

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

ECOA®	Software	Description	with	UML	

Introduction

The European Component Oriented Architecture (ECOA®) presents a methodology for designing

software systems as a series of Application Software Components (ASCs), each of which is

implemented as one or more ECOA Modules. Only Modules have a physical implementation as

software code.

The ECOA methodology divides the design task into a series of representations captured in XML, as

described in ref.[1], and provides a software system (ECOA “Assembly”) level diagram taken from

SCA (ref.[2]). However, to provide a model based approach to designing at the ASC and ECOA

Module level, UML (ref.[3]) is the preferred means. This paper describes a prototype
1
 “UML Profile”

for designing ECOA ASCs and Modules – that is, how to represent the design and implementation

artefacts required in ECOA software using UML.

Any views, opinions, or recommendations in this paper are those of the author and do not

necessarily reflect those of BAE Systems.

Aims

In an ideal world, there would be a formal UML Profile for ECOA, i.e. a formal definition of how to

represent ECOA artefacts using UML notation. In the absence of a formally defined profile, a

prototype profile is (briefly) described here for use by software engineers designing and constructing

ECOA software systems.

In time, this UML Profile may be developed to be supported by one or more tools to translate from

UML diagrams drawn against the Profile into ECOA XML definition files, but these tools will of

necessity be UML tool specific (e.g. Enterprise Architect, IBM Rational Rhapsody, or Eclipse/Papyrus).

Use of such translation tools, coupled with ECOA XML-to-Code Generation tools, would complete

the ECOA software development path from diagram to implementation code.

1
 It is therefore expected that at any given time, this profile will be incomplete and in some aspects wrong, but

that it will progress, steadily, towards perfection (!) as time, circumstances, and attempts to use it, proceed.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

Prototype UML Profile for ECOA

Figure 1 below depicts an example ECOA ASC (Component) decomposition using UML stereotypes to

sub-classify UML classes, and the relationships between those classes, so as to represent ECOA

entities.

The diagram depicts the composition and design artefact relationships for the ECOA ASC

(Component) “EO_IR”, which provides the ECOA Server “svc_EO_IR_Sensor”, and references the

ECOA Service “SensorHead”. The software code implementation of the ASC is encompassed by the

ECOA Module Implementation “EOIR_modPub_Im”.

Figure 1 ECOA Software Description - Example UML Diagram
23

2
 This diagram has been drawn with the Papyrus plug-in to Eclipse. Other UML tools are available.

3
 Different UML tools will colour UML entities differently. The colouring scheme suggested in this profile is

given in the Summary Tables later in the document.

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

UML diagrams drawn against this profile, like Figure 1, are of course first and foremost, UML

diagrams, not “ECOA” diagrams. UML “classes” are used to represent software types and entities

(drawn as rectangular boxes) and directed arrows between them indicate the “association” or

“dependency” relationship one has with another. Classes and associations are then “stereotyped”

to distinguish variations from the basic entity, by enclosing a clarifying stereotype name in

guillemets, such as data type classes stereotyped «Enumeration» to denote a data type comprising

discrete named vales rather than numerical values. Association arrows are also drawn differently to

distinguish the major types of association, such as a UML “generalisation” (a solid line with a closed,

hollow, arrowhead) and a “composed of” (aggregation) association (a solid line with a diamond

shape (which may be hollow or filled depending on the sub-type of the aggregation) on one end, and

possibly with an open arrowhead on one or both ends). For a much better explanation of UML, see

refs.[3] and [4].

In respect of designing and describing ECOA ASCs using UML as a visual medium, the representations

we need to address are as follows – labelled according to the traditional ECOA development Steps:

• ECOA Data Types (Step 0)

• ECOA Services (Step 1)

• ECOA Assemblies (Step 3)

• ECOA Component Definitions (Step 2)

• ECOA Component Implementations (Step 4)

o ECOA Service Instances

o ECOA Module Types

o ECOA Module Implementations

o ECOA Module Instances

• ECOA Integration & Deployment (Step 5)

Note that “Step 3” appears out of order in this document because a development process would

more likely involve sketching, and then hardening up on, a set of Services and an Assembly to meet a

set of Requirements – identifying the Components required as they emerge from that process.

More rarely might a predetermined set of Components be known prior to arranging them into an

Assembly.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

ECOA Data Types

The ECOA predefined types are simply represented as UML «ecoa.primitiveType» elements (that

is UML elements stereotyped as "«ecoa.primitiveType»"), reflecting an unstructured data type.

Enumeration types are represented using UML «Enumeration» elements that include the list of

enumeration values (such as the T_EO_IR_Mode type represented in Figure 1).

Compound (structured) data types (such as records and unions) are represented as UML

«DataType» elements, with the fields of the compound type represented as properties of the type

(such as the T_Tactical_Item type in Figure 2, which has fields named Tactical_Item_ID,

Is_Valid, and Location).

Figure 2 Example ECOA (Step 0) Data Types Definition Expressed in UML

ECOA data types are defined in XML "name.types.xml" files, using: <enum> XML tags for

enumeration types; <simple> XML tags for unstructured types; <record> or <variantRecord> XML

tags for records; and <array> or <fixedArray> XML tags for array types.

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

ECOA Services

An ECOA Service is represented using a UML «Interface» class, an abstract definition of the

operations of the Service, together with a description of the functionality of each.

Since «Interface»
4
 classes will be used to represent several different ECOA artefacts in this Profile,

ECOA Services are additionally stereotyped "«ecoa.service»" for clarity.

Event and Request-Response ECOA Operations of a Service appear as simply operations of the

«ecoa.service» class. ECOA Versioned Data items are most appropriately represented as UML

Properties of the «ecoa.service» class. The data types of the parameters of the Operations, and of

Versioned Data items, can be linked graphically to the «ecoa.service» class using dependency

associations (dashed arrows), as in Figure 3.

The Service Operations (including Versioned Data items) are themselves stereotyped as

«ecoa.event», «ecoa.request-response», or «ecoa.versioneddata» as required.

«ecoa.event» Service Operations are further stereotyped «ecoa.sent_by_provider» or

«ecoa.received_by_provider» as the case may be.

Figure 3 Example ECOA (Step 1) Service Definition Expressed in UML

ECOA Services are defined in XML "name.interface.xml" files, using <serviceDefinition> XML

tags.

4
 The Eclipse/Papyrus tools use capitalized names for the built-in stereotype names, such as “«Interface»”.

Other tools may use lower case only, as has been used for the ECOA stereotypes introduced by this profile.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

ECOA Assemblies

An ECOA Assembly is represented using a UML Composite Structure Diagram such as the fragment

shown in Figure 4. This can be compared with the equivalent SCA derived Composite Diagram

fragment of Figure 5. UML classes are used to depict the «ecoa.component»s of the Assembly, with

UML Ports exported to represent ECOA «ecoa.service»s or «ecoa.reference»s, as appropriate.

ECOA Properties are represented with UML Properties of the «ecoa.component»s, whilst UML

Comments are used to capture the Component’s Insertion Policies. Note that there is no proposed

method to capture Insertion Policies in the SCA diagram form.

Figure 4 Example ECOA (Step 3) Assembly Definition Expressed in UML

Figure 5 Example ECOA (Step 3) Assembly Diagram

ECOA Assemblies are initially defined (at ECOA development Step 3) in XML “name.composite” files,

using <composite> XML tags. Within these, ECOA ASC (Component) of the Assembly is declared

between <component> XML tags, and each Service Link (wire) between Services of the ASCs is

declared using <wire> XML tags.

At ECOA development Step 5, the Assembly definition is expanded, in a “name_impl.composite”

XML file, to include, for each Component, a naming of the Component Implementation that is

produced during ECOA development Step 4.

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

ECOA Component Definitions

An ECOA Component Definition is represented using a (concrete) UML class, stereotyped

«ecoa.component» (e.g. the EO_IR «ecoa.component» in Figure 6). As ECOA Components have no

physical realization, «ecoa.component» UML classes are made abstract.

ECOA Components are defined (initially) simply in terms of the ECOA Services that the Component

provides and/or references - or more precisely the particular instances of Services. The provision of

(an instance of) a Service is depicted using a UML realization association, stereotyped «provides».

A referenced (instance of) Service is depicted with a UML unidirectional association, stereotyped

«references».

Figure 6 Example ECOA (Step 2) Component Definition Expressed in UML

ECOA Components are defined in XML "name.componentType" files, using <componentType> XML

tags.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

ECOA Component Implementations

An ECOA Component Implementation is represented by describing the decomposition of the

Component into its constituent ECOA Modules and Trigger Instances. An example of such a

decomposition we have already seen (as Figure 1), but here it is again in context (Figure 7).

Figure 7 Example ECOA (Step 4) Component Implementation Definition Expressed in UML

ECOA Service Instances

The particular instance of an ECOA Service, as provided by a particular ECOA Component, is depicted

using a UML «Interface» class, stereotyped (unsurprisingly) as an «ecoa.serviceInstance». An

«ecoa.serviceInstance» is graphically related to its parent «ecoa.service» using a UML

generalization association.

An ECOA Service Instance names, in its definition, an XML file containing a definition of the Quality

of Service provided by that Service Instance. This is depicted in the UML model by a "qos" attribute

of the «ecoa.serviceInstance» class (see Figure 6).

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

ECOA Service Instances are defined in XML in the "name.componentType" file as elements of the

<componentType> structure, using <service> XML tags. The <componentType> structure also lists

the Service Instances referenced by the Component, Service Instances defined in the

<componentType> structure for the other (providing) Component.

For diagram clarity, it is permissible to omit «ecoa.serviceInstance» classes on a UML class

diagram, and to depict an «ecoa.component» class as having «provides» or «references»

relationships directly to the «ecoa.service» interface class.

ECOA Module Types

ECOA Components are implemented in software code by one or more ECOA Modules. Modules are

initially defined by a Module Type, an abstract definition (in XML) of the Module. A Module Type is

depicted once again by a UML «Interface» class, this time stereotyped as an «ecoa.moduleType».

A Module Type can be thought of as an abstract realization (by expansion in XML) of one or more

Service Instances, or parts of one or more Service Instances. Diagrammatically, this abstract

realization is depicted using a UML generalization association, the «ecoa.moduleType» being a

specialization (inverse of the generalization) of the «ecoa.serviceInstance». To further

emphasize that an «ecoa.moduleType» interface class is the first step from the service domain into

the implementation domain, the UML representation will be coloured green (rather than the pink of

abstract interfaces, or blue of concrete classes).

A Module Type declaration specifies whether the Module is a Supervision Module (as required by

ref.[1]). This is depicted in the UML model by an "isSupervisionModule" attribute of the

«ecoa.moduleType» class.

ECOA Module Types are defined as part of a Component Implementation, in XML "name.impl.xml"

files, using <moduleType> XML tags.

ECOA Module Implementations

An ECOA Module Implementation defines how a Module Type is to be implemented in software

code, and is therefore depicted as a UML (concrete) class, stereotyped as an

«ecoa.moduleImplementation», and linked to its parent «ecoa.moduleType» with a UML

realization association.

The ECOA Module Implementation definition is part of a Component Implementation, in XML

"name.impl.xml" files, using <moduleImplementation> XML tags.

The ECOA Module Implementation definition includes attributes specifying:

a) the language this specific Module Implementation is to be coded in;

b) the activation method to be applied to the executable instances of the Module

Implementation;

as well as the inherited (from the parent Module Type) "isSupervisionModule" attribute.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

All ECOA Module Implementations must implement the standard Module Lifecycle operations

defined by the ECOA, depicted in UML by the «ecoa.moduleImplementation» class specializing the

(abstract) ECOA Module class.

The UML «ecoa.moduleImplementation» class depiction therefore reflects both the properties

defined in the XML <moduleImplementation> statement, and the (implementation form) of the

ECOA Module Lifecycle operations.

The UML «ecoa.moduleImplementation» class depiction therefore represents in a design model

the physical realization of an ECOA Module in code.

ECOA Module Instances

A Module Instance, is a runtime instantiation of a Module Implementation, and is represented in a

UML model as a role of a UML «aggregation» (aka «composed of» or «has») association. Hence in

Figure 7, the EO_IR «ecoa.component» is «composed of» the EOIR_modPub_Instance Module

Instance, an instantiation of the EOIR_modPub_Im «ecoa.moduleImplementation».

ECOA Module Instances are defined as part of a Component Implementation, in XML

"name.impl.xml" files, using <moduleInstance> XML tags.

The XML Module Instance declaration states the predicted worst case execution time slot required

by the Module Implementation code in order to complete its function, stated as a

"moduleDeadline" attribute.

	

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

ECOA Integration & Deployment

Finally, to represent in UML the ECOA Deployment of a software system, we use UML Deployment

Diagrams.

These comprise a number of UML Node, «ExecutionEnvironment» node, and «Artifact» node

entities which are stereotyped for ECOA usage as «ecoa.computingPlatform»,

«ecoa.computingNode», «ecoa.protectionDomain», «ecoa.moduleInstance», and

«ecoa.triggerInstance», as appropriate, and as illustrated in the example in Figure 8. Use of UML

«Device» nodes on the Deployment Diagram allows the capture of Transport Binding information of

the ECOA Integration (as illustrated).

Figure 8 Example ECOA (Step 5) Deployment Definition Expressed in UML

ECOA Deployments are defined in XML “deployment.xml” files, using <deployment> XML tags

nesting <protectionDomain> declarations.

Transport Bindings are declared separately to the Deployment. For example, a UDP Transport

Binding is declared in a “udpbinding.xml” file.

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

Summary

The following tables summarise the ECOA artefacts defined at each of the traditional ECOA

Development Steps and their mapping to UML entities – where one or more ECOA specific

stereotypes apply. The suggested colouring (where applicable) of each stereotyped UML entity is

given (in braces).

Step 0 – Types

ECOA Artefact Stereotype(s) UML Entity

Predef Type «ecoa.primitiveType» Data Type (blue);

Enumeration (grey)

Step 1 – Services

ECOA Artefact Stereotype(s) UML Entity

Service «ecoa.service» Interface (pink);

Abstract Class (pink)

Event Operation «ecoa.event»;

«sent_by_provider»;

«received_by_provider»

Operation

Request-Response Operation «ecoa.request-response» Operation

Versioned Data «ecoa.versioneddata» Property

Step 2 – Component Definitions

ECOA Artefact Stereotype(s) UML Entity

ASC (Component) (Type) «ecoa.component» Abstract Class (blue);

Interface

Provided Service Relationship «provides» Interface Realization;

Realization;

Dependency

Referenced Service Relationship «references» Association (directional);

Dependency

Service Instance «ecoa.serviceInstance» Interface (pink);

Abstract Class (pink)

Provided Service (attribute) «ecoa.service» Port

Referenced Service (attribute) «ecoa.reference» Port

 ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 13

Step 3 – Assembly Definition

ECOA Artefact Stereotype(s) UML Entity

Assembly «ecoa.assembly» Class (blue);

Abstract Class (blue)

Composite «ecoa.composite» Class (blue);

Abstract Class (blue);

Interface (blue)

Service «ecoa.service» Port

Reference «ecoa.reference» Port

Component «ecoa.component» Class (blue);

Abstract Class (blue);

Service Link (Wire) «serviceLink» Dependency

Association (directional)

Step 4 – Component Implementations

ECOA Artefact Stereotype(s) UML Entity

Module Type «ecoa.moduleType» Interface (green);

Abstract Class (green)

Event Module Operation «eventReceived»;

«eventSent»

Operation (of an

«ecoa.moduleType»)

Request-Response Module Operation «requestReceived»;

«requestSent»

Operation (of an

«ecoa.moduleType»)

Versioned Data Module Operation «dataRead»;

«dataWritten»

Property (of an

«ecoa.moduleType»)

Component «ecoa.component» Class (blue)

Module Implementation «ecoa.moduleImplementation» Class (blue)

Trigger Instance «ecoa.triggerInstance» Interface (pink)

Module Instance - Role of «aggregation»

Step 5 – Deployment

ECOA Artefact Stereotype(s) UML Entity

Computing Platform «ecoa.computiungPlatform» Node (orange)

Computing Node «ecoa.computingNode» Node (yellow)

Protection Domain «ecoa.protectionDomain» Execution Environment Node

(green)

(Deployed) Module Instance «ecoa.moduleInstance» Artifact Node (blue)

(Deployed) Trigger Instance «ecoa.triggerInstance» Artifact Node (blue)

Transport Binding «device» Device Node (mauve)

Protection Domain Deployment «execute on» Dependency

Module/Trigger Instance Deployment «deployed to» Deployment Dependency

ECOA Software Description with UML

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the

copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, AgustaWestland

Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd. This document is developed by BAE

Systems (Operations) Limited, Electronic Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.

The information set out in this document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties

expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

References

1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Service Component Architecture Assembly Model Specification

OASIS, Version 1.1

3 OMG Unified Modeling Language (OMG UML)

Object Management Group (OMG), Version 2.5

http://www.omg.org/spec/UML/2.5

4 Unified Modeling Language, The

Addison-Wesley, 2005

