

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 1

Simple Lifecycle Example

Introduction
This document describes an ECOA® component lifecycle example named “Simple Lifecycle Example”.

The example is an extension to the “Simple Example” (ref. [3]) client-server example, with the

addition of a simple component lifecycle service.

This document presents the principal user generated artefacts required to create the “Simple

Lifecycle Example” component lifecycle example using the ECOA. It is assumed that the reader is

conversant with the ECOA Architecture Specification (ref. [1]) and the process of defining and

declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using

code generation to produce Module framework (stub) code units and ECOA Container and Platform

code.

Aims
This ECOA “Simple Lifecycle Example” component lifecycle example is intended to demonstrate the

use of a “component lifecycle” service to manage the functional start-up and shutdown of

components. It is based on an example lifecycle service defined in the ECOA System Management

Guidance document (ref. [2]).

ECOA Features Exhibited
 Composition of an ECOA Assembly of multiple ECOA ASCs (components).

 Contention-free resource sharing within an ECOA Assembly.

 Use of the ECOA runtime logging API.

 Use of a component lifecycle service to manage functional start-up/shutdown of

components.

Design and Definition

Client-Server Functional Design
The “Simple Lifecycle Example” component lifecycle example will demonstrate a simple

component lifecycle service scheme, whereby a manager component orchestrates the functional
start-up and shutdown of two managed components. When the client is in a “running” state, it
will periodically perform a request, from the server and will receive a data item in return if the

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2

server is also “running” (

Figure 1).

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 3

Figure 1 - ECOA "Simple Lifecycle Example" component lifecycle Behaviour

The data content of the request will be the current absolute time and the response will be of a user

defined type.

The Client will set a local variable to zero and output this to the log prior to performing the request.

The result will be returned into this variable and logged.

The Client will be periodically activated at a rate of 0.5Hz (once every 2 seconds).

ECOA Assembly Design and Definition
This ECOA “Simple Lifecycle Example” component lifecycle example ECOA Assembly comprises three

ECOA ASCs named “Manager”, “Client” and “Server”. The “Manager” ASC type is instantiated once

within the ECOA Assembly as “Manager_Inst”. The “Client” ASC type is instantiated once within the

ECOA Assembly as “Client_Inst”. The “Server” ASC is instantiated once within the ECOA Assembly as

“Server_Inst” and provides the “Provide_Value_Service” ECOA Service, which is referenced (used) by

the “Client_Inst” ASC (Figure 2).

In addition, each of the managed components (“Client_Inst” and “Server_Inst”), provide the

“simple_lifecycle” service. This service allows the “Manager” component to manage the functional

state of the managed components.

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4

Figure 2 - ECOA "Simple Lifecycle Example" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Simple Lifecycle Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite
 xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="example"
 targetNamespace="http://www.ecoa.technology">

 <csa:component name="Client_Inst">
 <ecoa-sca:instance componentType="Client">
 <ecoa-sca:implementation name="Client_Im"/>
 </ecoa-sca:instance>

 <csa:reference name="Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 <csa:service name="Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </csa:service>

 </csa:component>

 <csa:component name="Server_Inst">

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 5

 <ecoa-sca:instance componentType="Server">
 <ecoa-sca:implementation name="Server_Im"/>
 </ecoa-sca:instance>

 <csa:service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:service>

 <csa:service name="Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </csa:service>

 </csa:component>

 <csa:component name="Manager_Inst">
 <ecoa-sca:instance componentType="Manager">
 <ecoa-sca:implementation name="Manager_Im"/>
 </ecoa-sca:instance>

 <csa:reference name="Client_Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </csa:reference>

 <csa:reference name="Server_Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </csa:reference>

 </csa:component>

 <csa:wire source="Client_Inst/Request_Value_Service"
target="Server_Inst/Provide_Value_Service"/>

 <csa:wire source="Manager_Inst/Client_Lifecycle_Management"
target="Client_Inst/Lifecycle_Management"/>

 <csa:wire source="Manager_Inst/Server_Lifecycle_Management"
target="Server_Inst/Lifecycle_Management"/>

</csa:composite>

The Server ASC type is defined in XML as follows (file Server.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </service>

 <service name="Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6

 </service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

Provide_Value_Service and the Lifecycle_Management ECOA Service.

The Client ASC type is defined in XML as follows (file Client.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

 <service name="Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </service>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

Request_Value_Service ECOA Service and the provision of the Lifecycle_Management ECOA

Service.

The Manager ASC type is defined in XML as follows (file Manager.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="Client_Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </reference>

 <reference name="Server_Lifecycle_Management">
 <ecoa-sca:interface syntax="simple_lifecycle"/>
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

Client_Lifecycle_Management and Server_Lifecycle_Management ECOA Services.

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 7

ECOA Service and Types Definition

svc_Value Service

The svc_Value Service, which is provided by the Server ASC and referenced by the Client ASC, is

defined in a XML file (svc_Value.interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="example" />

 <operations>
 <requestresponse name="Request_Value">
 <input name="Time" type="global_time" />
 <output name="Value" type="example:value_type" />
 </requestresponse>
 </operations>

</serviceDefinition>

The Service comprises a single ECOA Request-Response Operation called Request_Value which has

one input parameter (Time which is passed from the requesting client to the server), and one output

parameter (Value which is the response from the server to the client). The first parameter is

defined as being of type global_time, which is a pre-defined ECOA type. The second parameter is

defined as being of type example:value_type, where example names a data types library used by

the service definition. The data types library is, unsurprisingly, also defined in XML (file

example.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <simple name="value_type" type="uint32" />
 </types>

</library>

The data type example:value_type is therefore an unsigned 32 bit integer type.

simple_lifecycle Service

The simple_lifecycle Service, which is provided by both the Server and Client ASCs and

referenced by the Manager ASC, is defined in a XML file (simple_lifecycle.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="simple_lifecycle"/>

 <operations>
 <requestresponse name="start">

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8

 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>

 <requestresponse name="stop">
 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>

 <requestresponse name="get_current_state">
 <output name="state" type="simple_lifecycle:state"/>
 </requestresponse>

 </operations>
</serviceDefinition>

The Service comprises three ECOA Request-Response Operations named start, stop and

get_current_state; each of which has a single output parameter (state which is the response

from the server to the client). The state parameter is defined as being of type

simple_lifecycle:state, where simple_lifecycle names a data types library used by the

service definition. The data types library is, unsurprisingly, also defined in XML (file

simple_lifecycle.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <enum name="state" type="ECOA:uint32">
 <value name="IDLE" valnum="0"/>
 <value name="RUNNING" valnum="1"/>
 </enum>

 </types>
</library>

The data type simple_lifecycle:state is therefore an enumeration type (base type 32 bit

unsigned integer), with the values of IDLE and RUNNING.

ECOA Module Design and Definition
The implementations of the Server and Client ASC are composed of a single ECOA Module each

(Module Implementations Server_Module_Im and Client_Module_Im of Module Types

Server_Module_Type and Client_Module_Type respectively) as illustrated in UML in Figure 3 and

Figure 4 respectively.

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 9

Figure 3 “Server” Module Design (as UML Composite Structure Diagram)

Figure 4 – “Client” Module Design (as UML Composite Structure Diagram)

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10

The implementation of the Manager ASC is also composed of a single ECOA Module (Module

Implementation Manager_Module_Im of Module Type Manager_Module_Type as illustrated in UML

in Figure 5.

Figure 5 - "Manager" Module Design (as UML Composite Structure Diagram)

Figure 6 and Figure 7 depict in UML the internal design of the Server ASC (component) providing

the svc_Value and simple_lifecycle ECOA Services, whilst the Client ASC also provides the

simple_lifecycle Service but references the svc_Value Service. As always in the ECOA, the Module

Implementations implement the Module Lifecycle operations defined by the ECOA.

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 11

Figure 6 - "Server” Component Design (as UML Composite Structure Diagram)

Figure 7 - "Client” Component Design (as UML Composite Structure Diagram)

Figure 8 depicts in UML the internal design of the Manager ASC (component) which references the

two instances of the simple_lifecycle ECOA Service; one for managing the Client ASC and one

for managing the Server ASC.

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12

Figure 8 - "Manager" Component Design (as UML Composite Structure Diagram)

The Server ASC

The Server ASC is declared in XML as follows (file Server_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Server">

 <use library="example"/>
 <use library="simple_lifecycle"/>

 <moduleType name="Server_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="Request_for_Val" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestReceived>

 <requestReceived name="start" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 <requestReceived name="stop" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 <requestReceived name="get_current_state" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 </operations>

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 13

 </moduleType>

 <moduleImplementation name="Server_Module_Im" language="C"
moduleType="Server_Module_Type"/>

 <moduleInstance name="Server_Module_Instance"
implementationName="Server_Module_Im" relativePriority="1">

 </moduleInstance>

 <requestLink>

 <clients>
 <service instanceName="Provide_Value_Service"
operationName="Request_Value"/>
 </clients>
 <server>
 <moduleInstance instanceName="Server_Module_Instance"
operationName="Request_for_Val"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management" operationName="start"/>
 </clients>
 <server>
 <moduleInstance instanceName="Server_Module_Instance"
operationName="start"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management" operationName="stop"/>
 </clients>
 <server>
 <moduleInstance instanceName="Server_Module_Instance"
operationName="stop"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management"
operationName="get_current_state"/>
 </clients>

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14

 <server>
 <moduleInstance instanceName="Server_Module_Instance"
operationName="get_current_state"/>
 </server>
 </requestLink>

</componentImplementation>

That is, a Module Type (Server_Module_Type) is declared which has four requestReceived

operations “Request_for_Val”, “start”, “stop” and “get_current_state”. This Module Type is

implemented by a concrete Module Implementation Server_Module_Im which in turn is

instantiated once as the Module Instance Server_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_for_Val” module

operation is connected to the “Request_Value” service operation of the

“Provide_Value_Service” service instance and each of the “start”, “stop” and

“get_current_state” module operations are connected to the equivalent service operations of the

“Lifecycle_Management” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Server_Module_Im class, and named “Server_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

The Client ASC

The Client ASC is declared in XML as follows (file Client_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Client">

 <use library="example"/>
 <use library="simple_lifecycle"/>

 <moduleType name="Client_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <eventReceived name="tick">
 </eventReceived>

 <requestSent name="Request_Val" isSynchronous="true" timeout="2"
maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 15

 <requestReceived name="start" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 <requestReceived name="stop" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 <requestReceived name="get_current_state" maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestReceived>

 </operations>

 </moduleType>

 <moduleImplementation name="Client_Module_Im" language="C"
moduleType="Client_Module_Type"/>

 <moduleInstance name="Client_Module_Instance"
implementationName="Client_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Internal_Trigger_Instance" relativePriority="0"/>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="tick"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="Request_Val"/>
 </clients>
 <server>
 <reference instanceName="Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management" operationName="start"/>

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16

 </clients>
 <server>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="start"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management" operationName="stop"/>
 </clients>
 <server>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="stop"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <service instanceName="Lifecycle_Management"
operationName="get_current_state"/>
 </clients>
 <server>
 <moduleInstance instanceName="Client_Module_Instance"
operationName="get_current_state"/>
 </server>
 </requestLink>

</componentImplementation>

 That is, a Module Type (Client_Module_Type) is declared which has five operations:

 A “Request_Val” requestSent operation;

 Three requestReceived operations “stop”, “start” and “get_current_state”;

 The eventReceived operation “tick”.

A timeout is defined for the “Request_Val” operation. This is to ensure that if the response is never

received, the Module will not be blocked indefinitely. This scenario may occur if the request or

response is lost, or if the Server Module fails to respond

The Internal_Trigger_Instance Trigger Instance is introduced because the Client needs to

“periodically request a data item” and so an ECOA periodic trigger is required. Once every period (2

seconds as set in the <eventLink> XML) the Trigger will fire and the Module Operation tick will be

invoked.

This Module Type is implemented by a concrete Module Implementation Client_Module_Im, which

in turn is instantiated once as the Module Instance Client_Module_Instance.

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 17

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_Val” module

operation is connected to the “Request_Value” service operation of the

“Request_Value_Service” service instance and each of the “start”, “stop” and

“get_current_state” module operations are connected to the equivalent service operations of the

“Lifecycle_Management” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Client_Module_Im class, and named “Client_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

The Manager ASC

The Manager ASC is declared in XML as follows (file Manager_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Manager">

 <use library="simple_lifecycle"/>

 <moduleType name="Manager_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <requestSent name="start_server" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

 <requestSent name="stop_server" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

 <requestSent name="get_server_state" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

 <requestSent name="start_client" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

 <requestSent name="stop_client" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

18

 <requestSent name="get_client_state" isSynchronous="true" timeout="-1"
maxConcurrentRequests="10">
 <output name="state" type="simple_lifecycle:state"/>
 </requestSent>

 <eventReceived name="tick">
 </eventReceived>

 </operations>

 </moduleType>

 <moduleImplementation name="Manager_Module_Im" language="C"
moduleType="Manager_Module_Type"/>

 <moduleInstance name="Manager_Inst" implementationName="Manager_Module_Im"
relativePriority="9">

 </moduleInstance>

 <triggerInstance name="Trigger" relativePriority="10"/>

 <eventLink>
 <senders>
 <trigger instanceName="Trigger" period="5"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="Manager_Inst" operationName="tick"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst"
operationName="start_server"/>
 </clients>
 <server>
 <reference instanceName="Server_Lifecycle_Management"
operationName="start"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst" operationName="stop_server"/>
 </clients>
 <server>
 <reference instanceName="Server_Lifecycle_Management"
operationName="stop"/>

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 19

 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst"
operationName="get_server_state"/>
 </clients>
 <server>
 <reference instanceName="Server_Lifecycle_Management"
operationName="get_current_state"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst"
operationName="start_client"/>
 </clients>
 <server>
 <reference instanceName="Client_Lifecycle_Management"
operationName="start"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst" operationName="stop_client"/>
 </clients>
 <server>
 <reference instanceName="Client_Lifecycle_Management"
operationName="stop"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="Manager_Inst"
operationName="get_client_state"/>
 </clients>
 <server>
 <reference instanceName="Client_Lifecycle_Management"
operationName="get_current_state"/>
 </server>
 </requestLink>

</componentImplementation>

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

20

That is, a Module Type (Manager_Module_Type) is declared which has seven operations:

 Three requestReceived operations related to the management of the Server ASC

“start_server”, “stop_server” and “get_server_state”;

 Three requestReceived operations related to the management of the Client ASC

“start_client”, “stop_client” and “get_client_state”;

 The eventReceived operation “tick”.

The Trigger Trigger Instance is introduced because the Manager will request the managed

components to change functional states at various points. Once every period (5 seconds as set in the

<eventLink> XML) the Trigger will fire and the Module Operation tick will be invoked.

This Module Type is implemented by a concrete Module Implementation Manager_Module_Im,

which in turn is instantiated once as the Module Instance Manager_Inst.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “start_server”, “stop_server”

and “get_server_state” module operations are connected to the relevant service operation of the

“Server_Lifecycle_Management” service instance and each of the “start_client”,

“stop_client” and “get_client_state” module operations are connected to the relevant service

operations of the “Client_Lifecycle_Management” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete Manager_Module_Im class, and named “Manager_Module_Im.c” (assuming the Module

Implementation declaration has set the language property to “C”).

ECOA Deployment Definition

The ECOA “Simple Lifecycle Example” Assembly is deployed (that is, the declared Module and Trigger

Instances are allocated to a single ECOA Protection Domain, which is then allocated to a computing

node) by the following XML (file example.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="example" logicalSystem="example">

 <protectionDomain name="Ex1">
 <executeOn computingPlatform="Example_Platform" computingNode="card1_bae"/>

 <deployedModuleInstance componentName="Client_Inst"
moduleInstanceName="Client_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="Client_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
 <deployedModuleInstance componentName="Server_Inst"
moduleInstanceName="Server_Module_Instance" modulePriority="3"/>
 <deployedModuleInstance componentName="Manager_Inst"
moduleInstanceName="Manager_Inst" modulePriority="10"/>

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 21

 <deployedTriggerInstance componentName="Manager_Inst"
triggerInstanceName="Trigger" triggerPriority="9"/>
 </protectionDomain>

 <platformConfiguration faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA

Computing Node, on a single ECOA Computing Platform.

Implementation

The Server ASC
The “Request_Value_Service” Service request handler is implemented by the code function

Server_SM_Im__Request_for_Val__request_received:

void
Server_Module_Im__Request_for_Val__request_received(Server_Module_Im__context*
context, const ECOA__uint32 ID, const ECOA__global_time* time)
{
 if (context->user.state == simple_lifecycle__state_RUNNING)
 {
 ECOA__return_status return_status;
 return_status =
Server_Module_Im_container__Request_for_Val__response_send(context, ID, 10);
 }
 else
 {
 ECOA__log log;
 log.current_size = sprintf((char *) &log.data, "server received
Request_for_Val when IDLE - ignoring request!");
 Server_Module_Im_container__log_info(context, log);
 }
}

This function replies to the request (only if the component is in the functional “RUNNING” state) with

a data value of 10 by invoking the ECOA Container API function

Server_Module_Im_container__Request_for_Val__response_send.

The functional state of the Component is handled in the following functions:

void Server_Module_Im__start__request_received
 (Server_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

22

 context->user.state = simple_lifecycle__state_RUNNING;

 status = Server_Module_Im_container__start__response_send(context, ID, context-
>user.state);
}

void Server_Module_Im__stop__request_received
 (Server_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

 context->user.state = simple_lifecycle__state_IDLE;

 status = Server_Module_Im_container__stop__response_send(context, ID, context-
>user.state);
}

void Server_Module_Im__get_current_state__request_received
 (Server_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

 status = Server_Module_Im_container__get_current_state__response_send(context,
ID, context->user.state);
}

When a request is received, the component updates its functional state as appropriate and responds

to the request with the updated state. The current state is stored in the user context (state data for

the module), which is initialised as follows:

void Server_Module_Im__INITIALIZE__received(Server_Module_Im__context *context)
{
 context->user.state = simple_lifecycle__state_IDLE;
}

The Client ASC
The main functionality occurs when the Client receives the “tick” event from the

Internal_Trigger_Instance, i.e. to populate the Client_SM_Im__tick__received function

stub.

void Client_Module_Im__tick__received(Client_Module_Im__context *context)
{
 ECOA__log log;

 if (context->user.state == simple_lifecycle__state_RUNNING)
 {
 ECOA__global_time time;
 ECOA__return_status return_status;
 example__value_type val;

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 23

 return_status =
Client_Module_Im_container__get_absolute_system_time(context, &time);

 val = 0;

 log.current_size = sprintf((char *) &log.data, "val before request = %d",
val);
 Client_Module_Im_container__log_info(context, log);

 return_status =
Client_Module_Im_container__Request_Val__request_sync(context, &time, &val);

 log.current_size = sprintf((char *) &log.data, "val from response = %d",
val);
 Client_Module_Im_container__log_info(context, log);
 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "client received tick - not
doing any functional work as IDLE");
 Client_Module_Im_container__log_info(context, log);
 }
}

That is, the val variable is zeroed and logged prior to invoking the

Client_Module_Im_container__Request_Val__request_sync API (only if the component is in

the functional “RUNNING” state), and because a synchronous Request-Response call is made, the

response (in variable val) is immediately available to log.

The functional state of the Component is handled (in the same manner as the Server ASC) in the

following functions:

void Client_Module_Im__start__request_received
 (Client_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

 context->user.state = simple_lifecycle__state_RUNNING;

 status = Client_Module_Im_container__start__response_send(context, ID, context-
>user.state);
}

void Client_Module_Im__stop__request_received
 (Client_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

 context->user.state = simple_lifecycle__state_IDLE;

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

24

 status = Client_Module_Im_container__stop__response_send(context, ID, context-
>user.state);
}

void Client_Module_Im__get_current_state__request_received
 (Client_Module_Im__context* context,
 const ECOA__uint32 ID)
{
 ECOA__return_status status;

 status = Client_Module_Im_container__get_current_state__response_send(context,
ID, context->user.state);
}

The state is also initialised in the same manner as the Server ASC:

void Client_Module_Im__INITIALIZE__received(Client_Module_Im__context *context)
{
 context->user.state = simple_lifecycle__state_IDLE;
}

The Manager ASC
The main functionality occurs when the Manager receives the “tick” event from the Trigger, i.e. to

populate the Manager_Module_Im__tick__received function stub.

void Manager_Module_Im__tick__received(Manager_Module_Im__context *context)
{
 ECOA__return_status status;
 simple_lifecycle__state serverState;
 simple_lifecycle__state clientState;
 ECOA__log log;

 if (context->user.count == 1)
 {
 // Start both server and client.
 log.current_size = sprintf((char *) &log.data, "manager requesting client
and server components to start");
 Manager_Module_Im_container__log_info(context, log);

 status = Manager_Module_Im_container__start_server__request_sync(context,
&serverState);
 status = Manager_Module_Im_container__start_client__request_sync(context,
&serverState);
 }
 else if (context->user.count == 2)
 {
 // Stop the server.
 log.current_size = sprintf((char *) &log.data, "manager requesting server
component to stop");
 Manager_Module_Im_container__log_info(context, log);

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 25

 status = Manager_Module_Im_container__stop_server__request_sync(context,
&serverState);
 }
 else if (context->user.count == 3)
 {
 // Stop the client.
 log.current_size = sprintf((char *) &log.data, "manager requesting client
component to stop");
 Manager_Module_Im_container__log_info(context, log);

 status = Manager_Module_Im_container__stop_client__request_sync(context,
&serverState);
 }
 else
 {
 context->user.count = 0;
 }

 context->user.count++;
}

This function performs various lifecycle state change requests on the Server and Client ASCs

depending on the iteration count (a variable held in the user context).

1. Iteration count 1:

a. The Manager requests both the Client and Server ASCs to start.

2. Iteration count 2:

a. The Manager requests both the Server ASC to stop.

3. Iteration count 3:

a. The Manager requests both the Client ASC to stop.

This sequence is continually repeated, as count variable is reset to 0 once it reaches 4. The count

variable is initialised as follows:

void Manager_Module_Im__INITIALIZE__received(Manager_Module_Im__context *context)
{
 context->user.count = 0;
}

Program Output
When the ECOA “Simple Lifecycle Example” Assembly is built and run (in a single Node deployment),

an output similar to Figure 9 should be achieved.

When the system first starts, the Client ASC is in IDLE state therefore it does not request values

from the Server. After the first period (5 seconds), the Manger requests both the Server and

Client to start. Once started the Client ASC enters begins performing its functional requirements

ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

26

(requesting value from the Server). The Client ASC outputs, at each iteration (2 seconds), both the

value before sending the request message, and the value after receiving the response (value is 10).

After the next period (5 seconds), the Manager requests the Server to stop. At this point, the

Client is functionally RUNNING, whereas the Server is functionally IDLE. The Client continues to

send requests to the Server, but the Server does not handle the requests. The Clients request

will timeout after 2 seconds; at which point it will print the return value (0 as the default value for

the type).

After the next period (5 seconds), the Manager requests the Client to stop. The Client will then stop

sending the requests to the Server.

This behaviour is continually repeated.

 ECOA Examples: Simple Lifecycle Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 27

Figure 9 - ECOA "Simple Lifecycle Example" in Execution

References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification
(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 European Component Oriented Architecture (ECOA®) Collaboration Programme:
Guidance Document:
System Management

3 Simple Example.
http://www.ecoa.technology/tutorials.html

http://www.ecoa.technology/tutorials.html

