

European Component Oriented Architecture (ECOA)
Collaboration Programme:

Volume III Part 4: ELI and Transport Bindings
Reference Manual

BAE Ref No: IAWG-ECOA-TR-006
Dassault Ref No: 144481-B

Issue: 2

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd
and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd.
The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification
make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Note: This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This standard of
documentation is recommended as appropriate for limited lab-based evaluation only. Product development based on
this standard of documentation is not recommended.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 1

1 Table of Contents
1 Table of Contents ... 2
2 List of Figures ... 3
3 List of Tables .. 4
4 Abbreviations .. 5
5 Introduction ... 6
6 Inter-Platform Communications .. 7

6.1 ELI Message Format .. 8
6.1.1 Generic Message Header .. 8
6.1.2 Message Specific Payload ... 11

6.2 Transport Bindings ... 15
6.3 Platform Start-up .. 15

7 References ... 19

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 2

2 List of Figures
Figure 1 – ECOA Documentation ... 6
Figure 2 – Example of inter-platform communications .. 7
Figure 3 – ELI Message Format ... 8
Figure 4 – Generic Message Header ... 9
Figure 5 - Two Platform Start-Up Sequence ... 17
Figure 6 – Three Platform Start-Up Sequence ... 18
Figure 7 – Example of a UDP network logical architecture ... 22
Figure 8 – ELI Message Format ... 23
Figure 9 – ECOA UDP binding header ... 25

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 3

3 List of Tables
Table 1 – ELI Message Format .. 8
Table 2 – Generic Message Header ... 10
Table 3 – Platform-level ELI message IDs ... 11
Table 4 – Payload details for Platform-level Management Messages ... 12
Table 5 – Payload details for Service Operations Messages .. 14
Table 6 – Sizing and Alignment Requirements for ECOA Predefined Base Types 15
Table 7 – Compound Types Sizing and Alignment Requirements .. 15
Table 8 - Table of ECOA references .. 19
Table 9 – Table of External References ... 20
Table 10 – ELI Message Format .. 24
Table 11 – ECOA UDP binding header fields ... 25
Table 12 – ELI Message Fragment (whole or part) .. 26
Table 13 – Single fragment message ... 26
Table 14 – 1st Fragment of a Two fragment message .. 27
Table 15 – 2nd Fragment of a Two fragment message .. 27
Table 16 – 1st Fragment of a Multi fragment message .. 28
Table 17 – 2nd Fragment of a Multi fragment message ... 28
Table 18 – 3rd Fragment of a Multi fragment message ... 29

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 4

4 Abbreviations
API Application Programming Interface

DDS Data Distribution Service

ECOA European Component Oriented Architecture

EUID ECOA Unique Identifier (ID)

ID Identifier

IP Internet Protocol

NaN Not a Number

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTC Coordinated Universal Time

XML eXtensible Markup Language

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 5

5 Introduction

Figure 1 – ECOA Documentation

The Architecture Specification provides the definitive specification for creating ECOA-based
systems. It describes the standardised programming interfaces and data-model that allow a
developer to construct an ECOA-based system. It is introduced in Key Concepts (Reference 1)
and uses terms defined in the Common Terminology (Reference 11). For this reason, the reader
should read these documents, prior to this document. The details of the other documents
comprising the rest of the Architecture Specification can be found in Section 7.

The Architecture Specification consists of four volumes, as shown in Figure 1:

• Volume I: Key Concepts

• Volume II: Developer’s Guide

• Volume III: Reference Manuals

• Volume IV: Common Terminology

This document comprises Volume III Part 4 of the ECOA Architecture Specification, and
describes the ELI messages definition and the ELI to transport binding.

The document is structured as follows:

• Section 6 describes the Inter Platform communications;
• Section 7 provides details of documents referenced from this one.

Architecture
Specification

Vol I: Key Concepts

Vol II: Developers Guide

Vol III: Reference Manuals

Vol IV: Common Terminology

Part 2 - C Binding Manual

Part 3 - C++ Binding Manual

Part 4 - ELI Binding Manual

Part 5 - Mechanisms Manual

Part 6 - Platform Requirements Manual

Part 1 - Ada Binding Manual

Part 7 - Safety and Security Manual

Part 8 - Software Interface Manual

Part 9 – Metamodel/Schemas Manual

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 6

6 Inter-Platform Communications
ECOA platforms communicate using the ECOA Logical Interface (ELI) message definition. This
definition is generic and is independent of the underlying transport mechanism. Therefore, ELI
messages can be considered as the payload of the underlying transport mechanism and the ELI
will not provide mechanisms generally provided by a transport protocol.

Platforms will use a transport binding to carry ELI messages and it is responsible for transporting
messages to the appropriate destinations. Several network bindings will be defined in order to
support different network transport protocols (i.e. UDP, TCP, etc.). Those network bindings have
been designed to be completely independent from ELI Messages. Those bindings may provide
mechanisms to add robustness if the underlying transport protocol is not enough robust to meet
system-level requirements (e.g. reliability, integrity, ordering, confidentiality, etc.).

ELI Messages have been defined to carry information about service operations or platform-level
management data.

Figure 2 – Example of inter-platform communications

ELI Messages using a RESERVED value for one given field shall be discarded by the receiving
platform. The discard shall be log in the security log if any.

Platform A Platform B

Platform C

ELI
Message

UDP Binding

ELI
Message

TCP Binding

UDP

TCP

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 7

6.1 ELI Message Format
ELI messages have a standard structure that includes a generic message header required to
route all messages, and a message specific payload that depends on the actual message type
itself.

ELI Message

Message Specific
Payload

Generic Message
Header

Figure 3 – ELI Message Format

Header Value Explanation Length
(bits)

Alignment
(bits)

Generic
Message
Header

24 byte header Generic message header applicable to
all ELI messages 192 32

Message
Specific
Payload

Payload Message specific payload dependent
upon the message type

Payload
Size * 8 32

Table 1 – ELI Message Format

6.1.1 Generic Message Header
The generic header includes:

• an ECOA mark to allow the identification of ELI messages (0xEC0A)

• a version number related to the ELI version of messages (1 in this version)

• a domain to identify the type of an ELI message (platform-level management or service
operation)

• a unique ID identifying the logical platform that has sent the message

• a unique ID defining the platform-level message, or service operation message

• A timestamp

• A payload size

• A sequence number used to associate platform-level messages or request/response
operations

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 8

Figure 4 – Generic Message Header

Each item within the generic message header is detailed in Table 2.

Header Value Explanation Length
(bits)

Alignment
(bits)

ECOA
Mark 0xEC0A Mark to identify the message as an

ECOA message 16 16

Version number
(1 for this version) ELI version 4 4

Domain

0 - Platform-level
Management
1 - Service Operations
2-15 - Reserved

ELI functional domain of the message :
platform-level management | service
operation

4 4

Logical
Platform
ID

number
Sender Logical Platform ID – Unique ID
within the system used to identify the
sender of the message

8 8

ID

ID of the platform-level
message if domain = 0

EUID of the service
operation if domain = 1

Unique ID allowing routing of the
message from the client to the server -
and potentially the routing of a reply

32 32

Generic Message Header

ECOA Mark

Version

Domain

ID

Timestamp

Payload size

Sequence Number

Logical Platform ID

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 9

Header Value Explanation Length
(bits)

Alignment
(bits)

Timestamp

Seconds number

Global time of the emitter
For Domain = 1 it is the nearest in time
to the module operation.
For Domain = 0 it is the point at which
the platform generates the request or
response.
Reference point in time : 1st January of
1970 (POSIX epoch valid until 2106)

32 32

nanoseconds number 32 32

Payload
Size Number Size of the payload in bytes 32 32

Sequence
Number

number
or 0

Sequence number assigned by the
client container to allow association
between a request and the reply. When
the sequence number is used to
associate a service operation or
platform request response it shall take a
value in the range
0x00000001..0xFFFFFFFF. When the
value is unused it shall take the value 0.

32 32

Table 2 – Generic Message Header

Messages set with a reserved value for the Domain field shall be discarded by the receiving
platform.

Messages where size fields are not coherent with the actual size of the items shall be discarded
by the receiving platform. By example, if the actual size of the ELI message is lesser or greater
than the sum of the size of the generic message header and the payload size defined in the
header, the incoming ELI message shall be discarded.

6.1.1.1 Platform Level Message IDs
Platform-level management message IDs (Domain=0) are defined in Table 3

ID Message Type Explanation
0x00000001 PLATFORM_STATUS Used to push the new status of a

platform or to reply to a platform status
request

0x00000002 PLATFORM_STATUS_REQUEST Used to request the status of the
platform

0x00000003 AVAILABILITY_STATUS Used to push the availability state of
services provided by the platform or to
reply to an availability status request

0x00000004 AVAILABILITY_STATUS_REQUEST Used to request the availability state of
one or all services provided by the
platform

0x00000005 UNKNOWN_OPERATION Used when a requested operation is not
accessible on the platform

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 10

ID Message Type Explanation
0x00000006 SERVICE_NOT_AVAILABLE Used when a requested service is not

set as available on the server platform
0x00000007 VERSIONED_DATA_PULL Used to pull one or all versioned data

available in provided service instances.
0x00000008 COMPOSITE_CHANGE_REQUEST PROVISIONAL:

Used to request the load of a new
composite on the platform

0x00000009 COMPOSITE_CHANGE_REQUEST_
ACK

PROVISIONAL:
Used to confirm that the platform can
satisfy the composite change request

0x0000000A
To
0xFFFFFFFF

RESERVED Reserved

Table 3 – Platform-level ELI message IDs

Messages where the ID is set to a RESERVED value shall be discarded by the receiving
platform.

6.1.1.2 Service Operation Message IDs
Service Operation message IDs (Domain=1) are defined by an ECOA Unique ID (EUID).

A EUID is generated from a key created by using the following string:

"[SourceComponentInstanceName]/[SourceServiceInstanceName]:[DestinationComponentInstan
ceName]/[DestinationServiceInstanceName]:[ServiceOperationName]”

All EUIDs need to be generated at integration time with the same method in order to have
uniqueness of all IDs across the system.

The association between EUID and a specific pair of component instances / service instances /
operation is defined in a dedicated table stored in an XML file who’s XSD is defined by the ECOA
Metamodel (ref 10).

The platform will use this information to route the message from the source component instance
to the target module instance of a component instance, and potentially to route any reply.

6.1.2 Message Specific Payload
The message specific payload is dependent on the domain value defined in the generic header.

For platform-level management domain (domain = 0), messages are defined in section 6.1.2.1.

For service operations (domain = 1), messages are defined in section 6.1.2.2.

6.1.2.1 Message Specific Payload for Platform-Level Management Domain
A message for platform-level management operations contains the parameters for the platform
message.

The platform message is defined by the ID parameter in the generic message header when the
domain=0. Table 4 defines the payload content dependent upon the ID from Table 3.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 11

Message type Fields Sub-fields Value Explanation Length
(bits)

Alignment
(bits)

PLATFORM_STATUS Status 0x00000000 – DOWN
0x00000001 – UP
0x00000002 to 0xFFFFFF
- RESERVED

State of the platform 32 32

Composite ID Number EUID of the composite loaded on the
platform

32 32

PLATFORM_STATUS_REQUEST No fields
AVAILABILITY_STATUS Provided

Services
 Number Number of Provided Services for which

this message gives the availability state
32 32

Service
Availability*

 Pair of elements given for each service
instance provided by the platform. The
number of pairs is given by the previous
field

64 32

 Service ID Number EUID of the service instance provided by
a given component instance on the
platform sending this message

32 32

 Availability
State

0x00000000 –
UNAVAILABLE
0x00000001 – AVAILABLE
0x00000002 to 0xFFFFFF
- RESERVED

State of the service identified in the
previous field

32 32

AVAILABILITY_STATUS_REQUES
T

Service ID Number

0xFFFFFFFF to request all
service availability states

EUID of the service instance provided by
a given component instance on the
platform receiving the request

32 32

COMPOSITE_CHANGE_REQUES
T

Composite ID Number EUID of the composite to load on the
platform

32 32

COMPOSITE_CHANGE_REQUES
T_ACK

Status 0x00000000 – DISAGREE
0x00000001 – AGREE
0x00000002 to 0xFFFFFF
– RESERVED

When DISAGREE is returned, the
platform cannot change the requested
composite.
When AGREE is returned, the platform
will load the requested composite

32 32

VERSIONED_DATA_PULL EUID Number
0xFFFFFFFF to pull all
versioned data

EUID of the requested versioned data –
see service operations

32 32

UNKNOWN_OPERATION EUID Number EUID of the requested operation 32 32
SERVICE_NOT_AVAILABLE EUID Number EUID of the requested operation 32 32

Table 4 – Payload details for Platform-level Management Messages

Messages whose at least one field is set with a RESERVED value shall be discarded by the receiving platform.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 12

Notes:

• At the end of a start or a reconfiguration, the platform state becomes UP once all modules are
at least in IDLE state and the platform is ready to receive any ELI message, in particular
versioned data.

• A platform becomes DOWN as soon as it receives a COMPOSITE_CHANGE_REQUEST or
the old composite has been stopped by other means: the platform is no longer in a position to
manage modules and their dependencies (local copies of versioned data). When DOWN, all
services provided by the platform become unavailable.

• A platform can send a DOWN status as long as the composite is not loaded.

• The PLATFORM_STATUS can be sent periodically as a heartbeat to enable active
monitoring between platforms. The composite ID provided in this message allows the receiver
to check that the sender and the receiver are running the same global composite; the
composite is global to an ECOA system.

• The EUID of a composite is the ID generated from a key created with the name of the
composite (attribute ‘name’ of the root element of the actual implemented assembly schema
file). It is up to the system integrator to adequately manage the configuration management of
assembly schemas.

• If the field “Provided Services” in the AVAILABILITY_STATUS message is zero-valued, it
means that the platform does not provide services to other platforms and there is no service
availability data in the message. If the field “Provided Services” is non zero-valued, it
indicates the number of service availability data (pair of service ID and associated service
state) in the remaining part of the payload.

• The EUID of a service instance is the ID generated from a key created by the concatenation
of the component instance name, the character ‘/’ and the provided service instance name:
‘component_instance_name/provided_service_instance_name’.

• When the AVAILABILITY_STATUS message is received by a platform, it may only contain
information for a subset of the services provided by the remote platform. This partial
information does not invalidate the locally known availability states for the other provided
services. If the platform needs to know the current state of these services, it may send the
remote platform a global request (for all services) or multiple requests (one per service).

• When a COMPOSITE_CHANGE_REQUEST is sent to a platform, the platform sends back a
COMPOSITE_CHANGE_REQUEST_ACK with the appropriate value. Then the platform state
becomes DOWN, the platform sends a PLATFORM_STATUS with the DOWN value and all
the services provided outside of the platform are considered as UNAVAILABLE until the new
composite has been loaded and has totally replaced the old one. When the new composite is
successfully loaded, the platform becomes UP and sends a PLATFORM_STATUS with the
UP value.

• When a VERSIONED_DATA_PULL is sent to a platform, the platform sends the versioned
data using the normal service operation messages (see section 6.1.2.2). Only the versioned
data required to be published to that platform, as defined in the assembly schema, will be
sent.

• UNKNOWN_OPERATION is returned by a platform when the requested operation (pull of a
given versioned data or request-response) is not available on the platform.

• If an AVAILABILITY_STATUS_REQUEST with value 0xFFFFFFFF (all services) is received
by a platform, then the platform will respond only to the requester, but with the availability
states of all services it can provide (irrespective of whether the requesting platform requires
that service as defined in the assembly schema

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 13

• If a versioned data state is requested by a platform, and that state has never been published
(it is uninitialized), then the platform will respond with a versioned data message whose size
is zero.

6.1.2.2 Message Specific Payload for Service Operations
The message specific payload for service operations contains the operation parameters for the
identified service operation.

The service operation message is identified by the ID parameter (EUID) in the generic message
header when the domain=1.

Table 5 details the content of the payload based upon the type of service operation parameters.

Header Sub-header Value Explanation Length
(bits)

Alignment
(bits)

Payload

Service operation dependent
data:

• Input data if operation is
event or request

• Output data if operation
is reply (reply,
deferred_reply)

• data if operation is
versioned data

Data is in the order of the
service definition from left to
right

Payload
Size * 8 32

Table 5 – Payload details for Service Operations Messages

The alignment is mainly used for the start of the Payload; the actual number of bytes sent onto
the network is ‘Payload size’ bytes. It is recommended that ELI implementations zeroised
possible padding in the buffers where they copy Payloads.

In order for two separate executables to marshal and unmarshal the service operation payload,
each element of the message will need to conform to a standard for sizing and alignment.

Each element of the payload will be an ECOA predefined base type or a compound type
constructed from one or more ECOA predefined base types.

Providing size and alignment rules for each of the predefined base types and compound types
will enable two separate executables to marshal and unmarshal any service operation payload.

Table 6 identifies the sizing and alignment requirements for the predefined base types.

Header Serialization Length
(bits)

Alignment
(bits)

boolean8 0 : false, 1-255 : true 8 8
int8 big endian - two's complement notation 8 8
char8 ASCII 8 8
int16 big endian - two's complement notation 16 8
int32 big endian - two's complement notation 32 8
int64 big endian - two's complement notation 64 8
uint8 big endian 8 8
byte 8 8
uint16 big endian 16 8

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 14

Header Serialization Length
(bits)

Alignment
(bits)

uint32 big endian 32 8
uint64 big endian 64 8

float32 big endian - cope with IEEE 754 - Do not transmit NaN and
infinity values 32 8

double64 big endian - cope with IEEE 754 - Do not transmit NaN and
infinity values 64 8

Table 6 – Sizing and Alignment Requirements for ECOA Predefined Base Types

Compound types will be sized and aligned according to the rules in Table 7.

Header Sub-
header Value Explanation Length

(bits)
Alignment

(bits)

array
size number Number of elements of the

array 32 8

data Array data array size * element type
size 8

fixed
array Array data

Size of the array in bits
(size in bytes * 8)
according to the number of
elements and their types

8

enum

low-level big endian value :
ordinal value of the enum,
starting at 0, if no mapping.
else, transmit the mapped
value

Size of the enum type 8

record

The order of the constituents
is given by the XML
definition.

Sized according to its
constituents 8

variant
record

selector To select the right record Size of the selector type 8

data The selected record Size of the selected record
- variable 8

Table 7 – Compound Types Sizing and Alignment Requirements

Note that it is not necessary to define size fields for array data items, record fields or variant
record fields. Indeed the receiving platform knows the type of all incoming data at start time.
Their sizes are derived from the XML translation into the ELI binding.

6.2 Transport Bindings
It is possible to transport the generic ELI messages using a variety of different transport
mechanisms. Examples of these transport mechanisms include UDP/IP, TCP/IP, MIL-Std 1553B,
DDS, etc.

In term of OSI layers, a transport layer fulfils robustness requirements, such as integrity, loss of
messages, confidentiality, etc. If the selected transport layer does not fulfil all system-level
requirements in term of robustness, the binding shall contain mechanisms to support those
requirements.

An example binding to UDP/IP is described in Appendix A.

6.3 Platform Start-up

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 15

In order to allow platforms to start-up in any order, a defined behavior is required which uses the
Platform and Service Operation ELI messages in consistent ways across all platforms.

This section defines a set of behaviours that are an initial proposal for use when developing
platforms. It is seen as a way of allowing a platform to start-up and acquire the state of any other
platforms’ services and versioned data, whilst providing the state of its services and versioned
data to other platforms.

The following behaviours have been defined:

1. When a platform has started and is able to accept and process ELI messages (this state
is known as UP) it will ‘broadcast’ a PLATFORM_STATUS message indicating this.
NOTE: ‘broadcast’ in this context is that the message will be sent to all possible platforms
that could exist. Whether this is by using an actual transport level broadcast capability is
an implementation detail. E.g. for the UDP transport binding described in section
Appendix A it would be sent to each know multicast address.

2. When a platform receives a PLATFORM_STATUS message from another platform, the
receiving platform will respond in the following ways:

• If the sending platform has transitioned from DOWN to UP, then the receiving
platform will send out the following Platform ELI messages only to the sending
platform:

 a PLATFORM_STATUS message with its current state (UP)
 an AVAILABILITY_STATUS_REQUEST (for all services – 0xFFFFFFFF)
 a VERSIONED_DATA_PULL (for all versioned data – 0xFFFFFFFF).

NOTE: any platform will view all other platforms as initially in the DOWN state.
• If the sending platform has not change state, then the receiving platform will take

no further action.
• If the sending platform has transitioned from UP to DOWN, then the receiving

platform will mark all of the services provided by that sending platform as
UNAVAILABLE.

NOTE: If periodic publishing of PLATFORM_STATUS is being used for detecting failures,
then a platform may also mark all of the services provided by another platform as
UNAVAILABLE if it has not had confirmation that the other platform is still UP after a time
period.

These behaviours mean that all platforms will eventually receive the service availability and
versioned data states from all other platforms that are UP.

Figure 5 shows the start-up sequence using two platforms.

Platform 1 starts-up first and ‘broadcasts’ its 1:PLATFORM_STATUS message. Because no
other platform is available at this time the platform continues to operate without any interactions.

Once Platform 2 starts it also sends out a 2:PLATFORM_STATUS message, and this received
by Platform 1.

As a result of the 2:PLATFORM_STATUS message Platform 1 will:
 Send the 3:PLATFORM_STATUS message (as the status of Platform 2 has changed

from DOWN to UP)
 Send the 4:AVAILABILITY_STATUS_REQUEST (for all services – 0xFFFFFFFF)
 Send the 5:VERSIONED_DATA_PULL (for all versioned data – 0xFFFFFFFF).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 16

Platform 2 will respond to the 4:AVAILABILITY_STATUS_REQUEST by sending
6:AVAILABILITY_STATUS, and respond to the 5:VERSIONED_DATA_PULL by sending
7:VERSIONED_DATA_MSGS

As a result of the 3:PLATFORM_STATUS message Platform 2 will:
 Send the 8:PLATFORM_STATUS message (as the status of Platform 1 has changed

from DOWN to UP)
 Send the 9:AVAILABILITY_STATUS_REQUEST (for all services – 0xFFFFFFFF)
 Send the 10:VERSIONED_DATA_PULL (for all versioned data – 0xFFFFFFFF).

Platform 1 will Ignore the 8:PLATFORM_STATUS message sent from Platform 2 (as the status
of Platform 2 has not changed from DOWN to UP).

Platform 1 will respond to the 9:AVAILABILITY_STATUS_REQUEST by sending
11:AVAILABILITY_STATUS, and respond to the 10:VERSIONED_DATA_PULL by sending
12:VERSIONED_DATA_MSGS

Once this sequence has completed, both platforms will have (for that point in time) the service
availability states for all services within the system, along with the versioned data states for all
versioned data services required on each platform.

From this point onwards normal Platform ELI AVAILABILITY_STATUS messages will be used to
notify other platforms of a change in state of a service, or set of services. Similarly the normal
Service Operation ELI messages for VERSIONED_DATA_MSGS will be used to update
versioned data state as it is re-published.

Figure 5 - Two Platform Start-Up Sequence

Figure 6 shows an example with three platforms starting up. This example follows exactly the
same rules as the two platform one, and concludes once all service availability states and
versioned data state has been distributed to all platforms.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 17

The three platform start-up example may be extended to any number of platforms, and
equivalent sequences will occur.

Figure 6 – Three Platform Start-Up Sequence

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 18

7 References

Ref. Document Number Version Title
1. IAWG-ECOA-TR-001 Issue 2 European Component Oriented

Architecture (ECOA) Collaboration
Programme: Volume I Key Concepts

2. IAWG-ECOA-TR-002 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume II Developers Guide

3. IAWG-ECOA-TR-003 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 1: Ada
Binding Reference Manual

4. IAWG-ECOA-TR-004 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 2: C Binding
Reference Manual

5. IAWG-ECOA-TR-005 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 3: C++
Binding Reference Manual

6. IAWG-ECOA-TR-007 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 5:
Mechanisms Reference Manual

7. IAWG-ECOA-TR-008 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 6: Platform
Requirements Reference Manual

8. IAWG-ECOA-TR-009 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 7: Approach
to Safety and Security Reference Manual

9. IAWG-ECOA-TR-010 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 8: Software
Interface Reference Manual

10. IAWG-ECOA-TR-011 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 9: Metamodel
and XSD Schemas Reference Manual

11. IAWG-ECOA-TR-012 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume lV Common
Terminology

Table 8 - Table of ECOA references

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 19

Ref. Document Number Version Title

12. IEEE 754 1985 Standard for Floating-Point Arithmetic
13. MIL-STD-1553 1986 Digital time division command/response

multiplex data bus
Table 9 – Table of External References

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 20

Appendix A. UDP Network Binding
This appendix describes the UDP Network binding that allows the transmission of an ELI
Message using the UDP/IP protocol.

The basic principle is that ELI messages are sent from one platform to another, each platform
being identified by an IP multicast address and a receiving UDP port. The following are examples
of communications between platforms using this mechanism:

• When platform P1 sends an ELI message to another single platform P2, P1 sends the ELI
message, through the UDP/IP protocol, to the IP multicast address of P2 on the specified
UDP port.

• When platform P1 sends an ELI message to two platforms P2 and P3, P1 sends the
message twice, once to the IP multicast address of P2 on the specified UDP port and once to
the IP multicast address of P3 on the specified UDP port.

This section explains how to map ELI messages onto UDP/IP datagrams.

a. Network configuration
The network configuration is defined in an XML file dedicated for the UDP Binding configuration.

This file defines the following for each platform whose name is given by the logical system file:

• a platform ID, an integer between 0 and 15. It is used to uniquely identify one of the
connected platforms

• the maximum number of channels from which ELI messages can be sent to other platforms.
The maximum authorized number of channels is 256 (256 is also the default value).

• A receiving IP multicast address and a receiving UDP port number used to listen for incoming
messages.

The actual identity of a sender is the composition of the platform ID and a channel ID; this allows
identifying the counter associated to the sender, which is explained in section iv.

The receiving multicast address and receiving port number are used by each platform to create
one or several receiving UDP sockets and one or several sending UDP sockets. A sending
socket will send ELI messages to one other platform. The receiving sockets will receive ELI
messages from every platform.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 21

ECOS
Platform 1

Sender ID

ECOS
Platform 2

Sender ID

ECOS
Platform 3

Sender ID

Receiving
UDP

Socket(s)

Sending
UDP

Socket

Receiving
UDP Socket(s)

Sending
UDP Socket

Receiving
UDP Socket(s)

Sending
UDP Socket

Local receiving
multicast address and
receiving port number

Figure 7 – Example of a UDP network logical architecture

Example of a configuration file:

<UDPBinding xmlns="http://www.ecoa.technology/udpbinding-1.0" >
 <platform name="ECOA Platform 1" platformId="0"
 receivingPort="60426" receivingMulticastAddress="239.0.0.1"/>
 <platform name="ECOA Platform 1" platformId="2"
 receivingPort="60426" receivingMulticastAddress="239.0.0.2"/>
 <platform name="ECOA Platform 1" platformId="7" maxChannels="34"
 receivingPort="60426" receivingMulticastAddress="239.0.0.3"/>
</UDPBinding>

b. Network message definition

ECOA UDP messages are designed to:
1. transmit ELI messages between ECOA platforms with

a. possible fragmentation of large messages
b. lost messages detection

2. enable a receiving platform to identify the sending platform

Each ECOA UDP message contains a header and a payload containing the whole or part of an
ELI message.

i. Possible fragmentation of large messages
To ensure transmission of ELI messages greater than maximum size of the UDP/IP transport,
those messages are split into several fragments by the sender. Those fragments will fit the
maximum size of the UDP binding payload. This can be calculated by using the following
formula:

Maximum size of UDP/IP payload = Sizeof(UDP datagram) - (sizeof(IP Header) + sizeof(UDP
Header))

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 22

Maximum size of UDP/IP payload = 65535-(20+8) = 65507

Size of UDP binding header = 4 bytes

Maximum UDP binding payload size is therefore 65507 - 4 = 65503 bytes (or 524024 bits).

The receiver is responsible for gathering the fragments in order to reassemble the original ELI
message.

Each fragment has a “message part” attribute to define which part to of the ELI message it
belongs:

• beginning of the ELI message

• middle of the ELI message

• end of the ELI message

• beginning and end of the ELI message

The message part attribute is set by the sender during the fragmentation step, and used by
receiver to detect fragmented ELI messages. This information will allow the receiver to
reassemble the received payloads into a complete and correct ELI message. It is assumed that
the UDP network will not change the datagram sending order.

ii. Detection of lost messages
The ECOA UDP binding header contains a field for a counter; which is incremented by the
sender for each ECOA UDP message sent. This enables receivers to detect that for each sender
ID, corresponding received ECOA UDP messages have consecutive counter numbers. This
enables message loss to be detected. As stated above, it is assumed that ECOA UDP messages
are received in the same order they are sent.

iii. Identification of the sending platform:
A receiving platform will be able to identify the sending platform by using the sender ID
(composition of a platform ID and a channel ID) sent in ECOA UDP messages within the ECOA
UDP binding header.

iv. ECOA UDP Message Format

This section describes the global structure and details for each field of an ECOA UDP message.
The payload content is a whole or part of an ELI message. ELI messages are described in
section 6.1.

ECOA UDP
Message

ELI Message Fragment
(whole or part)

ECOA UDP Binding
Header

Figure 8 – ELI Message Format

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 23

Header Value Explanation Length
(bits)

Alignment
(bits)

ECOA
UDP
Binding
Header

4 byte header UDP message header 32 32

ELI
Message
Fragment
(whole or
part)

ELI Message fragment,
maximum 65503 bytes Whole or fragment of an ELI message Maximum

524024 32

Table 10 – ELI Message Format

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 24

v. ECOA UDP Binding Header

Figure 9 identifies the contents of the ECOA UDP Binding Header, and Table 11 contains the
details of those fields.

ECOA UDP Binding Header

Version

Message Part

Sender ID

Channel Counter

Payload

Figure 9 – ECOA UDP binding header

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)

Version
00b for the this
version 2 2

Message
part

 00b - begin Enumeration which indicates
the part of the message this
UDP datagram is associated
with. The UDP binding can
reassemble packets to create
a whole ELI message. 2 2

 01b - middle
 10b - end

11b - begin and
end

Sender ID

Identification of the sender
which broadcasts this
datagram to every platform

 Platform ID
Number between
0 and 15

Platform ID provided by the
XML configuration file 4 4

Channel ID
Number between
0 and 255

Channel ID to which the
counter used for this UDP
datagram is associated to.
The value of the ID is set by
the sending platform itself. It
can rely on node ID, on
module instance ID, etc. 8 8

Channel
Counter

Number between
0 and 65535
transmitted in big
endian

Positive counter which
identifies this packet for the
identified channel. The
counter can loop.
Example to clarify:

•
Message1/Packet1  id=0

•
Message1/Packet2  id=1

•
Message2/Packet1  id=2

• …

16

16

Table 11 – ECOA UDP binding header fields

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 25

The sending platform shall maintain one Channel Counter per Channel and use them
accordingly.

vi. ELI Message Fragment (Whole or Part)
Table 12 identifies the content of the ELI Message Fragment within the UDP message.

Header Value Explanation
Length
(bits)

Alignment
(bits)

ELI
Message
Fragment
(whole or
part)

ELI Message
fragment (whole
or part), maximum
65503 bytes

ELI Message part

Maximum
524024 32

maximum size 65503 bytes

(65535 bytes - 28 - 4 bytes)
Table 12 – ELI Message Fragment (whole or part)

vii. Example ECOA UDP messages
The following sections give examples of using the UDP network binding to send various sizes of
ELI messages.

viii. Single fragment message
For an ELI message that will fit completely within the UDP binding (i.e. length <= 65503 bytes),
only a single fragment will be generated. The example in Table 13 shows a single fragment that
contains an ELI message of 10000 bytes. Messages of this type will contain one “begin and end”
fragment.

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2
Message
part

11b - begin and
end

Indicates this is a single
fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

5
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

10000 byte ELI
message

ELI message comprising ELI
Generic Message Header
and Message Specific
Payload 80000 32

Table 13 – Single fragment message

ix. Two fragment message
For an ELI message that will fit within two UDP fragments (i.e. 65503 > length <= 131006 bytes)
two fragments will be generated. The example in Table 14 and Table 15 shows two fragments

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 26

that contains an ELI message of 100000 bytes. Messages of this type will contain one “begin”
fragment and one “end” fragment.

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2
Message
part 00b - begin

Indicates this is the start of a
multi-fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

8
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

1st 65503 bytes of
a 100000 byte ELI
message

1st part of ELI message
comprising ELI Generic
Message Header and the
start of the Message Specific
Payload 524024 32

Table 14 – 1st Fragment of a Two fragment message

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2
Message
part 10b - end

Indicates this is the end of a
multi-fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

9
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

last 34497 bytes
of a 100000 byte
ELI message

2nd part of ELI message
comprising the remainder of
the Message Specific
Payload 275976 32

Table 15 – 2nd Fragment of a Two fragment message

x. Multiple fragment message
For an ELI message that is larger than 131006 bytes, multiple fragments will be generated. The
example in Table 16, Table 17 and Table 18 shows three fragments that contains an ELI

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 27

message of 150000 bytes. Messages of this type will contain one “begin” fragment, one or more
“middle” fragments, and one “end” fragment.

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2
Message
part 00b - begin

Indicates this is the start of a
multi-fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

302
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

1st 65503 bytes of
a 150000 byte ELI
message

1st part of ELI message
comprising ELI Generic
Message Header and the
start of the Message Specific
Payload 524024 32

Table 16 – 1st Fragment of a Multi fragment message

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2
Message
part 01b - middle

Indicates this is the middle of
a multi-fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

303
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

2nd 65503 bytes of
a 150000 byte ELI
message

2nd part of ELI message
comprising part of the
Message Specific Payload 524024 32

Table 17 – 2nd Fragment of a Multi fragment message

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Version 00b 2 2

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 28

Header

Value Explanation
Length Alignment

Subheader (bits) (bits)
Message
part 10b - end

Indicates this is the end of a
multi-fragment message 2 2

Sender ID

Identification of the sender
which sends this datagram to
every partner

 Platform ID 1
Plaftorm ID provided by the
XML configuration file 4 4

 Channel ID 2

Channel ID to which the
counter used for this UDP
datagram is associated to. 8 8

Channel
Counter

304
Positive counter which
identifies this packet for the
identified channel. 16 16

ELI
Message
Fragment
(Whole)

last 18994 bytes
of a 150000 byte
ELI message

last part of ELI message
comprising the remainder of
the Message Specific
Payload 151952 32

Table 18 – 3rd Fragment of a Multi fragment message

xi. Message Byte and Bit Order
In order to ensure complete interoperability it is required that the byte and bit order of the ECOA
UDP Binding Header be defined.

The network byte order shall be as per the internet standard of big endian.

The ECOA UDP Binding Header bit format shall be as shown below:

 76543210
Byte 1 VEMPPLID
VE: version number (2 bits) | MP: message part (2 bits) | PLID: Platform ID (4 bits)

Byte 2 CHANNEID
CHANNEID: Channel ID (8 bits)

Byte 3 COUNTMSB
COUNTMSB: Counter Most Significant Byte

Byte 4 COUNTLSB
COUNTLSB: Counter Least Significant Byte

Bytes are described from the most significant bit (7) to the least (0).
The header is sent in the following byte order: byte 1 then byte 2 then byte 3 then byte 4.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 29

	1 Table of Contents
	2 List of Figures
	3 List of Tables
	4 Abbreviations
	5 Introduction
	6 Inter-Platform Communications
	6.1 ELI Message Format
	6.1.1 Generic Message Header
	6.1.1.1 Platform Level Message IDs
	6.1.1.2 Service Operation Message IDs

	6.1.2 Message Specific Payload
	6.1.2.1 Message Specific Payload for Platform-Level Management Domain
	6.1.2.2 Message Specific Payload for Service Operations

	6.2 Transport Bindings
	6.3 Platform Start-up

	7 References

