

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

ExternIF

Introduction

This document describes an ECOA® example of using the ECOA External Interface capability available

to ECOA Application Software Components (ASCs).

This document presents information about the principal user generated artefacts required to create

an “ExternIF” program using the ECOA. It is assumed that the reader is thoroughly conversant with

the ECOA Architecture Specification (ref.[1]) and the process of defining and declaring ECOA

Assemblies, ASCs (components), Modules, and deployments in XML, and then using code generation

to produce Module framework (stub) code units and ECOA Container and Platform code. If not, then

let me suggest working through some of the other examples/samples provided, starting with

“Hello World” and working your way up to “Pub Sub”.

The ECOA External Interface capability is to allow the creation of single executables containing both

ECOA and non-ECOA code, where functions in the latter need to invoke ECOA Module Operations in

the former. So first, some points of principal:

• An ECOA External Interface is declared as a link to an ECOA Event Module Operation;

• An External Interface API procedure is created from that declaration on an ECOA Module

instance, and made public;

• The External Interface API can then be invoked from non-ECOA software procedures, causing

the linked ECOA Event Module Operation to be queued and executed;

• Because the External Interface API invokes ECOA Event Operations using ECOA mechanisms

(Operation queuing) the Inversion of Control Principal is not violated by the ASC.

Aims

This ECOA “ExternIF” example is intended to show how non-ECOA code functions can invoke ECOA

Operations without breaking Inversion of Control (ref.[1]). It also illustrates one example of inter-

process communication between ECOA and non-ECOA applications.

ECOA Features Exhibited

• The ECOA External Interface capability.

• Separation of functional behaviour implementation (in an ECOA ASC) from platform specific

inter-process and interfacing code.

ECOA Examples: ExternIF

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

Design and Definition

ECOA Assembly Design and Definition

This ECOA “ExternIF” example system represents (very simply) a combination lock and a remote

keypad & display. The original CombiLock program is to be replaced by one carrying an ECOA ASC

implementing the combination lock algorithm. The ECOA ASC is re-usable in other systems, and the

combination lock algorithm may be much more complex than that of the original legacy program it

replaces.

The ECOA ASC is implemented with ECOA External Interfaces.

Figure 1 ECOA "ExternIF" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“ExternIF” Assembly is as follows (file CombiLock.impl.composite):

As you see above, only the ECOA ASC declaration appears in the Assembly file. The non-ECOA parts

do not.

<csa:composite xmlns:csa="http://docs.oasis-

open.org/ns/opencsa/sca/200912" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extenion-2.0" name="

CombiLock" targetNamespace="http://www.ecoa.technology">

 <csa:component name="CombiLock">

 <ecoa-sca:instance componentType="CombiLock">

 <ecoa-sca:implementation name="CombiLock"/>
 </ecoa-sca:instance>

 </csa:component>

</csa:composite>

 ECOA Examples: ExternIF

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

I will spare much detail and repetition in this description of material presented with other examples,

and, relying on your understanding by now of ECOA XML description principals, I am sure you will

realise that the ASC definition (the <componentType> XML element) has no content, as it provides

nor references any ECOA Services, and it defines no ECOA Properties.

ECOA Module Design and Definition

The CombiLock ASC is composed of a single ECOA Module defined (as a Module Type) and declared

(as a Module Implementation and Instance) following the normal ECOA principals, and having the

relevant Event Operations to which the External Interfaces will be mapped. That is, from Figure 1,

Event Operations digit, lock and reset:

The External Interfaces themselves are declared using <eventLink> elements, linking to the Event

Operations defined:

<!-- module CombiLock_modMain_t type definition -->
<moduleType name="CombiLock_modMain_t" hasUserContext="true"

 hasWarmStartContext="false">
 <operations>
 <eventReceived name="digit">
 <input name="ch" type="char8"/>
 </eventReceived>
 <eventReceived name="lock"/>
 <eventReceived name="reset"/>
 </operations>
</moduleType>

<!-- Definition of module operation links -->
<eventLink>
 <senders>
 <external operationName="digit" language="C"/>
 </senders>
 <receivers>
 <moduleInstance operationName="digit" instanceName="CombiLock_modMain_Inst"/>
 </receivers>
</eventLink>
<eventLink>
 <senders>
 <external operationName="lock" language="C"/>
 </senders>
 <receivers>
 <moduleInstance operationName="lock" instanceName="CombiLock_modMain_Inst"/>
 </receivers>
</eventLink>
<eventLink>
 <senders>
 <external operationName="reset" language="C"/>
 </senders>
 <receivers>
 <moduleInstance operationName="reset" instanceName="CombiLock_modMain_Inst"/>
 </receivers>
</eventLink>

ECOA Examples: ExternIF

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

Implementation

The three ECOA Operations digit, lock and reset become, in C code, the ECOA External Interface

functions:

The Legacy-ECOA interface code (see Figure 1) is a simple loop that receives control codes (packaged

as UDP inter-process messages) from the keypad panel application and makes the appropriate

operation call (via those ECOA External Interfaces defined) on the ECOA ASC:

The loop above is implemented in a function called panelListener, which forms a piece of active

(i.e. in-parallel) non-ECOA code that must be initiated from the “main()” procedure:

void CombiLock_digit(const ECOA__char8 ch)

void CombiLock_lock();

void CombiLock_reset();

for(;;){
 if((bytes = datagramSocketReceive(pnlSock, pkt)) >= 1){
 switch(pkt->buffer[0]){
 case 'R': case 'r':
 CombiLock__reset(); // Invoke the ECOA Module Operation
 break;
 case 'L': case 'l':
 CombiLock__lock(); // Invoke the ECOA Module Operation
 break;
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 CombiLock__digit(pkt->buffer[0]); // Invoke the ECOA Module Operation
 break;
 default:
 break;
 }
 }
}

int main()
{
 pthread_t thrdInf;
 //
 posix_apos_binding__Initialise();

 // Initialise/start all non-ECOA active content (legacy app. and interface)
 pthread_create(&thrdInf, NULL, panelListener, NULL);

 // Continue with "normal" ECOA initialisation...
 pdCombiLock_PD_Controller__Initialise();
 :
}

 ECOA Examples: ExternIF

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

At runtime then we can imagine the two active elements operating in parallel within the one (now

extended) Protection Domain, the panelListener (Legacy-ECOA interface) code, and the ECOA

Software Platform (pdCombiLock_PD_Controller) and the hosted ASC (CombiLock).

In addition of course, the ECOA “ExternIF” example needs the keypad panel application (see

Figure 1). In the present case, this is provided by a Microsoft Visual Basic program (“Panel”) which

displays a simple key pad and four-digit display. It transmits key presses as UDP inter-process

messages, and displays up to four-digit numbers received in like manner.

Program Output

The ExternIF Sample comprises two executables:

• the legacy “Panel” keypad simulator, implemented in Visual Basic;

• the “pdCombiLock” ECOA Protection Domain executable.

 When the ECOA “ExternIF” Assembly is built and run, an output similar to Figure 2 should be

achieved. The text message is output to the system console, prefixed by miscellaneous logging data

(time stamp, logging type, etc.), and interleaved with any other ECOA Platform logging messages

(such as the 10 second periodic “alive” message in the example shown):

Private lockSock As New Sockets.UdpClient()

Private Sub sendToLock(s As String)

 Dim msg As Byte() = System.Text.Encoding.ASCII.GetBytes(s)

 lockSock.Send(msg, msg.Length, lockAddr)

End Sub

Private Sub Button0_Click(sender As System.Object, e As System.EventArgs) Handles

 Button0.Click

 sendToLock("0")

End Sub

Private Sub Button1_Click(sender As System.Object, e As System.EventArgs) Handles

 Button1.Click

 sendToLock("1")

 : etc.

ECOA Examples: ExternIF

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

Figure 2 ECOA "ExternIF" in Execution

References

1 European Component Oriented Architecture (ECOA®) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

