INSPIRED WORK

Service Availability Example

Introduction
This document describes an ECOA® client-server example named “Service Availability Example”.

The client-server model (ref. [2]) is one of the most basic data, task, or workload, distribution
mechanisms in computing. Clients and servers may be distributed across a network, or they may
reside on the same computing system. Service oriented concepts, which form a basis behind the
ECOA, naturally fit with the client-server model, the clients referencing (using) the services provided
by the server. Service orientation, and therefore the ECOA, goes on a step extra, in that a
component can be a client (service user) to one or more other components, whilst simultaneously
being a server (service provider) to others.

This document presents the principal user generated artefacts required to create the “Service
Availability Example” client-server example using the ECOA. It is assumed that the reader is
conversant with the ECOA Architecture Specification (ref. [1]) and the process of defining and
declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using
code generation to produce Module framework (stub) code units and ECOA Container and Platform
code.

Aims

This ECOA “Service Availability Example” client-server example is intended to demonstrate a number
of design patterns which can be used by an ECOA system designer in order to provide a functional
view of the availability of services.

ECOA Features Exhibited
e Composition of an ECOA Assembly of multiple ECOA ASCs (components).
e Contention-free resource sharing within an ECOA Assembly.
e Use of the ECOA runtime logging API.
e Management of services using a “functional availability”

Design and Definition

Client-Server Functional Design

The “Service Availability Example” client-server example will demonstrate functional service
availability using 2 services, each containing a number of request-response operations to perform
simple mathematic functions. Figure 1 shows the behaviour of the example system.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

1



ECOA Examples: Service Availability Example INSPIRED WORHK

El s Service_Awvailability_Example-Behaviour )

5 Client 5 MathServer
1 T
| |
| |
\b |
add —"

|- add response
DS ..} sponse______ | T
|
b_._
subtract
subtract respanse. — — —— - =n
e !
_b_L
multiply
________ multiphy respanse. . L
=~ Rl resp |
|
divide >
divide response
————————————————— .
< |
|
power L
_________ Ppowerresponse | ____ |
- H
1
squareRoot >
squareRoot response | |
D ,
|
|
|
|
i
H :
|

Figure 1 - ECOA "Service Availability Example" Client-Server Behaviour

The Client will perform a number of request operations in order to perform simple mathematic

operations:
1. Addition
2. Subtraction
3. Multiplication
4. Division
5. Power
6. Square Root

ECOA Assembly Design and Definition

This ECOA “Service Availability Example” client-server example ECOA Assembly comprises two ECOA
ASCs named “Client” and “MathServer”. The “Client” ASC type is instantiated once within the ECOA
Assembly as “Client_Inst”. The “Server” ASC is instantiated once within the ECOA Assembly as

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2



INSPIRED WORHK ECOA Examples: Service Availability Example

“MathServer_Inst” and provides the “ProvidedBasicMath” and “ProvidedComplextMath” ECOA
Services, both of which are referenced (used) by the “Client_Inst” ASC (Figure 2).

«AssemblySchema»

Q example
«ComponentInstance»
=]+ Client_Inst: Client [1] «ComponentInstance»
=)+ MathServer_Inst: MathSer...
«RequiredService» i )
+ RequiredBasicMath: svc_BasicMath [1] ; ; «ProvidedService»
I:—| + ProvidedBasicMath: svc_BasicMath [[L]
|
1 «Servicelink»

«RequiredService»
L RequiredComplexMath: svc_ComplexMath [1]

-
[J «Servicelink» J

«ProvidedService»
+ ProvidedComplexMath: svc_ComplexiMath [1]

Figure 2 - ECOA "Service Availability" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or
Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA
“Service Availability Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite
xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="example"
targetNamespace="http://www.ecoa.technology">

<csa:component name="Client_Inst">
<ecoa-sca:instance componentType="Client">
<ecoa-sca:implementation name="Client_Im"/>
</ecoa-sca:instance>

<csa:reference name="RequiredBasicMath">
<ecoa-sca:interface syntax="svc_BasicMath"/>

</csa:reference>

<csa:reference name="RequiredComplexMath">
<ecoa-sca:interface syntax="svc_ComplexMath"/>

</csa:reference>

</csa:component>

<csa:component name="MathServer_Inst">

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

3



ECOA Examples: Service Availability Example INSPIRED WORK

<ecoa-sca:instance componentType="MathServer">
<ecoa-sca:implementation name="MathServer_Im"/>
</ecoa-sca:instance>

<csa:service name="ProvidedBasicMath">
<ecoa-sca:interface syntax="svc_BasicMath"/>
</csa:service>

<csa:service name="ProvidedComplexMath">
<ecoa-sca:interface syntax="svc_ComplexMath"/>
</csa:service>

</csa:component>

<csa:wire source="Client_Inst/RequiredBasicMath"
target="MathServer_Inst/ProvidedBasicMath"/>

<csa:wire source="Client_Inst/RequiredComplexMath"
target="MathServer_Inst/ProvidedComplexMath"/>

</csa:composite>
The MathServer ASC type is defined in XML as follows (file MathServer. componentType):

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

<service name="ProvidedBasicMath">
<ecoa-sca:interface syntax="svc_BasicMath"/>
</service>

<service name="ProvidedComplexMath">
<ecoa-sca:interface syntax="svc_ComplexMath"/>
</service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the
ProvidedBasicMath and ProvidedComplexMath ECOA Services.

The Client ASC type is defined in XML as follows (file CLient. componentType):

<?xml version="1.0" encoding="UTF-8"?>

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

<reference name="RequiredBasicMath">
<ecoa-sca:interface syntax="svc_BasicMath"/>
</reference>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4



INSPIRED WORHK ECOA Examples: Service Availability Example

<reference name="RequiredComplexMath">
<ecoa-sca:interface syntax="svc_ComplexMath"/>
</reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the
RequiredBasicMath and RequiredComplexMath ECOA Services.

ECOA Service and Types Definition
The svc_BasicMath Service, which is provided by the MathServer ASC and referenced by the
Client ASC, is defined in a XML file (svc_BasicMath.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

<use library="BasicMath"/>

<operations>
<requestresponse name="add">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:1int32"/>
</requestresponse>

<requestresponse name="subtract">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:1int32"/>
</requestresponse>

<requestresponse name="multiply">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestresponse>

<requestresponse name="divide">

<input name="valuel" type="ECOA:int32"/>

<input name="value2" type="ECOA:int32"/>

<output name="result" type="ECOA:1int32"/>

<output name="status" type="BasicMath:Divide_Status_Type"/>
</requestresponse>

<data name="available" type="ECOA:boolean8"/>

</operations>
</serviceDefinition>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

5



ECOA Examples: Service Availability Example INSPIRED WORK

The Service comprises four ECOA Request-Response Operations called add, subtract, multiply and
divide. In addition, an ECOA Versioned Data Operation called available is defined.

The svc_ComplexMath Service, which is provided by the MathServer ASC and referenced by the
Client ASC, is defined in a XML file (svc_ComplexMath. interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

<operations>
<requestresponse name="power">
<input name="base" type="ECOA:1int32"/>
<input name="exponent" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestresponse>

<requestresponse name="squareRoot">
<input name="value" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestresponse>

</operations>
</serviceDefinition>

The Service comprises two ECOA Request-Response Operations called power and squareRoot.

The data types library (used in the svc_BasicMath) is, unsurprisingly, also defined in an XML (file
BasicMath. types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

<types>
<enum name="Divide_Status_Type" type="ECOA:uint32">
<value name="0K" valnum="0"/>
<value name="Error" valnum="1"/>
<value name="Divide_By Zero" valnum="2"/>
<value name="Unavailable" valnum="3"/>
</enum>

</types>
</library>

The data type BasicMath:Divide _Status_Type is therefore an enumeration type, with 4 possible
values.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6



INSPIRED WORHK

ECOA Examples: Service Availability Example

ECOA Module Design and Definition
The MathServer ASC (component) is composed of two Modules (Module Implementations

BasicMath _Im and ComplexMath_Im of Module Types BasicMath Type and ComplexMath Type
respectively) as illustrated in UML in Figure 3.

=Components
=ComponentDefinitions=
= 1 MathServer

«Componentimplementation=
Q MathServer_Im

«ModuleType=
= ComplexMath_Type
sModuleTypes
IsFaultHandler=false
hasUserContext=false
hasWarmStartContext=rfalse

zModuleTypes
Q BasicMath_Type
shoduleTypes
IsFaultHandler=false
hasUserContext=true
hasWarmStartContext=Ffalse

sModulelmplementations sModuleImplementations
£ BasicMath_Im = Complexiath_Im
«Modulelmplementation=
Language=C

«ModuleImplementation=
Language=C

Figure 3 “MathServer” Module Design (as UML Composite Structure Diagram)
The Client ASC (component) is composed of a single ECOA Module (Module Implementations
Client _Module Im of Module Type CLient Module Type) as illustrated in UML in Figure 4.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

7



ECOA Examples: Service Availability Example INSPIRED WORHK

sComponents
zCompeonentDefinitions
=1 Client

«Companentmplementations
Q Client_Im

«ModuleTypes
Q Client_Module_Type
=ModuleTypes
IsFaultHandler=false
hasUserContext=true
hasWarmStartContext=Ffalse

«Madulelmplementation=
Q Client_Maodule_Im
«Modulelmplementation=

Language=C

Figure 4 — “Client” Module Design (as UML Composite Structure Diagram)

Figure 5 and Figure 6 depict in UML the internal design of the MathServer ASC (component)
providing the svc BasicMath and svc_ComplexMath ECOA Services, whilst the Client ASC
references the Services. As always in the ECOA, the Module Implementations implement the
Module Lifecycle operations defined by the ECOA.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8



INSPIRED WORHK ECOA Examples: Service Availability Example

«Componentimplementations
MathServer_Im

«Modulelnstance»

«ProvidedService» (=) + BasicMath_Instance: BasicMath_Im [1]

+ ProvidedBasicMath: svc_BasicMath ﬁ

«TriggerInstances»
+ Publish_Trigger: <Undefined > [1

Publish_Trigger

«ProvidedService»
ided lexMath: sve_Cor 1 (1]

«Modulelnstance»
Aath_Instance: C lexMath_Im [1]

Figure 5 - "MathServer” Component Design (as UML Composite Structure Diagram)

«ComponentImplementation»
H client Im

multiply

«Modulelnstance»

3. + Client Module_Instance: Client_ Module Im [LKT
tick

ik

. ] «RequiredServices

multiply + RequiredBasicMath: svc_BasicMath [1]

divide

available

«RequiredServices
] "+ Required sve w

Internal_Trigg ev_Iastan(:

«TriggerInstance»
= + InternaI_Trlg_ger_lnstance: <Undefined> [1]

Figure 6 - "Client” Component Design (as UML Composite Structure Diagram)

The MathServer ASC

The MathServer ASC is declared in XML as follows (file MathServer_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"

componentDefinition="MathServer">

<use library="BasicMath"/>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

9



BAE SYSTEMS

ECOA Examples: Service Availability Example INSPIRED WORK

<moduleType name="BasicMath_Type" hasUserContext="true"
hasWarmStartContext="false">

<operations>

<requestReceived name="add" maxConcurrentRequests="10">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestReceived>

<requestReceived name="subtract" maxConcurrentRequests="10">
<input name="valuel” type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestReceived>

<requestReceived name="multiply"” maxConcurrentRequests="10">
<input name="valuel” type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestReceived>
<requestReceived name="divide"” maxConcurrentRequests="10">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
<output name="status" type="BasicMath:Divide_Status_Type"/>
</requestReceived>

<dataWritten name="available" type="ECOA:boolean8"/>

<eventReceived name="publish">
</eventReceived>

</operations>
</moduleType>
<moduleType name="ComplexMath_Type" hasUserContext="false"
hasWarmStartContext="false">
<operations>
<requestReceived name="power" maxConcurrentRequests="10">
<input name="base" type="ECOA:int32"/>
<input name="exponent" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>

</requestReceived>

<requestReceived name="squareRoot" maxConcurrentRequests="10">
<input name="value" type="ECOA:int32"/>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10



INSPIRED WORHK ECOA Examples: Service Availability Example

<output name="result" type="ECOA:1int32"/>
</requestReceived>

</operations>

</moduleType>

<moduleImplementation name="BasicMath_Im" language="C"
moduleType="BasicMath_Type"/>

<moduleImplementation name="ComplexMath_Im" language="C"
moduleType="ComplexMath_Type"/>

<moduleInstance name="BasicMath_Instance" implementationName="BasicMath Im"
relativePriority="2">

</moduleInstance>
<moduleInstance name="ComplexMath_Instance"” implementationName="ComplexMath_Im"
relativePriority="3">

</moduleInstance>

<triggerInstance name="Publish_Trigger" relativePriority="2"/>

<requestLink>

<clients>
<service instanceName="ProvidedBasicMath" operationName="add"/>
</clients>
<server>
<moduleInstance instanceName="BasicMath_Instance" operationName="add"/>
</server>
</requestLink>

<requestLink>

<clients>
<service instanceName="ProvidedBasicMath" operationName="subtract”/>
</clients>
<server>
<moduleInstance instanceName="BasicMath_Instance"
operationName="subtract"/>
</server>
</requestLink>

<datalLink>
<writers>
<moduleInstance instanceName="BasicMath_Instance"”
operationName="available"/>
</writers>
<readers>
<service instanceName="ProvidedBasicMath" operationName="available"/>
</readers>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

11



BAE SYSTEMS

ECOA Examples: Service Availability Example INSPIRED WORK

</dataLink>
<requestLink>

<clients>
<service instanceName="ProvidedBasicMath" operationName="multiply"/>
</clients>
<server>
<moduleInstance instanceName="BasicMath_Instance"
operationName="multiply"/>
</server>
</requestLink>

<requestLink>

<clients>
<service instanceName="ProvidedBasicMath" operationName="divide"/>
</clients>
<server>
<moduleInstance instanceName="BasicMath_Instance"”
operationName="divide"/>
</server>
</requestLink>

<requestLink>

<clients>
<service instanceName="ProvidedComplexMath" operationName="power"/>
</clients>
<server>
<moduleInstance instanceName="ComplexMath_Instance"”
operationName="power"/>
</server>
</requestLink>

<requestLink>

<clients>
<service instanceName="ProvidedComplexMath" operationName="squareRoot"/>
</clients>
<server>
<moduleInstance instanceName="ComplexMath_Instance"”
operationName="squareRoot"/>
</server>
</requestLink>

<eventLink>
<senders>
<trigger instanceName="Publish_Trigger" period="1"/>
</senders>
<receivers>
<moduleInstance instanceName="BasicMath_Instance"
operationName="publish"/>
</receivers>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12



INSPIRED WORM ECOA Examples: Service Availability Example

</eventLink>

</componentImplementation>
That is, two Module Types (BasicMath_Type and ComplexMath_Type) are declared.

The Publish_Trigger Trigger Instance is introduced because the Server needs to change its
behaviour over time, and this trigger sequences the changes. Once every period (1 second as set in
the <eventLink> XML) the Trigger will fire and the Module Operation publish will be invoked.

BasicMath_Type is a Module which has five operations specified:

® arequestReceived operation “add”;

e arequestReceived operation “subtract”;
e arequestReceived operation “multiply”;
e arequestReceived operation “divide”;

e adatalWritten operation “available”.

e The eventReceived operation “publish”.

This Module Type is implemented by a concrete Module Implementation BasicMath_Im which in
turn is instantiated once as the Module Instance BasicMath_Instance.

ComplexMath_Type is a Module which has two operations specified:

e arequestReceived operation “power”;

e arequestReceived operation “squareRoot”.

This Module Type is implemented by a concrete Module Implementation ComplexMath_Im which in
turn is instantiated once as the Module Instance ComplexMath_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance
with the abstract Service operations.

Two functional code units will be produced by the code generation process, implementing in code
the concrete BasicMath_Im and ComplexMath_Im classes, named “BasicMath_Im.c” and
“ComplexMath_Im.c” respectively (assuming the Module Implementation declaration has set the
Language property to “C”).

The Client ASC

The Client ASCis declared in XML as follows (file CLient_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"

componentDefinition="Client">

<use library="BasicMath"/>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

13



BAE SYSTEMS

ECOA Examples: Service Availability Example INSPIRED WORK

<moduleType name="Client_Module Type" hasUserContext="true"
hasWarmStartContext="false">

<operations>

<eventReceived name="tick">
</eventReceived>
<requestSent name="add" isSynchronous="true"” timeout="-1"
maxConcurrentRequests="10">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestSent>

<requestSent name="subtract" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
<input name="valuel” type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestSent>

<requestSent name="multiply" isSynchronous="true"” timeout="-1"
maxConcurrentRequests="10">
<input name="valuel" type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result"” type="ECOA:int32"/>
</requestSent>

<requestSent name="divide" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
<input name="valuel” type="ECOA:int32"/>
<input name="value2" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
<output name="status" type="BasicMath:Divide_Status_Type"/>
</requestSent>

<requestSent name="power" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
<input name="base" type="ECOA:int32"/>
<input name="exponent" type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestSent>
<requestSent name="squareRoot"” isSynchronous="true"” timeout="-1"
maxConcurrentRequests="10">
<input name="value” type="ECOA:int32"/>
<output name="result" type="ECOA:int32"/>
</requestSent>

<dataRead name="BasicMathServiceAvailable" type="ECOA:boolean8"/>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14



INSPIRED WORHK ECOA Examples: Service Availability Example

</operations>

</moduleType>

<moduleImplementation name="Client_Module Im" language="C"
moduleType="Client_Module_Type"/>

<moduleInstance name="Client_Module_Instance"
implementationName="Client_Module_Im" relativePriority="1">

</moduleInstance>

<triggerInstance name="Internal Trigger Instance" relativePriority="2"/>

<eventLink>
<senders>
<trigger instanceName="Internal_Trigger_Instance” period="2"/>
</senders>
<receivers>
<moduleInstance instanceName="Client_Module_Instance"
operationName="tick"/>
</receivers>
</eventLink>

<requestLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"
operationName="add"/>
</clients>
<server>
<reference instanceName="RequiredBasicMath" operationName="add"/>
</server>
</requestLink>

<requestlLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"
operationName="subtract"/>
</clients>
<server>
<reference instanceName="RequiredBasicMath" operationName="subtract"/>
</server>
</requestLink>

<requestlLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"”
operationName="multiply"/>
</clients>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

15



BAE SYSTEMS

ECOA Examples: Service Availability Example INSPIRED WORK

<server>
<reference instanceName="RequiredBasicMath" operationName="multiply"/>
</server>
</requestLink>

<requestLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"
operationName="divide"/>
</clients>
<server>
<reference instanceName="RequiredBasicMath" operationName="divide"/>
</server>
</requestlLink>

<requestLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"
operationName="power"/>
</clients>
<server>
<reference instanceName="RequiredComplexMath" operationName="power"/>
</server>
</requestLink>

<requestLink>

<clients>
<moduleInstance instanceName="Client_Module_Instance"
operationName="squareRoot"/>
</clients>
<server>
<reference instanceName="RequiredComplexMath"
operationName="squareRoot"/>
</server>
</requestLink>

<datalLink>
<writers>
<reference instanceName="RequiredBasicMath" operationName="available"/>
</writers>
<readers>
<moduleInstance instanceName="Client_Module_Instance"
operationName="BasicMathServiceAvailable"/>
</readers>
</datalLink>

</componentImplementation>

That is, a Module Type (CLient_Module_Type) is declared which has eight operations:

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16



INSPIRED WORM ECOA Examples: Service Availability Example

e An “add” requestSent operation;

e An“subtract” requestSent operation;

o An“multiply” requestSent operation;

e An “divide” requestSent operation;

e An “power” requestSent operation;

e An “squareRoot” requestSent operation;

e A “BasicMathServiceAvailable” dataRead operation;
e The eventReceived operation “tick”.

The Internal_Trigger_Instance Trigger Instance is introduced because the Client needs to
“periodically request mathematical calculations” and so an ECOA periodic trigger is required. Once
every period (2 seconds as set in the <eventLink> XML) the Trigger will fire and the Module
Operation tick will be invoked.

This Module Type is implemented by a concrete Module Implementation CLient_Module_Im, which
in turn is instantiated once as the Module Instance Client_Module_Instance.

The operation links XML logically associates the specific concrete operations of the Module Instance
with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code
the concrete Client_Module_Im class, and named “Client_Module Im.c” (assuming the Module
Implementation declaration has set the Language property to “C”).

ECOA Deployment Definition

The ECOA “Service Availability Example” Assembly is deployed (that is, the declared Module and
Trigger Instances are allocated to a single ECOA Protection Domain, which is then allocated to a
computing node) by the following XML (file example. deployment . xmL):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="example" logicalSystem="example">

<protectionDomain name="Ex1">
<executeOn computingPlatform="Example_Platform" computingNode="cardl_bae"/>

<deployedModuleInstance componentName="Client_Inst"
moduleInstanceName="Client_Module_Instance"” modulePriority="11"/>
<deployedTriggerInstance componentName="Client_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
<deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="ComplexMath_Instance"” modulePriority="3"/>
<deployedModuleInstance componentName="MathServer_Inst"
moduleInstanceName="BasicMath_Instance" modulePriority="3"/>
<deployedTriggerInstance componentName="MathServer_Inst"
triggerInstanceName="Publish_Trigger" triggerPriority="12"/>
</protectionDomain>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

17



ECOA Examples: Service Availability Example INSPIRED WORHK

<platformConfiguration faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA
Computing Node, on a single ECOA Computing Platform.

Implementation

The MathServer ASC

The behaviour of each module of the MathServer ASCis described in detail in the following sections.

BasicMath_Im Module

The “ProvidedBasicMath” Service operation request operation handlers are implemented in the (C)
code unit BasicMath_Im.c. Each operation handler demonstrates a different method of handling
functional service availability.

The “add” functionality is implemented by the following (C) code:

void BasicMath_Im__add__request_received
(BasicMath_Im__ context* context,
const ECOA__uint32 ID,
const ECOA__int32 valuel,
const ECOA__int32 value2)

// The behaviour of the add operation is:
// Undefined if the service is not "functionally" available. The module does
not check the state before responding!

ECOA__return_status status;

ECOA__int32 result = valuel + value2;
status = BasicMath_Im_container__add__response_send(context, ID, result);

if(context->user.availCount <= 2)

{
}

context->user.availCount++;

}

This function performs a simple addition operation on the two input parameter values. A response
is then sent immediately to the client containing the result of the addition. Note that this function
does not take into account the functional availability of the service and so the operation will
complete successfully even if the service has not been set functionally available.

The “subtract” functionality is implemented by the following (C) code:

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

18



INSPIRED WORM ECOA Examples: Service Availability Example

void BasicMath_Im__subtract__request_received
(BasicMath_Im__ context* context,
const ECOA__uint32 ID,
const ECOA__int32 valuel,
const ECOA__int32 value2)

// The behaviour of the subtract operation is:

// Check if the service is functionally available.
// If it is available, send a response.

// If it is unavailable, do not send a response.

ECOA__return_status status;

if (context->user.basicMathServiceAvailable)

{
ECOA__int32 result = valuel - value2;

status = BasicMath_Im_container__subtract__response_send(context, ID,
result);

}
}

This function checks to ensure that the service has been set as functionally available prior to
performing a simple subtraction operation on the two input parameter values. A response is then
sent immediately to the client containing the result of the subtraction. This implementation may
mean that a client will not receive a response if it has attempted to send a request when the service
is set as unavailable. A client using this service operation should use a timeout to ensure the request
does not block indefinitely or overflow the maximum concurrent request.

The “multiply” functionality is implemented by the following (C) code:

void BasicMath_Im__multiply__request_received
(BasicMath_Im__context* context,
const ECOA__uint32 ID,
const ECOA__int32 valuel,
const ECOA__int32 value2)

{
// The behaviour of the multiply operation is:
// Check if the service is functionally available.
// If it is available, send a response.
// If it is unavailable, send a response, but with a default value.
ECOA__return_status status;
ECOA__int32 result = 0;
if (context->user.basicMathServiceAvailable)
{
result = valuel * value2;
status = BasicMath_Im_container__multiply response_send(context, ID,
result);
}
else
{

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

19



ECOA Examples: Service Availability Example INSPIRED WORHK

status = BasicMath_Im_container__multiply response_send(context, ID,
result);

}
}

This function checks to ensure that the service has been set as functionally available prior to
performing a simple multiplication operation on the two input parameter values. A response is then
sent immediately to the client containing the result of the multiplication. If the service is not
available, a response is sent with a default value of 0 for the result. Note that this is not a robust
solution for this functionality, as a 0 value could be a valid result, but the intent is to show that a
default value could be used in appropriate situations.

The “divide” functionality is implemented by the following (C) code:

void BasicMath_Im__divide__request_received
(BasicMath_Im__context* context,
const ECOA__uint32 ID,
const ECOA__int32 valuel,
const ECOA__int32 value2)

// The behaviour of the divide operation is:

// Check if the service is functionally available.

// If it is available, send a response.

// If it is unavailable, send a response, but with an "Unavailable" status and
default value.

ECOA__return_status status;
ECOA__int32 result = 0;
BasicMath__Divide_Status_Type divideStatus = BasicMath__Divide_Status_Type_OK;

if (context->user.basicMathServiceAvailable)

{
ECOA__int32 result = valuel / value2;

status = BasicMath_Im_container__divide__response_send(context, ID, result,
divideStatus);
}

else

{

// Return not available.

divideStatus = BasicMath__Divide_Status_Type_Unavailable;

status = BasicMath_Im_container__divide_ response_send(context, ID, result,
divideStatus);

}

This function checks to ensure that the service has been set as functionally available prior to
performing a simple division operation on the two input parameter values. A response is then sent
immediately to the client containing the result of the division and an “OK” status. If the service is not
available, a response is sent with a default value of 0 for the result and a “Not Available” status.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

20



INSPIRED WORM ECOA Examples: Service Availability Example
The “publish” functionality is implemented by the following (C) code:

void BasicMath_Im__publish__received(BasicMath_Im__context *context)

¢ ECOA__log log;

/* User Code Here */
if(context->user.availCount < 11)

{
}

context->user.availCount++;

switch(context->user.availCount)
{
case 6:
log.current_size = sprintf((char *) &log.data, "**** Server now setting
service available");
BasicMath_Im_container__log_info(context, log);

context->user.basicMathServiceAvailable = ECOA__TRUE;

break;
case 10:
log.current_size = sprintf((char *) &log.data, "**** Server stopping
publish™);
BasicMath_Im_container__log_info(context, log);

context->user.publish = ECOA__FALSE;

break;
}
if(context->user.publish)
{
Publish_Functional_Service_Availability(context);
}

This function sequences the change of behaviour of the Server Component. Each time the
Publish_Trigger generates an event, this function increments a counter (up to 11). Initially the
functional service is set as unavailable by the INITIALIZE operation, but is set as available when the
counter reaches 6. The function will publish any change of availability until the count reaches 10, at
which point it is no longer published and the data will become ‘stale’.

In order to be able to publish the functional service availability a utility function is implemented by
the following (C) Code:

static void Publish_Functional_Service_Availability(BasicMath_Im__context*
context)

{

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

21



ECOA Examples: Service Availability Example INSPIRED WORHK

ECOA__return_status status;
BasicMath_Im_container__available handle availableHandle;

status = BasicMath_Im_container__available_ get write_access(context,
&availableHandle);

if (status == ECOA__ return_status OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)

{
*(availableHandle.data) = context->user.basicMathServiceAvailable;
}
status =
BasicMath_Im_container__available_publish_write_access(context,
&availableHandle);

}

This function is invoked at other places to publish the functional service availability.
At startup the Module declares the functional availability as unavailable in the following (C) code:

void BasicMath_Im__INITIALIZE__ received(BasicMath_Im__ context *context)
{

/* Initially set the functional service unavailable */
context->user.publish = ECOA__ TRUE;
context->user.basicMathServiceAvailable = ECOA__FALSE;
Publish_Functional Service Availability(context);
context->user.availCount = 0;

}

ComplexMath_Im Module

The “ProvidedComplexMath” Service operation request operation handlers are implemented in the
(C) code unit ComplLexMath_Im.c. This service does not have the concept of functional availability. A
client is free to call the operation at any time.

The “power” functionality is implemented by the following (C) code:

void ComplexMath_Im__power__request_received
(ComplexMath_Im__context* context,
const ECOA__uint32 ID,
const ECOA__int32 base,
const ECOA__int32 exponent)

{

ECOA__return_status status;

ECOA__int32 result = pow(base, exponent);

status = ComplexMath_Im_container__power__response_send(context,ID, result);
}

The “squareRoot” functionality is implemented by the following (C) code:

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

22



INSPIRED WORM ECOA Examples: Service Availability Example

void ComplexMath_Im__squareRoot__request_received
(ComplexMath _Im_ context* context,
const ECOA__uint32 ID,
const ECOA__int32 value)

ECOA__return_status status;

ECOA__int32 result = sqgrt(value);
status = ComplexMath_Im_container__squareRoot__response_send(context,ID,
result);

}
The Client ASC

All we need to do is program what to do when the Internal_Trigger Instance Trigger Instance
fires, i.e. to populate the CLient _Module Im__tick__received function stub

void Client_Module_Im__tick__received(Client_Module_Im__context *context)

{

ECOA__return_status status;

// Basic math should only be used if the service has been set as functionally
available...

// However, we can use any except subtract as the other service operations are
designed to send a response regardless.

testAddition(context);

testSubtraction(context);

testMultiplication(context);

testDivision(context);

// The exponential math can be used anytime...
testPower(context);
testSquareRoot (context);

ECOA__log log;
log.current_size = sprintf((char *) &log.data, "--------------"--"---------------

Client_Module_Im_container__log_info(context, log);

At each period, a synchronous Request-Response call is made to each of the math operations
available in “RequiredBasicMath” and “RequiredComplexMath”. This is done by the invocation of a
number of user-written methods which are detailed below. In each method, a log is made before
invoking the respective container operation. In this example, the functional availability of the
“RequiredBasicMath” is not taken into consideration with the exception of the subtract operation
(“testSubtraction()”).

Before sending the subtract request, the “BasicMathServiceAvailable” versioned data is
interrogated to check if the service has been set as functionally available. This is due to the fact that
the server requirement for this operation is to not send a response. If the request is made

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

23



ECOA Examples: Service Availability Example INSPIRED WORHK

regardless, the module would become blocked indefinitely. Note that there is a race-condition
which means the service could be available when the request is made, but unavailable when it
reaches the server; it is therefore always advisable to set a timeout on the client request operation
to cater for this scenario.

static void testAddition(Client_Module_Im__context *context)

{
ECOA__log log;
ECOA__return_status status;

ECOA__int32 valuel = 5;
ECOA__int32 value2 = 10;
ECOA__int32 result = 0;

log.current_size = sprintf((char *) &log.data, "requesting addition of %d and
%d", valuel, value2);
Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__add__request_sync(context, valuel, value2,
&result);

log.current_size = sprintf((char *) &log.data, "result of addition of %d and %d
= %d", valuel, value2, result);
Client_Module_Im_container__log info(context, log);

}

static void testSubtraction(Client_Module Im__ context *context)

{
ECOA__log 1log;
ECOA__return_status status;
Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

ECOA__int32 valuel = 50;
ECOA__int32 value2 = 10;
ECOA__int32 result = 0;

// The division operation should check if the service is functionally
available, as the server

// behaviour is defined to not respond if a request is received when
functionally unavailable.

// This could lead to the client module being blocked indefinitely if no
timeout is specified!

status =
Client_Module_Im_container__BasicMathServiceAvailable_get_read_access(context,
&availableHandle);

if (status == ECOA__return_status_OK)
{
if (*(availableHandle.data) == ECOA__TRUE)
{
log.current_size = sprintf((char *) &log.data, "requesting subtraction of
%d minus %d", valuel, value2);

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

24



INSPIRED WORM ECOA Examples: Service Availability Example

Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__subtract__request_sync(context,
valuel, value2, &result);

log.current_size = sprintf((char *) &log.data, "result of subtraction of
%d minus %d = %d", valuel, value2, result);
Client_Module_Im_container__log info(context, log);

}

else

{

log.current_size = sprintf((char *) &log.data, "cannot perform
subtraction as service unavailable");
Client_Module_Im_container__log info(context, log);

}

status =
Client_Module_Im_container__BasicMathServiceAvailable_ release_read_access(context
, &availableHandle);

}
}

Before sending the multiplication request, the “BasicMathServiceAvailable” versioned data is
interrogated to check if the state data has been updated since the last time (by checking the
‘stamp’). The request will be sent irrespective of the actual state of the service availability, but will
only be sent if the state has not become stale. Since initially the service is set as unavailable but the
state is being continually published, then the server will respond with a default value. Once the
service is set as available, then the correct multiplication result will be returned. Finally, when the
server stops publishing the state, the client will detect it has become stale and no-longer send the
request.

static void testMultiplication(Client_Module_Im__context *context)

{
ECOA__log log;
ECOA__return_status status;
Client_Module_Im_container__BasicMathServiceAvailable_handle availableHandle;

ECOA__int32 valuel = 7;
ECOA__int32 value2 = 8;
ECOA__int32 result = 0;

// When the server is declaring its service as unavailable, then it will return
a default value for the multiplication.

// When the server stops periodically publishing its availability then assume
the service is not available

status =
Client_Module_Im_container__BasicMathServiceAvailable get read_access(context,
&availableHandle);

if (status == ECOA__return_status_OK)
{

if(availableHandle.stamp != context->user.previousStamp)

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

25



ECOA Examples: Service Availability Example INSPIRED WORHK

{

context->user.previousStamp = availableHandle.stamp;

log.current_size = sprintf((char *) &log.data, "requesting multiplication
of %d by %d", valuel, value2);

Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__multiply request_sync(context,
valuel, value2, &result);

log.current_size = sprintf((char *) &log.data, "result of multiplication
of %d by %d = %d", valuel, value2, result);
Client_Module_Im_container__log info(context, log);

}

else
{
log.current_size = sprintf((char *) &log.data, "server availability is
stale - not requesting multiplication™);
Client_Module_Im_container__log info(context, log);

}

status =
Client_Module Im_container__BasicMathServiceAvailable_ release_read_access(context
, &availableHandle);

}
}

static void testDivision(Client_Module_Im__context *context)

{
ECOA__log log;
ECOA__return_status status;

ECOA__int32 valuel = 1000;

ECOA__int32 value2 = 20;

ECOA__int32 result = 0;
BasicMath__Divide_Status_Type divideStatus;

log.current_size = sprintf((char *) &log.data, "requesting division of %d by
%d", valuel, value2);
Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__divide__request_sync(context, valuel,
value2, &result, &divideStatus);

if (divideStatus == BasicMath__Divide_Status_Type_ OK)

{
log.current_size = sprintf((char *) &log.data, "result of division of %d by
%d = %d", valuel, value2, result);
Client_Module_Im_container__log info(context, log);
}

else

{

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

26



INSPIRED WORM ECOA Examples: Service Availability Example

log.current_size = sprintf((char *) &log.data, "Failed to divide - status =
%d", divideStatus);
Client_Module_Im_container__log_info(context, log);
}
}

static void testPower(Client_Module Im__context *context)
{

ECOA__log log;

ECOA__return_status status;

ECOA__int32 base = 3;
ECOA__int32 exponent = 4;
ECOA__int32 result = 0;

log.current_size = sprintf((char *) &log.data, "requesting %d raised to the
power %d", base, exponent);

Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__power__request_sync(context, base,
exponent, &result);

log.current_size = sprintf((char *) &log.data, "result of %d raised to the
power %d = %d", base, exponent, result);
Client_Module_Im_container__log info(context, log);

}

static void testSquareRoot(Client Module Im__ context *context)

{
ECOA__log log;
ECOA__return_status status;

ECOA__int32 valuel
ECOA__int32 result

25;
9;

log.current_size = sprintf((char *) &log.data, "requesting square root of %d",
valuel);
Client_Module_Im_container__log info(context, log);

status = Client_Module_Im_container__squareRoot_ request_sync(context, valuel,
&result);

log.current_size = sprintf((char *) &log.data, "result of square root of %d =
%d", valuel, result);
Client_Module_Im_container__log info(context, log);

}

Program Output
When the ECOA “Service Availability Example” Assembly is built and run (in a single Node
deployment), an output similar to Figure 7 should be achieved. The ClLient ASC outputs, at each

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

27



BAE SYSTEMS

INSPIRED WORHK

ECOA Examples: Service Availability Example

iteration, the values before sending each request message, and the value after receiving the
corresponding response.

ecos@fedora:/mnt/D_DRIVE/git/Examples/ECOA_Service_Availability_Example/Steps/output/Example_Platform/card1_bae/Ex1 - | O

File Edit View Search Terminal Help

[ecos@fedora Ex1]$ ./Ex1 ~
alive - sent PD status

"1495708219 seconds, 616898598 nanoseconds":0:"INFO":"nodeName" : :"requesting addition of 5 and 10"

"1495708219 seconds, 617475328 nanoseconds":0:"INFO": "nodeName" : result of addition of 5 and 18 = 15"

"1495708219 seconds, 617489565 nanoseconds":0:"INFO":"nodelName": cannot perform subtraction as service unavailable"
"149570821% seconds, 617500587 nancoseconds":0:"INFO":"nodeName" : requesting multiplication of 7 by 8"

"1495708219 seconds, 617583224 nancseconds":0:"INFO": "nodeName": result of multiplication of 7 by 8 = 0"

"149570821% seconds, 617594274 nanoseconds":0:"INFO":"nodeName": requesting division of 1000 by 20"

"1495708219 seconds, 617628281 nanoseconds":0:"INFO": "nodeName" : :"Failed to divide - status = 3"

"1495708219 seconds, 617637020 nanoseconds":0:"INFO":"nodeName" : requesting 3 raised to the power 4"

"1495708219 seconds, 617771097 nanoseconds":0:"INFO": "nodeName" : result of 3 raised to the power 4 = 81"

"1495708219 seconds, 617782403 nancseconds":0:"INFO": "nodeName": :"requesting square rooct of 25"

"1495708219 seconds, 617828281 nanoseconds":0:"INFO": "nodeName": "result of square root of 25 = 5"

"1495708219 seconds, 617836466 nanoseconds":0:"INFO": "nodeName" : "
"1495708221 seconds, 617013858 nanoseconds":0:"INFO":"nodeName" : :"requesting addition of 5 and 10"

"1495708221 seconds, 617129346 nanoseconds":0:"INFO": "nodeName" : result of addition of 5 and 16 = 15"

"149570822]1 seconds, 617144743 nanoseconds":0:"INFO":"nodeName": cannot perform subtraction as service unavailable"
"1495708221 seconds, 617159074 nanoseconds":0:"INFO":"nodeName" : "requesting multiplication of 7 by 8"

"149570822]1 seconds, 617209570 nancseconds":0:"INFO": "nodeName": result of multiplication of 7 by 8 = 0"

"1495708221 seconds, 617222893 nanoseconds":0:"INF0":"nodeName" : requesting division of 1000 by 20"

"1495708221 seconds, 617271519 nanoseconds":0:"INFO": "nodelame" : :"Failed to divide - status = 3"

"1495708221 seconds, 617284052 nanoseconds":0:"INFO":"nodeName" : "requesting 3 raised to the power 4"

"1495708221 seconds, 617367272 nanoseconds":0:"INFO": "nodeName" : :"result of 3 raised to the powsr 4 = 81"

"1495708221 seconds, 617384602 nanoseconds":0:"INFO":"nodeName": :"requesting square rooct of 25"

"1495708221 seconds, 617429020 nanoseconds":0:"INFO": "nodeName" :

"1495708221 seconds, 617441582 nanoseconds":0:"INFO": "nodeName" : "
alive - sent PD status

"1495708222 seconds, 629374814 nanoseconds":0:"INFO": "nodeName": DHEEE Seryer now setting service available"
"1495708223 seconds, 616958087 nanoseconds":0:"INFO":"nodeName" : requesting addition of 5 and 10"

"1495708223 seconds, 617095512 nanoseconds":0:"INFO": "nodeName" : result of addition of 5 and 18 = 15"

"1495708223 seconds, 617114556 nanoseconds":0:"INFO":"nodeName": requesting subtraction of 50 minus 10"

"1495708223 seconds, 617171972 nanoseconds":0:"INFO": "nodeName" : result of subtraction of 50 minus 10 = 48"
"1495708223 seconds, 617186437 nancseconds":0:"INFO": "nodeName": requesting multiplication of 7 by 8"

"1495708223 seconds, 617233449 nanoseconds":0:"INFO":"nodeName" : result of multiplication of 7 by 8 = 58"
"1495708223 seconds, 617247135 nancseconds":0:"INFO": "nodeName": requesting division of 1000 by 26"

"1495708223 seconds, 617293735 nanoseconds":0:"INFO":"nodeName": result of division of 18008 by 20 = 50"

"1495708223 seconds, 6173076596 nanoseconds":0:"INFO": "nodeName" : :"requesting 3 raised to the power 4"

"1495708223 seconds, 617389046 nanoseconds":0:"INFO": "nodelName" : "result of 3 raised to the power 4 = 81"

"1495708223 seconds, 617408449 nanoseconds":0:"INFO":"nodeName" : requesting square root of 25"

"1495708223 seconds, 617471851 nanoseconds":0:"INFO": "nodelame" : :"result of square root of 25 = 5"

"1495708223 seconds, 617483092 nanoseconds":0:"INFO": "nodeName": e "
"1495708225 seconds, 618009311 nancseconds":0:"INFO": "nodeName": requesting addition of & and 10"

"1495708225 seconds, 618184873 nanoseconds":0:"INFO": "nodeName": :"result of addition of 5 and 10 = 15"

"1495708225 seconds, 618214148 nanoseconds":0:"INFO":"nodeName" : requesting subtraction of 50 minus 10"

"1495708225 seconds, 618265931 nanoseconds":0:"INFO": "nodeName" : result of subtraction of 50 minus 10 = 48"
"1495708225 seconds, 618280856 nanoseconds":0:"INFO":"nodeName": "requesting multiplication of 7 by 8"

"1495708225 seconds, 618330658 nancseconds":0:"INFO": "nodeName": result of multiplication of 7 by 8 = 58"
"1495708225 seconds, 618343691 nanoseconds': :"nodeName" : requesting division of 1000 by 20"

"1495708225 seconds, 618399814 nanoseconds”: i"nodellane” i "ExL""result of division of 1088 by 20 = 50"

"1495708225 seconds, 6184083871 nanoseconds "nodeName" : requesting 3 raised to the power 4"

"1495708225 seconds, 6518485425 nanoseconds": :"nodeName" : result of 3 raised to the power 4 = 81"

"1495708225 seconds, 618497884 nanoseconds"” :"nodeName" : :"requesting square root of 25"

"1495708225 seconds, 618563672 nanoseconds": "nodeName" : result of square root of 25 = 5"

"1495708225 seconds, 618575105 nanoseconds "nodeName" : "
"1495708226 seconds, 6517194360 nanoseconds "nodeName" : *¥4¥ Server stopping publish"

"1485708227 seconds, 516926941 nanossconds "nodeMame" : reguesting addition of 5 and 10"

"1495708227 seconds, 617033438 nanoseconds "nodeName" : result of addition of 5 and 10 = 15"

"1485708227 seconds, 517049726 nanoseconds "nodeMame" : reguesting subtraction of 5@ minus 18"

"1495708227 seconds, 617103026 nanoseconds "nodeName" : result of subtraction of 50 minus 10 = 40"
"1495708227 seconds, 6517116034 nanoseconds "nodeName" : server availability is stale - not requesting multiplication"
"1485708227 seconds, 517129359 nanoseconds "nodeName" : requesting division of 10008 by 20"

"1495708227 seconds, 617177545 nanoseconds "nodeName" : result of division of 1000 by 20 = 58"

"1485708227 seconds, 517193311 nanossconds "nodeMame" : reguesting 3 raised to the power 4"

"1495708227 seconds, 617278210 nanoseconds "nodeName" : result of 3 raised to the power 4 = 81"

"1485708227 seconds, 517278237 nanoseconds "nodeMame" : reguesting square root of 25"

"1495708227 seconds, 617391586 nanoseconds "nodeName" : result of square root of 25 '

"1495708227 seconds, 617404134 nanoseconds": "nodeName" : "
alive - sent PD status

Figure 7 - ECOA "Service Availability Example" in Execution

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

28



INSPIRED WORHK

ECOA Examples: Service Availability Example

References

1 European Component Oriented Architecture (ECOA) Collaboration Programme:
Architecture Specification
(Parts 1to 11)

“ECOA” is a registered trade mark.
2 Client-server model
https://en.wikipedia.org/wiki/Client%E2%80%93server _model

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

29


https://en.wikipedia.org/wiki/Client%E2%80%93server_model

