduleInstanceName="Client_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="Client_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
 <deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="ComplexMath_Instance" modulePriority="3"/>
 <deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="BasicMath_Instance" modulePriority="3"/>
 <deployedTriggerInstance componentName="MathServer_Inst"
triggerInstanceName="Publish_Trigger" triggerPriority="12"/>
 </protectionDomain>

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

18

 <platformConfiguration faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA
Computing Node, on a single ECOA Computing Platform.

Implementation

The MathServer ASC
The behaviour of each module of the MathServer ASC is described in detail in the following sections.

BasicMath_Im Module

The “ProvidedBasicMath” Service operation request operation handlers are implemented in the (C)

code unit BasicMath_Im.c. Each operation handler demonstrates a different method of handling

functional service availability.

The “add” functionality is implemented by the following (C) code:

void BasicMath_Im__add__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the add operation is:
 // Undefined if the service is not "functionally" available. The module does
not check the state before responding!

 ECOA__return_status status;

 ECOA__int32 result = value1 + value2;
 status = BasicMath_Im_container__add__response_send(context, ID, result);

 if(context->user.availCount <= 2)
 {
 context->user.availCount++;
 }

}

 This function performs a simple addition operation on the two input parameter values. A response

is then sent immediately to the client containing the result of the addition. Note that this function

does not take into account the functional availability of the service and so the operation will

complete successfully even if the service has not been set functionally available.

The “subtract” functionality is implemented by the following (C) code:

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 19

void BasicMath_Im__subtract__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the subtract operation is:
 // Check if the service is functionally available.
 // If it is available, send a response.
 // If it is unavailable, do not send a response.

 ECOA__return_status status;

 if (context->user.basicMathServiceAvailable)
 {
 ECOA__int32 result = value1 - value2;
 status = BasicMath_Im_container__subtract__response_send(context, ID,
result);
 }
}

This function checks to ensure that the service has been set as functionally available prior to

performing a simple subtraction operation on the two input parameter values. A response is then

sent immediately to the client containing the result of the subtraction. This implementation may

mean that a client will not receive a response if it has attempted to send a request when the service

is set as unavailable. A client using this service operation should use a timeout to ensure the request

does not block indefinitely or overflow the maximum concurrent request.

The “multiply” functionality is implemented by the following (C) code:

void BasicMath_Im__multiply__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the multiply operation is:
 // Check if the service is functionally available.
 // If it is available, send a response.
 // If it is unavailable, send a response, but with a default value.

 ECOA__return_status status;
 ECOA__int32 result = 0;

 if (context->user.basicMathServiceAvailable)
 {
 result = value1 * value2;
 status = BasicMath_Im_container__multiply__response_send(context, ID,
result);
 }
 else
 {

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

20

 status = BasicMath_Im_container__multiply__response_send(context, ID,
result);
 }
}

This function checks to ensure that the service has been set as functionally available prior to

performing a simple multiplication operation on the two input parameter values. A response is then

sent immediately to the client containing the result of the multiplication. If the service is not

available, a response is sent with a default value of 0 for the result. Note that this is not a robust

solution for this functionality, as a 0 value could be a valid result, but the intent is to show that a

default value could be used in appropriate situations.

The “divide” functionality is implemented by the following (C) code:

void BasicMath_Im__divide__request_received
 (BasicMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value1,
 const ECOA__int32 value2)
{
 // The behaviour of the divide operation is:
 // Check if the service is functionally available.
 // If it is available, send a response.
 // If it is unavailable, send a response, but with an "Unavailable" status and
default value.

 ECOA__return_status status;
 ECOA__int32 result = 0;
 BasicMath__Divide_Status_Type divideStatus = BasicMath__Divide_Status_Type_OK;

 if (context->user.basicMathServiceAvailable)
 {
 ECOA__int32 result = value1 / value2;
 status = BasicMath_Im_container__divide__response_send(context, ID, result,
divideStatus);
 }
 else
 {
 // Return not available.
 divideStatus = BasicMath__Divide_Status_Type_Unavailable;
 status = BasicMath_Im_container__divide__response_send(context, ID, result,
divideStatus);
 }

}

This function checks to ensure that the service has been set as functionally available prior to

performing a simple division operation on the two input parameter values. A response is then sent

immediately to the client containing the result of the division and an “OK” status. If the service is not

available, a response is sent with a default value of 0 for the result and a “Not Available” status.

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 21

The “publish” functionality is implemented by the following (C) code:

void BasicMath_Im__publish__received(BasicMath_Im__context *context)
{
 ECOA__log log;

 /* User Code Here */
 if(context->user.availCount < 11)
 {
 context->user.availCount++;
 }

 switch(context->user.availCount)
 {
 case 6:
 log.current_size = sprintf((char *) &log.data, "**** Server now setting
service available");
 BasicMath_Im_container__log_info(context, log);

 context->user.basicMathServiceAvailable = ECOA__TRUE;

 break;
 case 10:
 log.current_size = sprintf((char *) &log.data, "**** Server stopping
publish");
 BasicMath_Im_container__log_info(context, log);

 context->user.publish = ECOA__FALSE;

 break;
 }

 if(context->user.publish)
 {
 Publish_Functional_Service_Availability(context);
 }
}

This function sequences the change of behaviour of the Server Component. Each time the

Publish_Trigger generates an event, this function increments a counter (up to 11). Initially the

functional service is set as unavailable by the INITIALIZE operation, but is set as available when the

counter reaches 6. The function will publish any change of availability until the count reaches 10, at

which point it is no longer published and the data will become ‘stale’.

In order to be able to publish the functional service availability a utility function is implemented by

the following (C) Code:

static void Publish_Functional_Service_Availability(BasicMath_Im__context*
context)
{

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

22

 ECOA__return_status status;
 BasicMath_Im_container__available_handle availableHandle;

 status = BasicMath_Im_container__available__get_write_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)
 {
 *(availableHandle.data) = context->user.basicMathServiceAvailable;
 }

 status =
BasicMath_Im_container__available__publish_write_access(context,
&availableHandle);
}

This function is invoked at other places to publish the functional service availability.

At startup the Module declares the functional availability as unavailable in the following (C) code:

void BasicMath_Im__INITIALIZE__received(BasicMath_Im__context *context)
{
 /* Initially set the functional service unavailable */
 context->user.publish = ECOA__TRUE;
 context->user.basicMathServiceAvailable = ECOA__FALSE;
 Publish_Functional_Service_Availability(context);
 context->user.availCount = 0;
 }

ComplexMath_Im Module

The “ProvidedComplexMath” Service operation request operation handlers are implemented in the

(C) code unit ComplexMath_Im.c. This service does not have the concept of functional availability. A

client is free to call the operation at any time.

The “power” functionality is implemented by the following (C) code:

void ComplexMath_Im__power__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 base,
 const ECOA__int32 exponent)
{
 ECOA__return_status status;

 ECOA__int32 result = pow(base, exponent);
 status = ComplexMath_Im_container__power__response_send(context,ID, result);
}

The “squareRoot” functionality is implemented by the following (C) code:

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 23

void ComplexMath_Im__squareRoot__request_received
 (ComplexMath_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__int32 value)
{
 ECOA__return_status status;

 ECOA__int32 result = sqrt(value);
 status = ComplexMath_Im_container__squareRoot__response_send(context,ID,
result);
}

The Client ASC
All we need to do is program what to do when the Internal_Trigger_Instance Trigger Instance

fires, i.e. to populate the Client_Module_Im__tick__received function stub.

void Client_Module_Im__tick__received(Client_Module_Im__context *context)
{
 ECOA__return_status status;

 // Basic math should only be used if the service has been set as functionally
available...
 // However, we can use any except subtract as the other service operations are
designed to send a response regardless.
 testAddition(context);
 testSubtraction(context);
 testMultiplication(context);
 testDivision(context);

 // The exponential math can be used anytime...
 testPower(context);
 testSquareRoot(context);

 ECOA__log log;
 log.current_size = sprintf((char *) &log.data, "-------------------------------
-------------------");
 Client_Module_Im_container__log_info(context, log);

}

At each period, a synchronous Request-Response call is made to each of the math operations

available in “RequiredBasicMath” and “RequiredComplexMath”. This is done by the invocation of a

number of user-written methods which are detailed below. In each method, a log is made before

invoking the respective container operation. In this example, the functional availability of the

“RequiredBasicMath” is not taken into consideration with the exception of the subtract operation

(“testSubtraction()”).

Before sending the subtract request, the “BasicMathServiceAvailable” versioned data is

interrogated to check if the service has been set as functionally available. This is due to the fact that

the server requirement for this operation is to not send a response. If the request is made

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

24

regardless, the module would become blocked indefinitely. Note that there is a race-condition

which means the service could be available when the request is made, but unavailable when it

reaches the server; it is therefore always advisable to set a timeout on the client request operation

to cater for this scenario.

static void testAddition(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 5;
 ECOA__int32 value2 = 10;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting addition of %d and
%d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__add__request_sync(context, value1, value2,
&result);

 log.current_size = sprintf((char *) &log.data, "result of addition of %d and %d
= %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
}

static void testSubtraction(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;
 Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

 ECOA__int32 value1 = 50;
 ECOA__int32 value2 = 10;
 ECOA__int32 result = 0;

 // The division operation should check if the service is functionally
available, as the server
 // behaviour is defined to not respond if a request is received when
functionally unavailable.
 // This could lead to the client module being blocked indefinitely if no
timeout is specified!
 status =
Client_Module_Im_container__BasicMathServiceAvailable__get_read_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK)
 {
 if (*(availableHandle.data) == ECOA__TRUE)
 {
 log.current_size = sprintf((char *) &log.data, "requesting subtraction of
%d minus %d", value1, value2);

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 25

 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__subtract__request_sync(context,
value1, value2, &result);

 log.current_size = sprintf((char *) &log.data, "result of subtraction of
%d minus %d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "cannot perform
subtraction as service unavailable");
 Client_Module_Im_container__log_info(context, log);
 }

 status =
Client_Module_Im_container__BasicMathServiceAvailable__release_read_access(context
, &availableHandle);
 }
}

Before sending the multiplication request, the “BasicMathServiceAvailable” versioned data is
interrogated to check if the state data has been updated since the last time (by checking the
‘stamp’). The request will be sent irrespective of the actual state of the service availability, but will
only be sent if the state has not become stale. Since initially the service is set as unavailable but the
state is being continually published, then the server will respond with a default value. Once the
service is set as available, then the correct multiplication result will be returned. Finally, when the
server stops publishing the state, the client will detect it has become stale and no-longer send the
request.

static void testMultiplication(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;
 Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

 ECOA__int32 value1 = 7;
 ECOA__int32 value2 = 8;
 ECOA__int32 result = 0;

 // When the server is declaring its service as unavailable, then it will return
a default value for the multiplication.
 // When the server stops periodically publishing its availability then assume
the service is not available
 status =
Client_Module_Im_container__BasicMathServiceAvailable__get_read_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK)
 {
 if(availableHandle.stamp != context->user.previousStamp)

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

26

 {
 context->user.previousStamp = availableHandle.stamp;
 log.current_size = sprintf((char *) &log.data, "requesting multiplication
of %d by %d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__multiply__request_sync(context,
value1, value2, &result);

 log.current_size = sprintf((char *) &log.data, "result of multiplication
of %d by %d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);

 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "server availability is
stale - not requesting multiplication");
 Client_Module_Im_container__log_info(context, log);
 }

 status =
Client_Module_Im_container__BasicMathServiceAvailable__release_read_access(context
, &availableHandle);

 }
}

static void testDivision(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 1000;
 ECOA__int32 value2 = 20;
 ECOA__int32 result = 0;
 BasicMath__Divide_Status_Type divideStatus;

 log.current_size = sprintf((char *) &log.data, "requesting division of %d by
%d", value1, value2);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__divide__request_sync(context, value1,
value2, &result, ÷Status);

 if (divideStatus == BasicMath__Divide_Status_Type_OK)
 {
 log.current_size = sprintf((char *) &log.data, "result of division of %d by
%d = %d", value1, value2, result);
 Client_Module_Im_container__log_info(context, log);
 }
 else
 {

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 27

 log.current_size = sprintf((char *) &log.data, "Failed to divide - status =
%d", divideStatus);
 Client_Module_Im_container__log_info(context, log);
 }
}

static void testPower(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 base = 3;
 ECOA__int32 exponent = 4;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting %d raised to the
power %d", base, exponent);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__power__request_sync(context, base,
exponent, &result);

 log.current_size = sprintf((char *) &log.data, "result of %d raised to the
power %d = %d", base, exponent, result);
 Client_Module_Im_container__log_info(context, log);
}

static void testSquareRoot(Client_Module_Im__context *context)
{
 ECOA__log log;
 ECOA__return_status status;

 ECOA__int32 value1 = 25;
 ECOA__int32 result = 0;

 log.current_size = sprintf((char *) &log.data, "requesting square root of %d",
value1);
 Client_Module_Im_container__log_info(context, log);

 status = Client_Module_Im_container__squareRoot__request_sync(context, value1,
&result);

 log.current_size = sprintf((char *) &log.data, "result of square root of %d =
%d", value1, result);
 Client_Module_Im_container__log_info(context, log);
}

Program Output
When the ECOA “Service Availability Example” Assembly is built and run (in a single Node

deployment), an output similar to Figure 7 should be achieved. The Client ASC outputs, at each

ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

28

iteration, the values before sending each request message, and the value after receiving the

corresponding response.

Figure 7 - ECOA "Service Availability Example" in Execution

 ECOA Examples: Service Availability Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 29

References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification
(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Client-server model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model

https://en.wikipedia.org/wiki/Client%E2%80%93server_model

