

European Component Oriented Architecture (ECOA)
Collaboration Programme:

Volume III Part 5: Mechanisms Reference Manual

BAE Ref No: IAWG-ECOA-TR-007
Dassault Ref No: DGT 144482-B

Issue: 2

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd
and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd.
The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification
make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Note: This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This standard of
documentation is recommended as appropriate for limited lab-based evaluation only. Product development based on
this standard of documentation is not recommended.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 1

1 Table of Contents
1 Table of Contents ... 2

2 List of Figures ... 4

3 List of Tables .. 5

4 Abbreviations .. 6

5 Introduction ... 7

6 ECOA Mechanisms .. 9

7 Interactions ... 10

7.1 Module Instance Queues ... 10

7.2 Event .. 11

7.2.1 Event Sent by Provider .. 11

7.2.2 Event Received by Provider ... 12

7.3 Request Response ... 12

7.3.1 Synchronous Request.. 13

7.3.2 Asynchronous Request .. 14

7.3.3 Immediate Response ... 14

7.3.4 Deferred Response .. 15

7.4 Versioned Data Publication .. 15

7.4.1 Notifying Versioned Data ... 17

7.5 Trigger ... 18

7.6 Dynamic Trigger ... 19

7.6.1 Dynamic Trigger Operations .. 20

7.6.2 Dynamic Trigger management ... 21

7.6.3 XML definitions of Dynamic Trigger Instance and associated links 21

7.7 Interactions within Components ... 22

7.8 Component and Module Properties .. 23

8 ECOA System Management ... 24

8.1 Lifecycle ... 24

8.1.1 Component Runtime Lifecycle ... 24

8.1.2 Module Runtime Lifecycle .. 26

8.1.3 Lifecycle Example .. 29

8.2 Health Monitoring ... 29

8.3 Fault Management ... 29

8.3.1 Fault Categorization ... 30

8.3.2 Fault Propagation .. 30

8.4 Run-time Configuration Management ... 31

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 2

8.4.1 Initialisation .. 31

8.4.2 Reconfiguration.. 31

9 Scheduling .. 32

9.1 Module Deadline .. 32

9.2 Scheduling Policy ... 32

9.3 Activating and non-Activating Module Operations .. 33

10 Service Availability .. 34

10.1 Initialisation .. 34

10.2 Assembly Schema ... 34

10.2.1 Service Links and Ranks ... 34

10.3 Dynamic Service Availability ... 35

11 Service Link Behaviour ... 36

11.1 Introduction .. 36

11.2 Active Provider Component .. 36

11.3 Summary of Behaviour ... 36

11.4 Examples ... 37

12 Module Operation Link Behaviour ... 42

13 Utilities .. 44

14 Inter Platform Interactions ... 45

15 Composites .. 46

16 References ... 47

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 3

2 List of Figures
Figure 1 – ECOA Documentation ... 7

Figure 2 – ECOA Interactions – Key .. 10

Figure 3 – Event Sent by Provider.. 11

Figure 4 – Event Received by Provider .. 12

Figure 5 – Synchronous Client Request-Response .. 13

Figure 6 – Asynchronous Client Request-Response .. 14

Figure 7 – Deferred Response Server Request-Response .. 15

Figure 8 – Versioned Data Behaviour .. 17

Figure 9 – Notifying Versioned Data Behaviour .. 18

Figure 10 – Trigger Behaviour .. 19

Figure 11 – Dynamic Trigger Behaviour ... 20

Figure 12 – Interactions within Components – Synchronous Request-Response 23

Figure 13 – Component-level lifecycle states ... 24

Figure 14 – Module Runtime Lifecycle ... 26

Figure 15 – Lifecycle Example ... 29

Figure 16 – Fault propagation in an ECOA System .. 30

Figure 17 – Service Links ... 36

Figure 18 – Example Assembly Schema .. 38

Figure 19 – Generation of an Event ... 38

Figure 20 – Consumption of an Event .. 39

Figure 21 – Synchronous Request-Response Operation ... 40

Figure 22 – Asynchronous Request-Response Operation .. 40

Figure 23 – Selection of Versioned Data .. 41

Figure 24 – Interactions between Service Operations and Module Operations 42

Figure 25 – A Composite ... 46

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 4

3 List of Tables
Table 1 – Behaviour across a Service Link .. 37

Table 2 – Table of ECOA references ... 47

Table 3 – Table of External References ... 48

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 5

4 Abbreviations

API Application Programming Interface

ECOA European Component Oriented Architecture

ELI ECOA Logical Interface

FIFO First In, First Out

QoS Quality-of-Service

UDP User Datagram Protocol

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 6

5 Introduction

Figure 1 – ECOA Documentation

The Architecture Specification provides the definitive specification for creating ECOA-based
systems. It describes the standardised programming interfaces and data-model that allow a
developer to construct an ECOA-based system. It is introduced in Key Concepts (Reference 1)
and uses terms defined in the Common Terminology (Reference 11). For this reason, the reader
should read these documents, prior to this document. The details of the other documents
comprising the rest of the Architecture Specification can be found in Section 16.

The Architecture Specification consists of four volumes, as shown in Figure 1:

• Volume I: Key Concepts

• Volume II: Developer’s Guide

• Volume III: Reference Manuals

• Volume IV: Common Terminology

This document comprises Volume III Part 5 of the ECOA Architecture Specification, and
describes the various mechanisms that are provided by an ECOA system.

The document is structured as follows:

• Section 6 provides an overview of the mechanisms that are used for interactions between
Modules in the system.

• Section 7 describes in details the behaviour of the interactions in an ECOA system.

Architecture
Specification

Vol I: Key Concepts

Vol II: Developers Guide

Vol III: Reference Manuals

Vol IV: Common Terminology

Part 2 - C Binding Manual

Part 3 - C++ Binding Manual

Part 4 - ELI Binding Manual

Part 5 - Mechanisms Manual

Part 6 - Platform Requirements Manual

Part 1 - Ada Binding Manual

Part 7 - Safety and Security Manual

Part 8 - Software Interface Manual

Part 9 – Metamodel/Schemas Manual

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 7

• Section 8 describes the System Management mechanisms that are provided by the
Infrastructure.

• Section 9 describes the support for scheduling within an ECOA system.

• Section 10 describes the mechanisms for managing Service Availability in an ECOA
system.

• Section 11 describes Service Link behaviour.

• Section 12 describes Module Operation behaviour.

• Section 13 describes the utilities provided by the ECOA Software Platform.

• Section 14 describes how inter-platform communication occurs within an ECOA system.

• Section 15 describes the concept of a composite (collection of Application Software
Components)

• Section 16 contains details of other document referenced from this one.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 8

6 ECOA Mechanisms
The ECOA concept (Reference 1) defines an architecture which uses Application Software
Components and Services. This document describes the mechanisms defined by the ECOA and
the way that Components interact. In addition it describes the behaviour of other aspects of an
ECOA system including management and utility functions along with how different ECOA
Software Platforms interact.

Some of the mechanisms are described in detail within this document, whereas others are only
discussed at a high level, as they are covered in greater depth in other documents. Where this is
the case a reference will be provided.

The intended audience for this reference manual is:

1. Component Developers:

a. To understand the mechanisms available for developing applications

2. ECOA Platform Developers:

a. To understand the behaviour an ECOA Platform is required to provide for a given
mechanism

This document describes the mechanisms available to an Application Software Component, but it
is the ECOA Software Interface Reference Manual (Reference 9) which provides the abstract API
for implementing the mechanisms described herein.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 9

7 Interactions
Interactions between Module Instances in an ECOA system rely on three primary mechanisms:

• Events

• Request-Response

• Versioned Data publication

The interactions between Module Instances can occur within a single Application Software
Component, or between Module Instances of different Application Software Components, as a
consequence of their Services. For detail on the behaviours, see sections 11 and 12
respectively.

In addition to the above mechanisms, Operations exist for Infrastructure Services to allow the
management of the runtime lifecycle, Properties, logging, faults and time Services.

The following sections include numerous figures, which illustrate the interactions within an ECOA
system and provide visual clarity. The key shown in Figure 2 offers guidance on the colouring
and symbology used throughout these sections.

Figure 2 – ECOA Interactions – Key

Note that the Component developer is only responsible for implementing the functionality within
the Module Instance. The other infrastructure objects shown are the responsibility of the ECOA
Platform Developer and comprise the Platform Integration Code (e.g. Trigger Instances, Module
Instance Queues, Versioned Data repositories, Service Links etc.).

7.1 Module Instance Queues

Module run-time behaviour is dependent upon the Module Runtime Lifecycle state (see section
8.1.2). A set of predefined Module Operation called Module Lifecycle Operations exist to allow
the Container to inform the Module of changes to its Lifecycle. Module Lifecycle Operations are
handled in any state (to enable the Lifecycle of a Module Instance to be managed), whereas
normal Module Operations are only handled in the RUNNING state.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 10

Module Operation calls are placed in the Module Instance Queue, and the corresponding entry-
point for the Module Instance is called when the Operation reaches the front of the queue (if the
Operation is specified as an activating Operation, see section 9.3 for further detail on activating
and non-activating Operations).

Module Operation calls other than Module Lifecycle Operations are only queued if the Module
Instance is in the RUNNING state.

If the Module Instance is not in the RUNNING state Module Operations are discarded. For
Request operations arriving to a non-RUNNING Module, the Container will directly return a
Response indicating that the Operation is not available.

7.2 Event

The Event mechanism is used for one-way asynchronous “push-style” communication between
Module Instances and may optionally carry typed data.

When Events are used to implement a Service Operation, a Module Instance may be either the
sender or receiver of an Event irrespective of whether it is designated as the Provider or Requirer
of the Service.

Events are “wait-free” and “one-way”: the Sender is never blocked and does not receive any
feedback from the Receiver. Events arriving on a full Receiver queue are lost, and the fault is
reported to the fault-management Infrastructure.

There may be multiple receivers of an Event within a Component (e.g. other Module Instances or
Service Instances), in which case instances of the Event are broadcast to all receivers.

For Events between Component instances, the behaviour is defined by the Rank and
allEventsMulticasted attributes associated with the Service Link. If the Service Link is not
identified as allEventsMulticasted; then only the Component instance connected to the Service
Link with the lowest value of Wire Rank shall receive the Event. Further detail of this behaviour
is described in section 11.

7.2.1 Event Sent by Provider
In the case of an Event sent by Provider, the providing Application Software Component initiates
the sending. This behaviour is shown in Figure 3.

Figure 3 – Event Sent by Provider

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 11

Figure 3 shows, at point 1, a Module Operation being invoked on the sender Module Instance (of
the Providing Component instance) as a result of some other activity. During this execution, the
Module Instance performs an Event Send Container Operation (Sent by Provider) at point 2.
The Send operation returns immediately, allowing the Sender Module Instance to continue its
execution. The Event will be queued on the Receiver Module Instance Queue, (of the Requiring
Component instance) shown at point 3. The appropriate Event Received Module Operation will
then be invoked on the Receiver Module Instance when the queue is processed and the Event
reaches the front of the queue, at point 4.

7.2.2 Event Received by Provider
In the case of an Event received by Provider, the requiring Component initiates the sending. This
behaviour is shown in Figure 4.

Figure 4 – Event Received by Provider

Figure 4 shows, at point 1, a Module Operation being invoked on the Sender Module Instance
(of the requiring Component instance) as a result of some other activity. During this execution,
the Module Instance performs an Event Send Container Operation (sent by requirer) at point 2.
The Event Send operation returns immediately, allowing the initiating Module Instance to
continue its execution. The Event will be queued on the Receiver Module Instance Queue (of the
Providing Component instance) shown at point 3. The Event Received Module Operation will
then be invoked on the Receiver Module Instance when the queue is processed and the Event
reaches the front of the queue, at point 4.

7.3 Request Response

The “Request-Response” mechanism is a two-way communication between Module Instances.
The calling Module Instance Requests an operation and the called Module Instance provides a
Response. The Requesting Module Instance (sender of the Request) is named the “Client”, and
the providing Module Instance (sender of the Response) is named the “Server”.

A Request may carry data (“in” parameters) and the Response may also carry data (“out”
parameters). All parameters are named and typed.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 12

There are two mechanisms for Request operations and two mechanisms for Response
operations (which provide synchronous and asynchronous behaviour at the Client and Server
respectively). The details of these are described in the following sections. Note that the choice of
mechanism for either a Request or a Response operation can be completely independent of
each other.

For each Request-Response, the set of possible Clients and Servers are identified at design
time, as is the type of the mechanism e.g. synchronous/asynchronous, immediate/deferred.

When a Client performs a Request, if the Server is a Module Instance within the same
Component instance, then this Server is used. However, if the Request is connected to a
Service, there may be multiple possible Servers available; only the Server connected with the
Service Link with the lowest value of Wire Rank is used (known as the active Server, see Section
10). A Response from a Server is only sent to the particular Client that has issued the Request.

A call may fail if the Server is not available. The Client is notified of the failure of the call, and the
fault reported to the fault-management Infrastructure.

The client Container instance may implement a timeout (determined by the maximum Response
time defined by the required QoS) in order to unblock the Client of a Synchronous Request-
Response if no Response is received.

The four types of Request-Response are detailed in the following sections.

7.3.1 Synchronous Request
In the case of a Synchronous Request, the Client Module Instance is blocked until the Response
is received, as shown in Figure 5.

Figure 5 – Synchronous Client Request-Response

Figure 5 shows, at point 1, a Module Operation being invoked on the Client Module as a result of
some other activity. During this execution, the Module Instance performs a Synchronous
Request operation at point 2. At the point the Request is made, the Client Module Instance
becomes blocked.

The Request operation is connected via a Service Link to the Server Module Instance, whereby
the Request operation is queued in the Server Module Instance Queue, at point 3.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 13

The Request operation will be invoked on the Server Module Instance at point 4, which, in this
example, will return with the Response at point 5 (Immediate Response). Once the Response is
received by the Client Module Instance, it will become unblocked and can continue its execution
at point 6.

7.3.2 Asynchronous Request
In the case of an Asynchronous Request, the Client is released as soon as the Request has
been sent and may continue to execute other functionality. The Response results in the call of an
operation on the Requesting Module Instance, as shown in Figure 6.

Figure 6 – Asynchronous Client Request-Response

Figure 6 shows, at point 1, a Module Operation being invoked on the Client Module Instance as
a result of some other activity. During this execution, the Module Instance performs an
Asynchronous Request operation at point 2. At the point the Request is made, the Client
Module Instance does NOT block meaning it can finish its execution of the invoked operation.

The Request operation is connected via a Service Link to the Server Module Instance, whereby
the Request operation is queued in the Server Module Instance Queue, at point 3.

The Request operation will be invoked on the Server Module Instance at point 4, which, in this
example, will return with the Response at point 5 (Immediate Response). The Response will
then be placed in the Client Module Instance Queue at point 6, and the Response call-back
operation will be invoked on the Client Module Instance at point 7.

7.3.3 Immediate Response
In the case of an Immediate Response, the Server executes the required functionality and
provides an immediate Response (analogous to the Synchronous Request on the Client side; in
that the server will be blocked from processing other Module Operations until a response is
provided).

Note that this behaviour is shown in section 7.3.1 (with regard to the Immediate Response of the
Server).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 14

7.3.4 Deferred Response
In the case of a deferred Response: the Server may defer the provision of the Response e.g.
where it needs to invoke a Request-Response Service in order to provide the Response. In this
case the Server may continue to execute other functionality before providing the Response, as
shown in Figure 7.

Figure 7 – Deferred Response Server Request-Response

Figure 7 shows, at point 1, a Module Operation being invoked on the Client Module Instance as
a result of some other activity. During this execution, the Module Instance performs, in this
example, a Synchronous Request operation at point 2. At the point the Request is made, the
Client Module Instance becomes blocked.

The Request operation is connected via a Service Link to the Server Module Instance, wherein
the Request operation is queued in the Server Module Instance Queue, at point 3.

The Request operation will be invoked on the Server Module Instance at point 4. The Server
may, by design, use a Deferred Response Container Operation to send the response at some
later time. For example, in order to compute the Response, it may be necessary to invoke a
further Asynchronous Request operation, meaning the Response cannot be computed until
receipt of the Response occurs.

Point 5, shows another Module Operation invoked on the Module Instance, during this execution,
at point 6, the deferred Container Operation is called to send the Response back to the Client.
Once the Response is received by the Client Module Instance at point 7, it will become
unblocked and can continue its execution.

7.4 Versioned Data Publication

The Versioned Data publication mechanism allows Module Instances to share typed data,
according to a concurrency-safe read-write paradigm. A reading Module Instance is named a
“Reader”, and a writing Module Instance is named the “Writer”.

The Writer can request a local copy of the data and subsequently commit or cancel any changes
made. This write action is atomic and independent of any other updates to the data-set. The
Versioned Data writes are timestamped (timestamp is performed by the ECOA Software
Platform).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 15

A Reader can also request a local copy of the data, which will be the latest data value(s) at the
time of the read request. This local copy will not be affected by any subsequent changes to the
data-set (i.e. by a Writer updating the data-set). Note that although it is possible for the Reader
to modify its local copy of the data, it is not able to update the global data-set.

Writers and Readers have to specify the beginning and the end of each (read or write) access to
the data. The mechanism is “wait-free”: no Writer or Reader is blocked waiting for another Writer
or Reader to release the data or waiting for the underlying synchronisation mechanism to update
the local data-set.

It is possible for multiple instances of the same Versioned Data repository to exist in an ECOA
system e.g. where the Readers are on different Computing Nodes. When the access begins, the
Writer or the Reader always gets the latest copy of data available locally. The timestamp enables
the caller to determine the freshness of the data. The Reader gets an error if data has never
been received or initialized.

Note that at the moment the data is requested, there is no guarantee that it is synchronised with
the latest update, particularly in a distributed system. Where there are multiple Writers the
timestamps can be used by any Readers to determine the order in which the data was published.

Any copy that is made to enable a read or write access is isolated, in that it will not be changed
by any concurrent modifications of the data, and local changes will not cause the Versioned Data
repository to be updated. The local copy is discarded after the read or write has been completed.

A write access ends with two possible alternatives:

• “publish” – modifications made by the Writer are published to the Versioned Data repository

• “cancel” – the modified local copy of the data is discarded without making any modifications
to the Versioned Data repository.

Data publications are atomic; “simultaneous” publications of the same dataset cannot corrupt the
data content. This behaviour may require support from the Infrastructure.

An optional attribute (maxVersions) may be set in the Component Implementation as an attribute
of the data read/write operation to specify the maximum number of concurrent read or write
accesses that may occur. The default is one access per operation e.g. a Read must be released
before the next Read starts. A read or write access Request may fail if a new local copy of the
data cannot be created. In this case, a null Data Handle is returned, the Client is notified of the
failure of the call, and the fault reported to the fault-management Infrastructure.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 16

Figure 8 – Versioned Data Behaviour

Figure 8 shows, at point 1, a Module Operation being invoked on the Writer Module Instance as
a result of some other activity. During this execution, the Module Instance performs a publish
Container Operation at point 2. The data is written to the Component instance local copy of the
repository at point 3. The Infrastructure is then responsible for copying the data to any requiring
Components (which may not be immediate depending upon the implementation of the
Infrastructure) at point 4 and point 5 respectively. Also note that the Infrastructure may optimise
this database management such that the ‘local’ copies are one in the same where the
components are deployed in the same protection domain.

Independently, of the Writer, the Reader Module Instance can read from the Versioned Data
repository. Point 6 shows a Module Operation being invoked on the Reader Module Instance by
some means (e.g. an Event Received). During this execution, the Module Instance performs a
read Container Operation at point 7.

7.4.1 Notifying Versioned Data
Versioned Data Readers can also specify an optional attribute (notifying) to receive a notification
of any updates to Versioned Data. This behaviour is achieved by queuing a notification Event on
the Reader Module Instance, which also contains a reference to the latest version of the data.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 17

Figure 9 – Notifying Versioned Data Behaviour

Figure 9 shows, at point 1, a Module Operation being invoked on the Writer Module Instance as
a result of some other activity. During this execution, the Module Instance performs a publish
Container Operation at point 2. The data is written to the Component instance local copy of the
repository at point 3. The Infrastructure is then responsible for copying the data to any requiring
Components (which may not be immediate depending upon the implementation of the
Infrastructure) at point 4 and point 5 respectively.

When the requiring Component receives the updated data (and as the Reader Module Instance
has defined the operation to be notifying) a notification Event is generated at point 6 which is
queued on the Reader Module Instance Queue at point 7. This invokes the notification Module
Operation, which also includes a copy of the updated Versioned Data.

Note that specifying a Versioned Data Read operation as notifying, does not preclude the use of
standard Container Operations for getting a read-only copy of the data at any time, as detailed in
section 7.4.

7.5 Trigger

Triggers generate periodic Events which can be used to invoke some functionality provided by a
Module Instance or set of Module Instances. The Trigger can generate Events which are queued
to Module Instances within the same Application Software Component and/or generate Events
which are queued to Module Instances in different Application Software Components via a
Service e.g. where a single central Trigger is used to coordinate the execution of functionality of
multiple Components, in the manner of a “central clock”. The Trigger behaviour for the case of
generating events within a same Component is shown in Figure 10.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 18

Figure 10 – Trigger Behaviour

Figure 10 shows, at point 1, the Trigger Instance sending an Event to the Receiver Module
Instance Queue. This causes the Module Operation connected the Trigger to be invoked on the
Receiver Module Instance at point 2. The Trigger Instance will generate the Event at a periodic
interval as defined by the Component implementer.

The Trigger Instance is provided by the underlying Infrastructure to generate an Event at a set
time interval. The Trigger Instance exhibits a sub-set of the Module interface, to enable the
Supervision Module to control the Module Lifecycle of the Trigger.

Note that the Trigger can be connected to one or more Module Operations and/or Service
Operations.

7.6 Dynamic Trigger

A Dynamic Trigger sends an Event after a given delay (known as the out Event) from the receipt
of an input Event (known as the in Event). The in Event specifies the delay time. A Dynamic
Trigger may also receive a reset Event, which will purge all unexpired delays.

It is possible for multiple Module Instances to:

• Send in and reset Events to the same Dynamic Trigger.

• Receive the same out Event.

As with the periodic Trigger, the Dynamic Trigger can generate Events which are queued to
Module Instances within the same Application Software Component and/or generate Events
which are queued to Module Instances in different Application Software Components via a
Service.

Multiple occurrences of the same in Event may be queued waiting for the delays to expire. A
reset Event is used to purge all waiting in Events.

The first parameter of a Dynamic Trigger is the delay. The remaining parameters can be any pre-
defined type. The out Event is generated with exactly the same parameters as the in Event,
except that the first (delay) parameter is omitted. The out Event is sent at the time resulting
from adding the timestamp of the in Event and the delay time. The timestamp of the out Event
is the time at which the Event is sent by the Dynamic Trigger.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 19

Figure 11 – Dynamic Trigger Behaviour

Figure 11 shows, at point 1, a Module Operation being invoked on a Module Instance as a result
of some other activity. During this execution, the Module Instance performs, at point 2, a
Container Operation to Request the Dynamic Trigger Instance to send a Trigger Event after a
given period (in Event). The in Event is queued in the Dynamic Trigger Instance Queue, at
point 3. After the delay time has expired, the Dynamic Trigger Instance will generate an out
Event to the Receiver Module Instance Queue, shown at point 4.

7.6.1 Dynamic Trigger Operations
The Dynamic Trigger can be considered as a Module whose operations are:

• EventReceived in

o On reception, the Dynamic Trigger sets the trigger with the expiration delay

o Parameters:

• delay : ECOA:duration (seconds, nanoseconds)

• p1, p2, etc: ECOA types
• EventSent out

o The Dynamic Trigger sends an “out” Event at time "timestamp(arrival of “in” Event at
Dynamic Trigger level)+delay" in association with an “in” Event previously received. The
timestamp of "out" is the time at which "out" is sent.

o Parameters:

• p1, p2, etc: are identical (number, types and position identical to those of the “in”
Event)

• EventReceived reset

o On reception, the Dynamic Trigger cancels the trigger settings for all "in" Events already
previously received and not yet expired.

The transmitted Events ‘in’ and ‘out’ can have several unspecified parameters (p1, p2, etc):

• These parameters are sent as they are by the Dynamic Trigger.

• The number of parameters and their types are defined in the Component implementation
model at instance definition level (see below).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 20

From an XML point of view, the Dynamic Trigger Module definition looks like the following
definition. Note that this moduleType definition is implicit and is managed directly by the
Infrastructure.

<moduleType>

 <Operations>

 <EventReceived name="in">

 <input name="delay " type="ECOA:duration"/>

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </EventReceived>

 <EventReceived name="reset"/>

 <EventSent name="out">

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </EventSent>

 </Operations>

</moduleType>

7.6.2 Dynamic Trigger management
As any other Module, the Dynamic Trigger:

• Has its own lifecycle – It can receive lifecycle Events (START, STOP, etc) as specified in
section 8.1.2,

• Must be supervised by the supervisor Module,

• Must be deployed by defining its Module priority and its protection domain.

7.6.3 XML definitions of Dynamic Trigger Instance and associated links
A Dynamic Trigger Instance is defined with the tag <dynamicTriggerInstance > within the
Component implementation model (component.impl.xml); it is then used as any other ordinary
Module.

Parameters of a Dynamic Trigger Instance are:

• Maximum number, named size, of waiting Events (outside possible queuing at network
level)

o By default: 1

o Any Events that cause the maximum number of pending Events to be exceeded are
discarded; an error is logged by the Infrastructure.

• Minimum and maximum values of the “delay” respectively named delayMin and delayMax

o Statically defined at design time, to be used by early verification

o For each received “in” Event, the Dynamic Trigger Module checks that the expiration date
is compatible with these constraints (if not, an error is logged by the Infrastructure and the
Event is not taken into account).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 21

o Defined in seconds. Engineer notation is supported to ease the readability (type
xsd:double).

The XML snippet below provides an example of a Dynamic Trigger Instance with one integer
parameter.

<dynamicTriggerInstance name="delayResult"

 modulePriorityRanking="20"

 size="10" delayMin="100e-3" delayMax="200e-3">

 <parameter name="p1" type="int32"/>

</dynamicTriggerInstance>

...

<EventLink>

 <senders><moduleInstance name="producerComputer" OperationName="result"/></senders>

 <receivers><dynamicTrigger name="delayResult" OperationName="in"/></receivers>

<EventLink>

<EventLink>

 <senders><dynamicTrigger name="delayResult" OperationName="out"></senders>

 <receivers>

 <moduleInstance name="consumerComputer" OperationName="result"/>

 </receivers>

</EventLink>

<EventLink>

 <senders><moduleInstance name="managerComputer" OperationName="reset"/></senders>

 <receivers><dynamicTrigger name="delayResult" OperationName="reset"/></receivers>

<EventLink>

 ...

7.7 Interactions within Components

Although the majority of examples shown in the preceding sections display interactions between
Module Instances in multiple Components (using Services), the exact same interactions can
occur within a Component boundary (Module to Module communications).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 22

Figure 12 – Interactions within Components – Synchronous Request-Response

Figure 12 shows the interactions of a Synchronous Request – Immediate Response operation
between two Module Instances within a Component. At point 1, a Module Operation is invoked
on the Client Module Instance from a Service Operation.

During this execution, the Module Instance performs a Synchronous Request operation at point
2. At the point the Request is made, the Client Module Instance becomes blocked.

The Request operation is connected to another Module Instance within the Component. The
Request operation is queued in the Server Module Instance Queue, at point 3. The Request
operation will be invoked on the Server Module Instance at point 4, which can peform any
processing required in order to produce the Response.

In this example, at point 4, the Module Instance invokes a Container Operation to perform an
Event Send. The Server Module Instance provides the Response at point 5 (Immediate
Response) when the Module Operation completes and returns control to the Container. Once
the Response is received by the Client Module Instance, it will become unblocked and can
continue its execution at point 6.+

7.8 Component and Module Properties

Components may be instantiated multiple times within a system. Component Properties provide
a means to tailor the behaviour of a Component instance. A Component Property is declared as
part of the Component Definition.

Within the Assembly Schema the Component Property values are assigned for each Component
Instance. These values are assigned at design time and cannot be changed during execution.

As part of a Component Implementation a Module Type can have Module Properties declared,
which can then be used to tailor different behaviour for each Module Instance.

For each Module Instance, a Module Property can either reference a Component Property, or be
assigned a value at Component implementation time (design time) which cannot be changed
during execution. Note that in order for Component Properties to be accessed; a Module
Property must be created to reference the Component Property.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 23

Module Instances can then access Module Properties, and consequently Component Properties
if referenced, via the Container Interface at run-time. The Software Interface Reference Manual
(Reference 9) contains more detail regarding Properties.

8 ECOA System Management

8.1 Lifecycle

A Component instance has a lifecycle which enables a hierarchical management structure to be
implemented if required. The concept of the Component-level lifecycle is described in section
8.1.1.

A Component Instance is composed of Module Instances. The Runtime Lifecycle of a Module
Instance defines its runtime state. The Module Lifecycle is described in Section 8.1.2.

8.1.1 Component Runtime Lifecycle
A set of lifecycle states have been defined to facilitate the creation of reusable Application
Software Components.

Each Component provides a standardized Component lifecycle Service, which offers a number of
operations. This lifecycle Service can be used by application software management Components
to manage the Component Lifecycle in the same way as any other Service.

The Component Lifecycle is illustrated in Figure 13.

Figure 13 – Component-level lifecycle states

IDLE INITIALIZING

STOPPED

RUNNING

INITIALIZE

INITIALIZE

INITIALIZE

SHUTDOWN

SHUTDOWN

STOP

START

INIT Done

Transient state

Stable state

FINISHING

Shutdown finished

FAILURE

STOPPING

started
STARTING

Stopped

failed
RESTART = STOP + START all the modules
RESET = SHUTDOWN + INITIALIZE + START all the modules

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 24

A Component instance has four possible stable states:

• IDLE

• STOPPED

• RUNNING

• FAILURE
A Component instance also has four possible transient states:

• INITIALIZING

• STARTING

• STOPPING

• FINISHING
A Component instance can transition between the four stable states via the transient states as
shown in Figure 13. Every Component Implementation must contain a Supervision Module; a
Component Implementation may comprise a single Module Instance, which by default is the
Supervision Module. The states and transitions are managed by the Supervision Module. The
condition by which the Component Runtime Lifecycle state is determined is dependent upon the
internal design of the Component and, usually, the Module Runtime Lifecycle state of its
constituent Modules.

The transient states shown in Figure 13 are where the Supervision Module is in the process of
changing the state of the Component instance from one stable state to another.

Any Lifecycle Command that is not a valid transition from the current state (as shown in Figure
13) is ignored by the Supervision Module.

8.1.1.1 Component Lifecycle Service
The Component lifecycle Service is composed of:

• The current state of the Component instance (Versioned Data)

• A set of received Events (Received by Provider – see section 7.2.2) to command changes to
the state of the Component instance:

o initialize_component
o start_component
o stop_component
o restart_component
o reset_component
o shutdown_component

• A set of notification Events (Event Sent by Provider – see section 7.2.1) sent on completion of
a state change (new Component-level lifecycle state reached):

o initialized

o started

o stopped

o idle

o failed

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 25

These Lifecycle Service Operations are linked to a set of Supervision Module Operations and
Supervision Container Operations that allow the Supervision Module to manage the Component
state.

In addition a single Container Operation is provided to allow a Supervision Module Instance to
set the Component State. This operation checks the state transition is valid, and will publish the
new Component State, followed by sending a notification Event (as required) – See Reference 9.

8.1.1.2 Component Lifecycle State Machine
The Component Lifecycle state machine implements the Component Lifecycle, and manages the
states of the Module instances. The state machine is implemented by the Supervision Module
within a Component, and the details of when a Component is in one of the main states, of
transitions between them is specific to that Component.

For instance, a Component instance could be in the RUNNING Component state when all of its
Module Instances are in the RUNNING Module state.

Alternatively, a Component instance may be designed to be in the RUNNING Component state
with only a sub-set of its Module Instance in the RUNNING Module state. This may be used to
implement a way of managing resources when in different modes within the Component.

For Component designs that have a simple relationship between the states of the constituent
Modules and the state of the Component, the Supervision Module lifecycle operations may be
quite generic and could be generated mechanically.

8.1.2 Module Runtime Lifecycle
Figure 14 illustrates the Module Runtime Lifecycle.

Figure 14 – Module Runtime Lifecycle

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 26

A Module Instance has three possible states:

• IDLE

• READY

• RUNNING
A Module Instance can transition between these states as shown in Figure 14. The states and
transitions are managed by the Container, which invokes Module Interface entry points for each
state change.

The Module Interface contains entry points that are invoked by the Container as a result of a
Module Lifecycle state change.They are:

• INITIALIZE

• REINITIALIZE

• START

• STOP

• SHUTDOWN
Note: For an INITIALIZE command, the Container will invoke the INITIALIZE entry point if the
Module is in the IDLE state and the REINIITIALIZE entry point if it is in the READY or RUNNING
state.

The lifecycle of non-Supervision Module Instances within a Component instance are managed by
the Supervision Module with the assistance of the Container:

In order to achieve this, the Supervision Module Container Interface provides the following
operations (one set per non-Supervision Module Instance):

• INITIALIZE

• START

• STOP

• SHUTDOWN
The Supervision Module Instance may call combinations of the above operations in Response to
a Component level lifecycle change Request, for example:

• RESTART could cause the Supervision Module Instance to STOP/START other Module
Instances.

• RESET could cause the Supervision Module Instance to SHUTDOWN/STOP/START
other Module Instances.

8.1.2.1 Module Startup
Upon start-up of the ECOA System, the ECOA Infrastructure is responsible for the allocation and
initialization all the resources (threads, libraries, objects, etc.) needed to execute the functionality
of the Module Instances and their Containers.

Following allocation and initialisation of resources each Module Instance is brought to the IDLE
state.

8.1.2.2 Supervision Module Startup
When all Module Instances have been brought to the IDLE state, the Container commands all
Supervision Module Instances to INITIALIZE and START by performing the following:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 27

• the Container changes the state of the Supervision Module Instance from IDLE to
READY, and calls the INITIALIZE entry point in the Supervision Module Interface

• when the entry point returns, the Container changes the state of the Supervision Module
Instance from READY to RUNNING, and calls the START entry point in the Supervision
Module Interface.

• Note that although the Supervision Module is able to manage non-Supervision Modules at
any time; it is recommended that it only manages them in the RUNNING state (i.e. during
or after the START entry point).

8.1.2.3 Non-Supervision Module Startup
Within a Component, the Supervision Module can Request non-Supervision Module Instances to
INITIALIZE (or REINITIALIZE depending on the state of the Module Instance). The Module
Instance then performs any actions required to initialize, or re-initialize, such as allocating further
resources, setting its internal variables and/or reading its Properties to reach a functionally
coherent and initialized internal state.

Following initialisation the Module Instance is READY and the Supervision Module can Request
it to START. A this point, the Module Instance has the opportunity (via its START operation) to
perform any actions relevant to its transition to the RUNNING state (these are likely to be specific
to the functionality of the design.). Once started the Module Instance enters the RUNNING state.

The following are the steps taken to change the state of a Module Instance:

• the Supervision Module Requests a Module Instance lifecycle state change via the
Container Interface

• the Container changes the state of the Module Instance immediately prior to invoking the
appropriate entry point in the non-Supervision Module Interface

• the Container then notifies the Supervision Module when the entry point of the non-
Supervision Module Instance returns – indicating the state change is complete.

8.1.2.4 Module Run-time Behaviour
Lifecycle Events that do not represent a valid transition from the current state, as shown by the
Module Lifecycle state diagram in Figure 14, are discarded, and the fault management
Infrastructure will be notified (see section 8.3).

Lifecycle Events have no priority over other operations:

• On receipt of STOP, SHUTDOWN or INITIALIZE Events, operations already executing are
allowed to complete and operation calls already queued will be executed.

• operations arriving when a Module Instance is entering the RUNNING state will be queued
and executed after the START entry-point has returned.

A Module cannot invoke any Request-Response operations in its Container Interface as part of
the implementation of a Module Lifecycle operation. The Module may however invoke Event or
Versioned Data operations in this case.

8.1.2.5 Module Shutdown
A Module Instance may be shutdown in response to a non-recoverable error, when its
SHUTDOWN entry point is called. This entry point should be used for the de-allocation of the
resources used by the Module Instance (those previously allocated during INITIALIZE), after
which the Module Instance enters the IDLE state. Information regarding Fault Management may
be found in section 8.3.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 28

8.1.3 Lifecycle Example
Figure 15 provides an example of how the Component and Module lifecycle can be used in a
system in order to create a level of hierarchical management. Here, a “Manager” Component is
shown, which can manage other Components in the system. The Manager Component can be
auto-started by invoking the Component lifecycle operations for initialize Component and start
Component on itself. Once running, it is free to command any managed Components through
required lifecycle Services. In this example, the managed Components are auto-initializing, but
wait to be commanded to start by the Manager Component. Note this is only one example and
the lifecycle Service can be used in numerous ways, depending on system requirements.

IDLE

Supervision Module Supervision Module Supervised Module

Manager Component Managed Component A

IDLE IDLE

READY

RUNNING

READY

RUNNING

READY

RUNNING

IDLE

STOPPED

RUNNING

IDLE

STOPPED

RUNNING

Init Module

Start Module

Initialise_component
_received

Start_component
_received

Init Module

Start Module

Initialise_component
_received

Init Module

Module Initialized

Start Module

Module Started

Component A Initialized

Start Component A

Component A Started

Starting

Initializing

Starting

Initializing

Wait until all
managed
components
are in the
STOPPED
state

Wait until all
managed
components
are in the
RUNNING
state

RUNNING

IDLE

Key
Component Lifecycle State

Module Lifecycle State

Figure 15 – Lifecycle Example

8.2 Health Monitoring

The area of health monitoring is fairly immature within the ECOA, and has currently not been
discussed.

8.3 Fault Management

Management of faults is performed at various levels within the Infrastructure, the aim is to
manage faults in such a way as to isolate, and minimise fault propagation between Components.

Note: the area of fault management is fairly immature within the ECOA, and the information in
these sections is provisional.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 29

8.3.1 Fault Categorization
The Infrastructure provides support to Module Instances for reporting faults. Faults can be
categorised as:

• Fatal: when the Module Instance knows it cannot recover or when the Infrastructure
knows it cannot recover

• Errors: where the Module may be able to recover on its own or with assistance.

8.3.2 Fault Propagation
Fault management functionality may be provided in an ECOA system:

• At the Module level by the Non-Supervision Modules

• At the Component level by the Supervision Module

• At the Protection Domain Management level by the Container.

• At the Computing Node Management level and Platform Management level by the
Infrastructure.

The fault management functionality should provide recovery procedures in an attempt to handle
faults at the level that they occur. Where recovery is not possible the responsibility for handling
the fault is escalated to the next level. Figure 16 illustrates fault propagation in an ECOA system.

Figure 16 – Fault propagation in an ECOA System

Faults are managed in an ECOA system as follows:

• A Module Instance should be able to recover from minor errors without assistance (within
the Component Implementation level). Where this is not possible the Module raises an
error to the Container, and a configuration table is used to define what action the
Container should take (Component level actions). The possibilities at Module level are:

o to ignore the error

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 30

o log the error

o modify the Component State using the Component level lifecycle operations

o modify the Module level lifecycle

o raise the error to the Supervision Module

o If no action is defined at the Component Implementation level, then the fault is
passed to the Protection Domain level

• The Supervision Module error notification handler is invoked by the container if the action
within the Component Implementation level is to specify the Supervision Module
invocation. The Supervision Module can then determine what action is to be taken
(Supervision Module actions). The possibilities for the Supervision Module are to ignore
the error, log the error, use Supervision Module Operations to manage the other Modules
or Component lifecycle.

• At the Protection Domain level, a configuration table is used to determine what action is to
be taken (Protection Domain level actions). An error detected at this level could be the
result of direct detection by the Protection Domain (such as a memory violation), or be
passed to it by the Component Implementation level. The possibilities at Protection
Domain level are to ignore the error, log the error, reload/restart the protection domain or
stop/unload the protection domain.
If no action is defined at the Protection Domain level, then the fault is passed to the
Computing Node level

• At the Computing Node level, a configuration table is used to determine what action is to
be taken (node level actions). An error detected at this level could be the result of direct
detection by the Computing Node Level, or be passed to it by the Protection Domain
level. The possiblities at Computing Node level are to ignore the error, log the error,
reload/restart the Computing Node, or stop/unload the node.
If no action is defined at the Computing Node level, then the fault is passed to the default
ECOA handler

8.4 Run-time Configuration Management

Configuration management within an ECOA system is the responsibility of the underlying
Infrastructure. The configuration of the system is managed in accordance with the system
management policies.

It is envisaged that a set of pre-defined alternative configurations of Service Links is available to
support different functionality. The different configurations will be described by different Assembly
Schemas along with system specific information regarding the scheduling of Modules.

Note: the area of configuration management is fairly immature within the ECOA, and the
information in these sections is provisional.

8.4.1 Initialisation
When an ECOA system is initialized all of the Application software Components are initialized
and put into their initial state (see Section 8.1 for a description of the Lifecycle). The Components
then set their Services available as they become functional, which may depend on the availability
of required Services.

8.4.2 Reconfiguration
Reconfiguration in an ECOA system may occur because of:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 31

• Change of Mode: The system may reconfigure active Components by changing the
Assembly Schema being used. This will result in a change to the Components and
Services available, along with the configuration of Service Links between them. This is a
more fundamental change of the Assembly Schema, and would only be used for gross
changes in configuration.

• Loss of Service: if a Service becomes unavailable, and an alternative Provider is available
as defined in the Assembly Schema, then switching between Providers will be achieved
by switching between the Service Links. This reconfiguration does not require changing to
an alternative pre-defined Assembly Schema; it represents the dynamic aspects of ECOA
Services.

It is envisaged that Service switching is available on any ECOA conformant computing platform.
However, the change of Assembly Schema (replacement of one Assembly Schema by another
Assembly Schema through unload/load actions) is highly dependent upon underlying
mechanisms. The way a reconfiguration is commanded is also dependent upon the underlying
mechanims; it is expected that the command is sent by a management Component through a
specific API or a system management Service provided by the ECOA Software Platform.

See Section 10 for further information regarding Service availability.

9 Scheduling
Support for scheduling of Modules, which are single-threaded, is provided by the underlying
operating system and the ECOA Module Application Code is agnostic to the scheduling policy
used. A Module Deadline is specified for each Module Instance to assist the integrator with
scheduling of the Modules.

The Developers Guide (Reference 2) contains more information regarding Scheduling.

Note: the area of scheduling is fairly immature within the ECOA, and the information in these
sections is provisional.

9.1 Module Deadline

Each Module Instance has a Module Deadline attribute that is used to guide a system integrator
with regard to scheduling of Modules. The deadline values are expressed in time units
(milliseconds), and are a measure of the time by which any Module Operation invoked on the
Module is required to have completed by. This information may be used by the system integrator
to determine the scheduling parameters and policies used to schedule all Modules within a
deployment.

9.2 Scheduling Policy

Scheduling is the responsibility of the Infrastructure and any scheduling policy supported by the
OS/Middleware may be used as required by the system integrator. Scheduling analysis of the
proposed system should be carried out in the same way as normal at design time. Scheduling
analysis is outside the scope of the ECOA; although it is anticipated that it would be carried out
following existing, established methods. The schedulability analysis required will be dependent
upon the chosen scheduling policy.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 32

9.3 Activating and non-Activating Module Operations

By default, Module Operations are activating; the arrival of a new operation implies the execution
of the associated entry-point as soon as the Module Instance is able to execute. This schema is
an Event-driven programming model.

To disable this default behaviour, attributes are defined within the Component Implementation at
EventLink, RequestLink and DataLink level:

• activating which is a boolean specifying the policy used by the Container to handle the
operation:

o when True (default value), the Container activates the associated entry-point as soon as
possible.

o when False, the operation is queued and remains pending. When an activating Module
Operation arrives to the same Module Instance through another Module Operation Link,
all pending Module Operations are then processed in FIFO order and executed as any
other Module Operation. It is envisaged that this type of mechanism could be used to
implement a time-driven programming model, which may allow for easier schedule
feasibility analysis.

• fifoSize which is an integer specifying the maximum number of pending operations of a
single type at each receiving Container level. The fifoSize attribute is defined against an
operation Link; therefore different operations can be specified to have different maximum
queue sizes. When the maximum number is reached for a given operation, the receiving
Container discards the new incoming Module Operations associated to the Link. For an
incoming Request Response, the receiver Container sends back an error message to the
sending Container in order to notify the Client of the failure.

Note that activating on DataLink is only useful when associated to a notifying Versioned Data
(attribute notifying set to true) (see §7.4.1).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 33

10 Service Availability
The availability of Services provided by a Component instance can be set, on a per Service
basis, by the Supervision Module Instance via the Container Interface. The availability of
provided Services is likely to be dependent upon a combination of the Component lifecycle state
and the availability of any required Services necessary in order to successfully provide its
Service.

The availability of Services may be affected by run-time errors that could cause Module
Instances to be shutdown.

10.1 Initialisation

During initialisation the ECOA Software Platform sets all Services as unavailable, and will
propagate the availability of Services as Component instances are initialized and started. The set
of Services in the system are defined by the Assembly Schema (see section 10.2), which may or
may not be available at any given time.

10.2 Assembly Schema

The possible connections between the provided and required Services of Application Software
Components in an ECOA system are determined by the Assembly Schema. This provides details
of the Service Links (called Wires in the Assembly Schema) between Services. Service discovery
may be:

• Static: where there is a single Provider of a Service. The links between providers and
requirers of such Services are statically pre-determined by the Assembly Schema and are
established at system start up.

• Dynamic: where there is more than one Provider of the Service and which is the active
Provider is determined at run-time, when the Service Request is made. All of the possible
connections are statically defined in the Assembly Schema.

An ECOA system may contain a mix of static and dynamic connections between its Services.

10.2.1 Service Links and Ranks
The links between Services are described by the Wires in the Final Assembly Schema. Each
Wire has a single Requirer of a Service (identified as a source in the schema) a single Provider
of the Service (identified as a target in the schema), and a Rank.

There may be multiple Providers and Requirers of the same Service; the connections between
them are determined by the Wires in the Assembly Schema. Where multiple Providers (targets)
are connected to the same Requirer (source) in the case of Versioned Data or Request
Response, each Wire that is connected must have a unique Rank, which is used to choose a
single Provider. The Provider with an available service which is connected by a Wire with the
lowest Rank value is chosen in preference to the others (i.e. Active Provider). The behaviour of
Events is dependent upon whether the Service Link is specified to multicast Events. If multicast
is not enabled, the Active Provider concept is used.

Further detail on Rank and Service Link behaviour can be found in section 11.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 34

10.3 Dynamic Service Availability

The Active Provider for Events, Versioned Data and Request-Response may be decided
dynamically at run-time from the possible connections defined in the Final Assembly Schema.
Where the current Provider of a Service (the available Provider with the lowest Rank value)
becomes unavailable the ECOA Software Platform will arrange for the Provider connected by a
Wire with the next lowest Rank value (if the Service is available) to be chosen as:

• the sender in the case of an Event Sent By Provider (unless multicast is enabled),

• the receiver in the case of an Event Received By Provider (unless multicast is enabled),

• the responder in the case of a Request-Response,

• the writer in the case of Versioned Data

Any changes to the Provider of a Service is notified to the Requirer. If there is no available
Provider the Requirer will be notified that the Service is no longer available.

The Quality-of-Service provided by any Provider is monitored at run-time to ensure it is within the
required QoS of the Requirer. If this is not the case, then a fault may be generated and reported
to the Fault Management. In addition an alternative Provider may be used if one is available.

Note: the area of Quality-of-Service is fairly immature within the ECOA, and this information is
provisional.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 35

11 Service Link Behaviour

11.1 Introduction

A Service Link connects Application Software Components together. Each Service Link connects
one Provided Service to one Required Service which refers to the same Service Definition (which
consists of operations i.e. Events, Request Response and Versioned Data). This is shown in
Figure 17.

required
service

provided
serviceServiceLink

**1 1

Figure 17 – Service Links

It is necessary to specify the behaviour of each operation across the Service Links. This is
because it is different for each type of operation.

11.2 Active Provider Component

The term Active Provider is introduced to describe the Application Software Component selected
by the Infrastructure according to the following policy: it’s provided Service is set as available and
its Service Link has the lowest value of Wire Rank. (The value of the Rank attribute can be
computed according to the deployment, for example to reflect a notion of "bonding" between
Requirer and Provider). Rank is expressed as a positive integer value, whereby a low integer
value represents a high ranking Service Link.

11.3 Summary of Behaviour

When a Service Definition includes an Event Sent By Provider operation, the Event (and its
associated typed data) sent by any Provider is received by all Requirers linked to the Provider
(the Event data is distributed from the Provider to many Requirers). If there are multiple
providers, the requirer only receives Events from the Active Provider, unless the Service Link is
specified to multicast Events.

Similarly, when a Service Definition includes an Event Received By Provider operation, the
associated typed data sent by any Requirer is received by the Active Provider, unless the Service
Link is specified to multicast Events.

When a Service Definition includes a Versioned Data operation, each providing Application
Software Component that is linked to the Provided Service may supply that data. Application
Software Components that are linked to the Required Service read the most recent value of the
data provided by the Active Provider. When the Active Service Provider is changed to another
one, Readers read the instance of the new Provider. The Containers hide the switch between
instances.

For a Request-Response operation referenced in a Service Link, the Request from the Client is
addressed (directed) to the Active Provider (Server). In other words, in the case of multiple
eligible Providers, the Infrastructure will select one of the Providers to provide a Response.

These behaviours are summarised in Table 1.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 36

Operation Provider Requirer

Event Operations

sent_by_provider

The Event and its
associated typed
data is sent to all

Requirers

Receives the Event
and its associated

typed data from the
Active Provider

selected from set of
eligible Providers

(Servers) as
determined by the

Infrastructure
according to the Rank

attribute1.

received_by_provider

Receives the Event
and its associated
typed data from all

Requirers if the
Provider is the

Active Provider2.

The Event and its
associated typed data
is sent to all Providers

Request-Response Operations
Receives Requests
from all Requirers

(Clients)

Active Provider
selected from set of

eligible Providers
(Servers) as

determined by the
Infrastructure

according to the Rank
attribute.

Versioned Data Operations
Updates data for all

Requirers
(Readers)

Active Provider (Writer)
selected by

Infrastructure
according to the Rank

attribute3.

Table 1 – Behaviour across a Service Link

11.4 Examples

1 This behavior is the default one when the flag AllEventsMulticasted is set to False (default value). When
this flag is set to True, Requirers receive all events sent by the Providers for which the flag is set to True.
2 This behavior is the default one when the flag AllEventsMulticasted is set to False (default value). When
this flag is set to True, all Providers receive all events sent by the Requirers for which the flag is set to
True.
3 Providers maintain their own instance of the data : when a Provider accesses the data, it gets the value it
wrote previously.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 37

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

Providing
Component

P1

Providing
Component

P2

Figure 18 – Example Assembly Schema

In the above Assembly Schema, three Application Software Components R1, R2 and R3 are
connected, via Service Links, to two Application Software Components P1 and P2. P1 is
considered as the Active Service Provider for R1 and R2, while P2 is considered as the Active
Service Provider for R3.

"Sent by Provider" Events

received

sent

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

troviding
Component

t1

troviding
Component

t2

q2

q3

q1

One queue is created for
each requiring component

S: Service Def inition

e: event (sent by provider)

Figure 19 – Generation of an Event

An Event e “Sent by Provider” in Service S translates to:

• An Event queue (q1,q2,q3) is created for each Requiring Component (R1, R2, R3);

• An Event sent by an Active Service Provider (P1 or P2) is received by all its Requirers (R1
and R2 for P1, R3 for P2).

• An Event sent by a non-active Provider is discarded by the Infrastructure except if the
allEventsMulticasted flag is set to true. Therefore, an Event sent by P2 is only received by R2
if the allEventsMulticasted flag is set to true, otherwise, it does not reach R2.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 38

"Received by Provider" Events

received

sent

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

troviding
Component

t1

troviding
Component

t2
q2

q1

One queue is created for
each requiring component

S: Service Def inition

e: event (received by
provider)

Figure 20 – Consumption of an Event

An Event “received by Provider” in a Service translates to:

• An Event queue (q1,q2) is created for each providing Component (P1 and P2);

• An Event sent by a Requirer (R1, R2, R3) is received by the Active Service Provider (P1 for
R1, P1 for R2, P2 for R3)

• An Event sent by a Requirer is received by its non-active Providers if the allEventsMulticasted
flag is set to true (P2 for R2). Otherwise, the Event does not reach non-active Providers.

• All Requirers are allowed to send the Event.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 39

Request-Response

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

Providing
Component

P1

Providing
Component

P2

S Service DefiniPion
rr : requestreponse
S Service DefiniPionS Service DefiniPion
rr : requestreponse

qP1

qP2

requesP

response

Synchronous Case

requesP

response

Synchronous Case

Figure 21 – Synchronous Request-Response Operation

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

Providing
Component

P1

Providing
Component

P2

S Service DefiniPion
rr : requestreponse
S Service DefiniPionS Service DefiniPion
rr : requestreponse

qP1

qP2

qR1

qR2

qR3

requesP

response

Asynchronous Case

requesP

response

Asynchronous Case

Figure 22 – Asynchronous Request-Response Operation

In Figure 21 and Figure 22, Service definition S defines a single Request-Response operation
(rr). This translates to:

• Service Requirers (R1, R2 and R3) issue a Request to their current Active Provider (P1 for
R1 and R2, P2 for R3).

• Based on the Rank attribute of the Service Links, the Infrastructure will determine the Active
Provider for Component R2. In this example the Active Provider for R2 is P1.

• The Service Providers (P1, P2) respond to the received Requests.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 40

• For Synchronous Request-Response operations, the Requiring Component is blocked until
the Response is received.

• For Asynchronous Request-Response operations, the Requiring Component is not blocked.
The Response is received at some later time and processed by a callback function.

• Requests into a Provider are queued (qP1 and qP2) until the relevant Request_Received API
callback function is called by the Provider Component's Container. This will cause additional
blocking delays to Requirers of Synchronous Request-Response operations.

• Responses to Asynchronous Request-Response operations are queued in the Requiring
Component’s queue (qR1, qR2, qR3) until the relevant Response_Received API callback
function is called by the Requirer Component's Container.

• Responses to Synchronous Request-Response operations are not queued in the Requiring
Component which will be blocked waiting in the Request_Sync API function for the
Response.

Versioned Data

Requiring
Component

R1

Requiring
Component

R2

Requiring
Component

R3

Providing
Component

P1

Providing
Component

P2

d1

d2

d :: versioned_data

S Service DefiniPion

One insPance of daPa is
creaPed for each
providing componenP

“acPive” read
RriPe

Active Provider for R2 and R1
Active Provider for R3

non-“acPive” read

Figure 23 – Selection of Versioned Data

In Figure 23 Service definition S defines one Versioned Data operation (d). This translates to:

• Two instances of data4 (d1 and d2) created – one per providing Components (P1 and P2)

• Based on the Rank attribute of the Service Links, the Infrastructure will determine the Active
Provider for the data Reader Component R2. In this example the Active Provider for R2 is P1
(hence R2 accesses data instance d1).

• Each Versioned Data instance is written by only one Application Software Component and
can be read by many Application Software Components. In this example, even if P1 is the
active Provider for R2, P2 only accesses data instance d2. That means there is no underlying
synchronisation between d1 and d2.

4 This is a logical view from the point-of-view of the Component. In an actual platform implementation, the
data may be physically distributed and synchronized across the processing nodes in different ways.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 41

12 Module Operation Link Behaviour
This section shows the relationships between Service Operations and Module Operations.

Figure 24 – Interactions between Service Operations and Module Operations

Figure 24 shows possible interactions between Service Operations and Module Operations. The
following give more details on each of these:

• The Grey boxes are the Services which are collections of Service Operations and are
described by Service Definitions.

• The Yellow boxes are Service Operations which are connected together using Service Links /
Wires which are in Blue.

• The Purple boxes are Module Operations which are entries onto Executable Entities which
are in Green.

• The Orange boxes are Container Operations which are called from an entry point of a Module
Instance.

• Incoming Service Operations are connected to Module Operations using Module Operation
Links.

• Container Operations are connected to outgoing Service Operations using Module Operation
Links.

• Container Operations are connected to Module Operations using Module Operation Links.

• Service Operations cannot be mapped to other Service Operations using Module Operation
Links.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 42

• All Module Operation Links require Container code.

• The names of Service Operations and Module Operations which are connected together don’t
have to match.

• A Request Response Service Operation can only be mapped to a single Module Operation.

• Multiple Event Service Operations can be mapped to the same Module Operation.

• One Container Operation can be mapped to multiple Event Service Operations.

• Versioned Data is always Read or Written by an entry point of a Module Instance using a
Container Operation.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 43

13 Utilities
An ECOA Software Platform provides utility functions for acquiring time and for generating logs.
The Software Interface Reference Manual (Reference 9) contains more detail regarding these
functions.

One of the ECOA Software Platform provided functions is a method for allowing access to global
time. It is a system specific decision how this global time is synchronised, and at what precision,
however the ECOA assumes that time values acquired through these functions are synchronised
across the system.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 44

14 Inter Platform Interactions
In order to provide interoperability between ECOA Software Platforms, a message protocol has
been defined. This message protocol requires an underlying transport protocol for its
implementation. The choice of the underlying transport protocol is left to the system designer
depending on system-level requirements (performance, security, etc.). As an example, a binding
to the UDP transport layer has been defined. These can be found in the ELI and Transport
Bindings Reference (Reference 6).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 45

15 Composites
Note: the area of Composites is fairly immature within ECOA, and the information in these
sections is provisional. Further detail of the Composite concept can be found in Reference 12,
which is included for information only, as it can help provide an indication of what a Composite
may encompass with regard to the ECOA.

Within the ECOA it is envisaged that a system may be constructed using many Components. In
order to help with design abstractions the concept of a Composite is introduced.

A composite is described by its definition, the list of its Application Software Components and the
associated Assembly Schema of these Application Software Components. The Composite will
provide several Services, each one linked to one or several Services or provided by its
Application Software Components. This kind of Service Link is called a Promotion Link. The
Composite will require several Services required by internal Application Software Components.
The link used here is also called a promotion link. An Application Software Component external
to the Composite is only connected to Services provided or required at Composite level and has
no knowledge of the internal Application Software Components.

Figure 25 shows an example Composite constructed with four Components.

Figure 25 – A Composite

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 46

16 References
Ref. Document Number Version Title

1. IAWG-ECOA-TR-001 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume I Key Concepts

2. IAWG-ECOA-TR-002 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume II Developers Guide

3. IAWG-ECOA-TR-003 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 1: Ada
Binding Reference Manual

4. IAWG-ECOA-TR-004 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 2: C Binding
Reference Manual

5. IAWG-ECOA-TR-005 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 3: C++
Binding Reference Manual

6. IAWG-ECOA-TR-006 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 4: ELI and
Transport Binding Reference Manual

7. IAWG-ECOA-TR-008 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 6: Platform
Requirements Reference Manual

8. IAWG-ECOA-TR-009 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 7: Approach
to Safety and Security Reference Manual

9. IAWG-ECOA-TR-010 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 8: Software
Interface Reference Manual

10. IAWG-ECOA-TR-011 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume III Part 9: Metamodel
and XSD Schemas Reference Manual

11. IAWG-ECOA-TR-012 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume lV Common
Terminology

Table 2 – Table of ECOA references

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 47

Ref. Document Number Version Title
12. sca-assembly-1.1-

spec-cd03
1.1 Service Component Architecture

Assembly Model Specification Version 1.1
(available at: http://docs.oasis-
open.org/opencsa/sca-assembly/sca-
assembly-1.1-spec-cd03.pdf)

Table 3 – Table of External References

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 48

http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec-cd03.pdf

	1 Table of Contents
	2 List of Figures
	3 List of Tables
	4 Abbreviations
	5 Introduction
	6 ECOA Mechanisms
	7 Interactions
	7.1 Module Instance Queues
	7.2 Event
	7.2.1 Event Sent by Provider
	7.2.2 Event Received by Provider

	7.3 Request Response
	7.3.1 Synchronous Request
	7.3.2 Asynchronous Request
	7.3.3 Immediate Response
	7.3.4 Deferred Response

	7.4 Versioned Data Publication
	7.4.1 Notifying Versioned Data

	7.5 Trigger
	7.6 Dynamic Trigger
	7.6.1 Dynamic Trigger Operations
	7.6.2 Dynamic Trigger management
	7.6.3 XML definitions of Dynamic Trigger Instance and associated links

	7.7 Interactions within Components
	7.8 Component and Module Properties

	8 ECOA System Management
	8.1 Lifecycle
	8.1.1 Component Runtime Lifecycle
	8.1.1.1 Component Lifecycle Service
	8.1.1.2 Component Lifecycle State Machine

	8.1.2 Module Runtime Lifecycle
	8.1.2.1 Module Startup
	8.1.2.2 Supervision Module Startup
	8.1.2.3 Non-Supervision Module Startup
	8.1.2.4 Module Run-time Behaviour
	8.1.2.5 Module Shutdown

	8.1.3 Lifecycle Example

	8.2 Health Monitoring
	8.3 Fault Management
	8.3.1 Fault Categorization
	8.3.2 Fault Propagation

	8.4 Run-time Configuration Management
	8.4.1 Initialisation
	8.4.2 Reconfiguration

	9 Scheduling
	9.1 Module Deadline
	9.2 Scheduling Policy
	9.3 Activating and non-Activating Module Operations

	10 Service Availability
	10.1 Initialisation
	10.2 Assembly Schema
	10.2.1 Service Links and Ranks

	10.3 Dynamic Service Availability

	11 Service Link Behaviour
	11.1 Introduction
	11.2 Active Provider Component
	11.3 Summary of Behaviour
	11.4 Examples

	12 Module Operation Link Behaviour
	13 Utilities
	14 Inter Platform Interactions
	15 Composites
	16 References

