ECOA

European Component Oriented Architecture (ECOA)
Collaboration Programme:
Volume Ill Part 8: Software Interface Reference Manual

BAE Ref No: IAWG-ECOA-TR-010
Dassault Ref No: DGT 144485-B

Issue: 2

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd
and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systéemes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd.
The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification
make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Note: This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This standard of
documentation is recommended as appropriate for limited lab-based evaluation only. Product development based on
this standard of documentation is not recommended.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 1

1 Table of Contents

N = 1] (=00 B 0] 1= S 2
P N 1 o) o U PP 4
G T 1 o) =0 5
A ADDIEVIALIONS ...ttt atta— ittt ittt a 6
N 11 oo [F{od 1o o I PP 7
6 Module to Language MaPPING s aa s e e e e s a e s e e e e e e e e e e e aaaaaaaaeas 9
A - 1 1= 1111 €SP PTPP T P PSPPI 12
8 MOAUIE CONTEXL.ttt r e aaaaaaaaaaaeens 13
8.1 TIMESTAMPING ... eieiiiiiiiiie ettt 13
8.1.1 Request ReSpONSE and EVENIS..........uuuuiiiiiiiii s 14

S 2 Y= €7 (o] g [=To [I - - TR 14

S B Y/ o1 PP 15
0.1 NBIMESPACES ...ceeeittti et ettt e e ettt e e e et e e e r e e e et e ee e st e e e e et e e en e e e e e e e nnrra s 15

S I S €= To (= T a1 To Y/ o 1= T SRR 15
9.21 = 0@ W T o] TP PUPPPTRRPPPIN 17
9.2.2 ECOAINI M.ttt 18
9.2.3 ECOAGIODAI_TIME ..ottt 18
9.2.4 ECOAIAUIALION. .. ettt a e nn e s e e e n e e e e e e e e e e e e e e e e aaeaas 18
9.2.5 ECOAIIMESTAMP ...uiiiiiiiiiiiiiiiii e e e e e 19
0.2.6 ECOAIDG. . uuuutittiiiniiti e ———————————————— 19
9.2.7 ECOA:COMPONENT StAIES LY P ..uui i i e e e e e 19
9.2.8 ECOAMOAUIE _StAIES YD ...ciiiiiii ittt 20
9.2.9 ECOAIEXCEPLION ... 20

S IR T B =T)Y /= To [Y o 1= T S RTPTRRR 22

S IR 70 R {10 o o (= I/ 1= PO 22
9.3.2 (070 0151 =1 01 1SRRI 22
9.3.3 [10T Y= = U To] P 22
0.3.4 RECOIUS ...ttt s 23

S IR T T Y £ 14 = g | A = Tod o] {0 R3PS 23
9.3.6 FIXEA AITAYS ..o 23
0.3.7 VAlADIE AITAYS ... et e et e e e e e et a e e e 23

10 MOAUIE TNTEITACE. ... e e e e e e e e e e e aaaeas 25
O R O] o 1T = 1[0 L PP PP PP P PPPPPPPPPPPPPRPPPPPN 25
10.1.1 REQUEST-RESPONSE .. ittt e e e et e et eaar s 25

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 2

O T 2 Y /T Y To T [<To I DL - TR 26

F0.0.3 EVENES ettt e e et e et et a e et a et e aaes 26
10.2 Component LIFECYCIEccooeeeeeeeee e 26
10.2.1 Supervision Module Component Lifecycle API...........cooveiiiiiiiiiiiieeee e 28
10.3 MOAUIE LIFECYCIE ..o e e e e et e e e e aaaaae 28
10.3.1 Generic MOAUIE AP et e e 29
10.3.2 Supervision Module LifecyCle APl ... 29
10.4 Service AVAIlADIIIYi i e a e 29
10.4.1 Service Availability Changed.............ooeiiiiiiiiiiiiiiiiiiiieiieeeeee e 29
10.4.2 Service Provider Changedcooeiiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeseeseeeaeeeneeenennneennnees 30
O S 1y (o] gl o =T o | [T T S USPPPPPRRPN 30
11 (O] g] r=] o T=T g [0] (=T o = Lo = SR 31
O R O o 1= =1 1[0 PP P PP PP PPPPPPPPPPPPPP 31
11.1.1 REQUEST RESPONSE .. .ciiiiiieiieii ettt e e e e e e e e e e e e e e e e et e e e e et e e e e ara s 31
O N V= S o] 1T [D = - 32
I B YT o | £ TSP PTPR 35
L11.2 PrOPEITIES ..o 36
I R 1= Y £ 1 U= PP 36
11.2.2 EXpressing Property VAIUES...........oouviiiiiiiiiiiiiiiiieiiiiieiiieeeeeeeeee e 36
11.2.3 Example of Defining and USiNg Properties...........ccovvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 37
11.3 ComPONENt LIFECYCIEuuiiciiieeeec et e e e e et e e e e e e eeanns 38
11.3.1 Supervision Module Component Lifecycle API............coooviiiiiiiiiiiiicen e, 38
11.4 MoOdUIE LIfECYCIE ... 40
i R St R € 1= =T ¢ T Y[To L1] [P 40
11.4.2 Supervision MOAUIE APL.... ..o 40
11.5 Service AVailabilityccoooiiiiii 41
11.5.1 Set Service Availability (SErver Side)uuuuuuuuiiuiiiiiiiiiiiiiiiiiiiiiiis 41
11.5.2 Get Service Availability (Client Sid€).........couuiiiiiieiieeeicee e 42
11.5.3 Service ID ENUMEIAtiONcooeiiieiiieiee e e e e e e e e e eeeee s 42
11.5.4 Reference ID ENUMEIAtION..........oouuiuiiii e e e e e 42
11.6 Logging and Fault ManagemeENt.........cccoeiuiiiiiiii e e e e et e e e e e e eaanes 42
L11.7 TIME SEIVICES ..o 44
12] (=] €= o = 46

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 3

2 List of Figures

Figure 1 — ECOA DOCUMENTALIONuiiieeieeeiiiiiie e e ettt e e e e e e e et e e e e e e e e eeaeeenaaeeeeeeas 7
Figure 2 — Module and Container INtEIMaCEcccooeviiiiiiee e 8
FIQUIE 3 — NAMESPACESeeeeeiiiiiiiieeiee ettt 15

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 4

3 List of Tables

Table 1 - Module and Container INterfacCesciii i 11
Table 2 — TIMESIaMP POINTS......ccoiiiiiiiii e e e e e e e e e e s 14
Table 3 — ECOA Predefined TYPESccoiiiiiieeieeee e 16
Table 4 — ECOA Predefined CONSLANTS........cooiiiiiiii et e e e e eeeeee s 17
Table 5 —Logging ErrOr LEVEooeuiieii et e e s 43
Table 6 - Table of ECOA referenCeScoooiiiiiiiee e 46

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 5

4 Abbreviations

API Application Programming Interface

CPU Central Processing Unit

ECOA European Component Oriented Architecture
HR High Resolution

POSIX Portable Operating System Interface

RT Real Time

SW Software

XML eXtensible Markup Language

UTC Coordinated Universal Time

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 6

5

Introduction

Architecture
Specification

Vol I: Key Concepts
Vol Il: Developers Guide

Vol Il

Reference Manuals

Part 1 - Ada Binding Manual
Part 2 - C Binding Manual

Part 3 - C++ Binding Manual
Part 4 - ELI Binding Manual

Part 5 - Mechanisms Manual

Part 6 - Platform Requirements

Manual

Vol IV: Common Terminology
Part 7 - Safety and Security Manual

Part 8 - Software Interface Manual

Part 9 — Metamodel/Schemas Manual

Figure 1 — ECOA Documentation

The Architecture Specification provides the definitive specification for creating ECOA-based systems. It
describes the standardised programming interfaces and data-model that allow a developer to construct an
ECOA-based system. It is introduced in Key Concepts (Reference 1) and uses terms defined in the
Common Terminology (Reference 11). For this reason, the reader should read these documents, prior to
this document. The details of the other documents comprising the rest of the Architecture Specification
can be found in Section 12.

The Architecture Specification consists of four volumes, as shown in Figure 1:
e Volume ;. Key Concepts
e Volume II: Developer’s Guide
e Volume lll: Reference Manuals
e Volume IV: Common Terminology

This document comprises Volume Il Part 8 of the ECOA Architecture Specification, and describes the
software interfaces used.

In an ECOA system, all interactions between Modules that implement Application Software Components
rely on three mechanisms: event, versioned data, and request-response. In addition calls and handlers
exist for infrastructure services to allow the management of the runtime lifecycle, logging, faults and time.

This document describes Application Software Component Interface (API) between modules and
the containers that host them. The API, shown in Figure 2, comprises the Module Interface and
the Container Interface and is referred to as the Application Software Component Interface:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 7

Module Module
. handler call 5
Application A o § + = g
Software > e =
j— —*
Component = L 3=
Interface = v ® @
v
Container Container

Figure 2 — Module and Container Interface

¢ The Module Interface specifies the interface to a module, which is used by the container
to call module operations.

o The Container Interface specifies the functions that the container provides for a module.

Different bindings provide mappings for particular programming languages. Currently three
bindings are available: for C [Ref 4], C++ [Ref 5] and Ada [Ref 3].

This document also describes the Parameters for the operations in the API and the types that the
API relies on.

The information in this document is based on v1.9.0 of the ECOA meta-model.
This document is structured as follows:

Section 6 describes the Module to Language Mapping
Section 7 describes the Parameters for operations;
Section 8 describes the Module Context

Section 9 describes the Type libraries

Section 10 describes the Module Interface and
Section 11 describes the Container Interface.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 8

6 Moduleto Language Mapping

This section gives an overview of the Module Interface and Container Interface APIs, in terms of
the filenames and overall structure of the files. Refer to this section in the required language
binding for details relevant to that specific language

Sections 10 and 11 contain prototype definitions of the Application Framework operations using
C like syntax: the correct syntax is given by the appropriate language binding.

The name of each operation shall include the Module Implementation name for those languages
that do not support namespacing. The following symbolic names are used in the prototypes:

o #module_impl_name# is the name of the module implementation — the name is used for
API generation.

o #module_instance_name# is the name of a module instance — this hame is used for
deployment or for lifecycle purposes,

e #Hoperation_name# is the name of the module operation (event, request-response or
versioned data),

o #Hparameters_in# and #parameters_out# respectively correspond to the ordered list of
input and output parameters specified for a Request_Received, Response_Received,
Request_Sync, Request_Async, Request Received_Deferred, or a Reply_Deferred
operation,

e #parameters# corresponds to the ordered list of parameters specified for an event Send or
event Received operation,

e #type_name# is the name of a data-type’,

o #Hcontext# will be used to represent the reference to the context associated with a module
instance.

Table 1 details the Module and Container Interface APIs. The actual API will include the name of
the operation and module. How this is done is specified in the language independent section
referenced in the table. The reader must refer to the appropriate language binding document to
determine the actual syntax for a specific language.

#type_name# may be extended by the addition of a qualifying prefix where a specific kind of type is
indicated, as in #record_type_name#.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 9

Category Abstract APl Name
Events API Event_Send
Event_Received
Request Response API Request_Sync

Request_Async

Request_Received

Response_Received

Request_Received_Deferred

Reply_Deferred

Versioned Data API

Get_Read_Access

Release_Read_Access

Updated

Get_Write_Access

Cancel_Write_Access

Publish_Write_Access

Properties API

Get_Value

Runtime Lifecycle API

Initialize_Received

Start_Received

Stop_Received

Shutdown_Received

Reinitialize_Received

Logging and Fault Management
Services API

Log_Debug

Log_Trace

Log_lInfo

Log_Warning

Raise_Error

Raise_Fatal_Error

Time Services API

Get_Relative_Local_Time

Get_UTC_Time

Get_Absolute_System_Time

Lifecycle Management API
(Supervision Modules Only)

Lifecycle_Notification

Get_Lifecycle_State

Stop_Module

Start_Module

Initialize_Module

Shutdown_Module

Error Handler API
(Supervision Modules Only)

Exception_Notification_Handler

Container | Module
Operation | Operation

Section
11.1.3.1
10.1.3.1
11111
11.1.1.2
10.1.1.1
10.1.1.3
10.1.1.2
11.1.1.3
11121
11.1.2.2
10.1.2.1
11.1.2.3
11.1.2.4
11.1.25

121

10.3.1

11.6

n.7

10.3.2

11.4.2

10.5

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 10

Container | Module .
Category Abstract APl Name Operation | Operation Section
Service Availability API Set_Service_Availability 1151
(Supervision Modules Only)
Get_Service_Availability 11.5.2

Table 1 - Module and Container Interfaces

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 11

7 Parameters

Request-response and event operations may have parameters associated with them:
¢ Request-response operations: may have inputs and outputs.
e Events: may have inputs.

All parameters must be ECOA pre-defined types or be defined in a type library.

The order of parameters of an operation is described in the Service Definitions, Component
Definition and Component Implementation, and must be the same in all cases.

The manner in which parameters are passed is language dependent and is described in the
individual language bindings.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 12

8 Module Context

It is required that the same implementation of a module can be instantiated several times, possibly within
the same protection domain, without causing any symbol collision. To achieve this requirement, it is
expected, for example, that the implementer of a C or C++ Module would not use any static (either global
or local) variables within the module (except for constants). To this end, modules are coded with instance
specific data blocks referred to as the “module context".

The purpose of this “module context” is to hold all the private data that will be used:

- by the Container and the ECOA infrastructure to handle the Module Instance (infrastructure-level
technical data),

- by the Module Instance itself to support its functions (user-defined local private data).
The use and the declaration of the “Module Context” structure may be adapted for each language binding.

For non-O0 languages, the “Module Context” will be represented as a structure that shall hold both the
user local data (called “User Module Context”) and all the infrastructure-level technical and specific part of
“Module Context” (such technical data won't be specified in this document as they are implementation
dependant). For this reason, the Module Context may be generated by the ECOA infrastructure within the
Container Interface Header, and be extended by a user defined "User Module Context" structure.

With OO languages, the Module Instance will be instantiated as an object of a Module Implementation
class declared by the user; its associated Container will be associated to an instance of an ECOA-
generated Module Container class. All the "User Module Context" shall be declared within the user Module
Implementation class as its private attributes and accessed through public helper methods. The
infrastructure-level technical data shall be declared by the ECOA-infrastructure within the corresponding
(generated) Module Container class. In addition, the entry-points declared in the Container Interface

are represented as methods of the Container object, so the Module Instance object must have access to its
corresponding Container object to enable it to call these methods. This can be achieved by passing a
pointer to the Container object as a parameter of the constructor of the Module Implementation class. The
Module Instance object will use a private attribute to store this pointer to the Container object for future
use.

The language bindings specify the exact syntax required for the Module User Context.

8.1 Timestamping

Freshness of data is an important consideration in a mission system and for this reason
timestamping of operations (i.e. communication) is supported.

A timestamp point is related to the origin of the operation (Sender). The timestamp allows the
user of the timestamp to rebuild a chronogram based on the same reference, the sender’s clock.
The ECOA infrastructure (i.e. container) will be able to record timestamps for operations as
shown in Table 2.

Operation API Timestamp point Description
Event_Send When Module calls the When an event is sent
Container API by the requiring or
providing Container
Request_Sync When Module calls the _
Container API When a request is sent
by the requiring
Request_Async When Module calls the | container

Container API

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 13

Operation API

Timestamp point

Description

Request_Received

When the called Module
returns from the request
operation or it calls the
deferred response API

When a response is
sent by the provider
Container

Publish_Write_Access

When Module calls
container API (publish)

When data is published
by the provider
Container

Updated

When Module calls
container API (publish)

When data is published
by the provider
Container

Table 2 — Timestamp Points

At present operation timestamps will always be provided by the infrastructure. In future
timestamps may be made optional (for performance reasons) and a component may be able to
specify whether it provides or requires a timestamp.

8.1.1 Request Response and Events

The timestamp is associated with the sent event, sent request or sent response. These timestamps
available to the receiving module in the module instance context.

8.1.2 Versioned Data

The timestamp is associated with publication of the version of data that is being read.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 14

9 Types

The API relies on a set of pre-defined types, which can be used to construct user defined
complex types. These types are used by operations on the Module and Container Interfaces.
Namespaces are used to organise the types into separate libraries.

9.1 Namespaces

Namespaces are used to organise the types used by an ECOA system into disjoint sets, or
libraries. The namespaces are organised in a hierarchical manner, and all of the ECOA
namespaces are subordinate to the ECOA base namespace as shown in Figure 3. Application
based namespaces that are not subordinate to the ECOA namespace are also allowed.

Namespacel Namespace2 Namespace2

Namespace3

Figure 3 — Namespaces

Type names within the same namespace shall be unique. All types declared in the same
namespace are located in the same file in the model: this file will usually be automatically
generated by the ECOA toolset from the XML descriptions. The header file name complies with
the following pattern:

#namespacel#__ #namespace2#__ [..]__#namespacen#

The file extension is language specific.

9.2 Predefined Types

A number of portable pre-defined basic types are provided within the ECOA namespace that
should be used to write portable code. They are used for all data interchange between modules
in an implementation. These portable types do not preclude the use of pre-existing language
types, error handling or exception mechanisms. Mappings for specific languages are described
by the bindings.

All of the ECOA pre-defined types, which are listed in Table 2, may be used directly in the XML
descriptions without using the ECOA namespace.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 15

E}C/:p%A ABEHEE Description XML Representation

ECOA:boolean8 8-bit boolean boolean8 or ECOA:boolean8

ECOA:Int8 8-bit signed integer int8 or ECOA:Int8

ECOA:char8 8-bit ASCII character char8 or ECOA:char8

ECOA:byte byte byte or ECOA:byte

ECOA:Int16 16 bits signed integer int16 or ECOA:Int16

ECOA:int32 32-bits signed integer int32 or ECOA:Int32

ECOA:int64 64 bits signed integer int64 or ECOA:Int64

ECOA:uint8 8 bit unsigned integer uint8 or ECOA:uint8

ECOA:uintl16 16-bit unsigned integer uintl6 or ECOA:uint16

ECOA:uint32 32-bit unsigned integer uint32 or ECOA:uint32

ECOA:uint64 64-bit unsigned integer uint64 or ECOA:uint64

ECOA:float32 Single precision IEEE 754 float32 or ECOA:float32
floating-point

ECOA:double64 Double precision IEEE 754 double64 or ECOA:double64
floating-point

Table 3 — ECOA Predefined Types

PredeEficr:gg\Type Constant Constant Value

ECOA:boolean8 | TRUE 1
FALSE 0

ECOA:iINnt8 INT8_MIN -128
INT8_MAX 127

ECOA:char8 CHARS8_MIN 0
CHAR8_MAX 1272

ECOA:byte BYTE_MIN 0
BYTE_MAX 255

ECOA:-iIntl6 INT16_MIN -32768
INT16_MAX 32767

ECOA:INnt32 INT32_MIN -2147483648
INT32_MAX 2147483647

ECOA: int64 INT64_MIN -9223372036854775808
INT64_MAX 9223372036854775807

2 ECOA:char8 is an ASCII character, and as such its range is 0 to 127, however the 7 bit ASCII code uses
8 bits of storage, with the upper bit set to zero, because of this values in the range 128 to 255 are invalid.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 16

PredeEficr:IC;g\Type Constant Constant Value
ECOAzuints UINT8_MIN 0
UINT8_MAX 255
ECOA:uintl6 UINT16_MIN 0
UINT16_MAX 65535
ECOA-uiInt32 UINT32_MIN 0
UINT32_MAX 4294967295
ECOA:uint64 UINT64_MIN 0
UINT64_MAX 18446744073709551615
ECOA:float32 FLOAT32_MIN -3.402823466e+38F
FLOAT32_MAX 3.402823466e+38F
ECOA:double64 | DOUBLE64_MIN -1.7976931348623158e+308
DOUBLE64_MAX 1.7976931348623158e+308

Table 4 — ECOA Predefined Constants

For all the pre-defined data types it shall be possible to determine the minimum and maximum
values. In C/C++, for example these will be implemented as macros. These are also defined in
the base namespace.

It is recommended to map boolean8, char8 and byte onto unsigned types of programming
languages.

9.2.1 ECOA:error

The data type ECOA:error is an enumeration (using ECOA:uint32 as its base type) declared in
the ECOA namespace, which is used to specify the return status of applicable application-
software component interface API functions. This data type is also used by the error handler. The
enumeration values are:

ECOA:OK =0 No error has occurred
ECOA:INVALID_HANDLE =1 An invalid handle has been used
ECOA:DATA_NOT_INITIALIZED =2 The data has never been written
ECOA:NO_DATA=3 The call is not able to provide any data
ECOA:INVALID_IDENTIFIER = 4 An invalid ID has been used.
ECOA:NO_RESPONSE =5 No response was received for a request
ECOA:OPERATION_ABORTED = 6 The requested operation was aborted
ECOA:UNKNOWN_SERVICE_ID =7 The service ID is not known
ECOA:CLOCK_UNSYNCHRONIZED =8 The clock is not synchronised
ECOA:INVALID_STATE =9 An invalid state has been used.
ECOA:INVALID_TRANSITION =10 An invalid transition has been used.
ECOA:RESOURCE_NOT_AVAILABLE = 11 Insufficient resource is available to perform the operation.
ECOA:OPERATION_NOT_AVAILABLE = 12 The requested operation is not available.

The ECOA:error is an enumeration (see section 9.3.3) defined in the ECOA namespace as
follows:

<enum name="error" type="uint32">
<value name="0K" valnum="0"/>
<value name=""INVALID_HANDLE" valnum="1" />
<value name="DATA_NOT_INITIALIZED" valnum="2" />

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 17

<value name="NO_DATA"™ valnum="3" />

<value name="INVALID_IDENTIFIER" valnum="4" />

<value name="NO_RESPONSE"™ valnum="5" />

<value name="OPERATION_ABORTED" valnum="6" />

<value name=""UNKNOWN_SERVICE_ID" valnum="7"" />

<value name=""CLOCK_UNSYNCHRONIZED" valnum="8" />

<value name="INVALID_STATE" valnum="9" />

<value name="INVALID_TRANSITION" valnum="10" />

<value name="RESOURCE_NOT_AVAILABLE" valnum="11" />

<value name="OPERATION_NOT_AVAILABLE" valnum="12" />
</enum>

9.22 ECOA:hr_time

A type used as a local (high-resolution) time source. The ECOA:hr_time data-type is a record
composed of the following fields:

e ECOA:uint32 seconds. Seconds elapsed since some reference point in time. The
value shall be positive.

e ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The
value shall be between 0 and 1.10"9.

The ECOA:hr_time is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="hr_time">
<field type="uint32" name="seconds" />
<field type="uint32" name="nanoseconds" />
</record>

9.23 ECOA:global_time

A type used for global time source (e.g. UTC time). ECOA:global_time is a record composed
of the following fields:

e ECOA:uint32 seconds. Seconds elapsed since the POSIX Epoch (1% of January,
1970). The value shall be positive.

e ECOA:uiInt32 nanoseconds. Nanoseconds measured within the current second. The
value shall be between 0 and 1.10"9.

The ECOA:global_time is a record (see section 9.3.4) defined in the ECOA namespace as
follows:

<record name="global_time">
<field type="uint32" name="seconds" />
<field type="uint32" name="nanoseconds" />
</record>

9.24 ECOA:duration
A type used for operations that result in communications of delay or duration from one module to

another. ECOA:duration is a record composed of the following fields:
e ECOA:-uint32 seconds. The value shall be positive.

e ECOA:uint32 nanoseconds. Nanoseconds measured within the current
second. The value shall be between 0 and 1.1079.

The ECOA:duration is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="duration">
<field type="uint32" name="seconds" />

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 18

<field type="uint32" name="nanoseconds" />
</record>

9.25 ECOA:timestamp

A type, set using ECOA:global_time , used for timestamping operations that result in
communications from one Module Instance to another. ECOA:-timestamp is a record composed
of the following fields:

e ECOA:uint32 seconds. Seconds elapsed since the POSIX Epoch (1% of January,
1970). The value shall be positive.

e ECOA:uiInt32 nanoseconds. Nanoseconds measured within the current second. The
value shall be between 0 and 1.10"9.

The ECOA:duration is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="timestamp">
<field type="uint32" name="seconds" />
<field type="uint32" name="nanoseconds" />
</record>

9.26 ECOA:log

ECOA: l1og is a variable array of 256 ECOA: char8 elements, that defines how a fault or

information report is stored. The type is constrained to enable portability, because some

implementations may not be able to support unconstrained logging. See Section 11.6 for
information about logging and fault management.

Using a variable array potentially improves performance, because the size of the log can be
efficiently managed.

The ECOA:log is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<array name="log" itemType="char8" maxNumber="256" /> I

9.2.7 ECOA:component_states type

The data type ECOA:component_states_type is an enumeration (using ECOA:uint32 as its
base type) declared in the ECOA namespace, which is used to specify the status of an
application-software component. The enumeration values are:

ECOA:IDLE =0 The component is idle
ECOAINITIALIZING =1 The component is initializing
ECOA:STOPPED =2 The component has stopped
ECOA:STOPPING =3 The component is stopping
ECOA:RUNNING =4 The component is running
ECOA:STARTING =5 The component is starting
ECOA:FINISHING = 6 The component is shutting down
ECOA:FAILURE =7 The component has failed

The ECOA:component_states_type is an enumeration (see section 9.3.3) defined in the ECOA
namespace as follows:

<enum name='‘component_states_type" type="uint32'">
<value name="IDLE" valnum="0"/>
<value name="INITIALIZING" valnum=""1" />
<value name=""DATA_NOT_INITIALIZED" valnum="2" />
<value name="STOPPED" valnum="3" />
<value name="RUNNING" valnum="4" />
<value name="STARTING" valnum="5" />
<value name="FINISHING" valnum="6" />

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 19

<value name="FAILURE"™ valnum="7" />
</enum>

9.28 ECOA:module_states_type

The data type ECOA:module_states_type is an enumeration (using ECOA:uint32 as its base
type) declared in the ECOA namespace, which is used to specify the status of modules. The
enumeration values are:

ECOA:IIDLE=0 The module is idle
ECOA:READY =1 The module is ready
ECOA:RUNNING =2 The module is running

The ECOA:module_states_type is an enumeration (see section 9.3.3) defined in the ECOA
namespace as follows:

<enum name="module_states_ type"™ type="'uint32'>
<value name="IDLE" valnum="0"/>
<value name="READY" valnum="1" />
<value name="RUNNING" valnum="2" />
</enum>

9.29 ECOA:exception

The data type ECOA:exception is declared in the ECOA namespace, which is used by the
error handler to provide details of the error. ECOA:exception is a record composed of the
following fields:

o ECOA:timestamp timestamp. Time the error was raised.

e ECOA:service_idservice_id. The ID of a service instance which raised the error.
e ECOA:operation_id operation_id. The ID of an operation which raised the error.
e ECOA:module_id module_id. The ID of an operation which raised the error.

e ECOA:exception_id exception_id. An enumeration, used to identify the type of
error.

The ECOA:exception is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="exception">
<field type="timestamp" name="timestamp" />
<field type="service_id" name="service_id" />
<field type="operation_id" name="operation_id" />
<field type="module_id" name="module_id" />
<field type="exception_id" name="exception_id" />
</record>

The types used in the ECOA:exception record are defined below:

9.2.9.1 ECOA:service_id
An ECOA:uint32 used to identify the service instance.

The ECOA:service_id is a simple type (see section 9.3.1) defined in the ECOA namespace as
follows:

<simple type="uint32" name="'service_id" /> I

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 20

9.2.9.2 ECOA:operation_id
An ECOA:uint32 used to identify the operation.

The ECOA:operation_id is a simple type (see section 9.3.1) defined in the ECOA namespace as
follows:

<simple type="uint32" name="operation_id" /> I

9.2.9.3 ECOA:module _id
An ECOA:uint32 used to identify the module instance.

The ECOA:module_id is a simple type (see section 9.3.1) defined in the ECOA namespace as
follows:

<simple type="uint32" name="module_id" /> I

9.2.9.4 ECOA:exception_id

The data type ECOA:exception_id is an enumeration declared in the ECOA namespace,
which is used to specify a type of error. The enumeration values are:

ECOA:NO_RESPONSE =1
ECOA:OPERATION_ABORTED = 2
ECOA:RESOURCE_NOT_AVAILABLE =3
ECOA:OPERATION_NOT_INVOKED = 4
ECOA:ILLEGAL_INPUT_ARGS =5
ECOA:ILLEGAL_OUTPUT_ARGS =6
ECOA:MEMORY_VIOLATION =7
ECOA:DIVISION_BY_ZERO =8
ECOA:FLOATING_POINT_EXCEPTION =9
ECOA:ILLEGAL_INSTRUCTION = 10
ECOA:STACK_OVERFLOW =11
ECOA:HARDWARE_FAULT =12
ECOA:POWER_FAIL =13
ECOA:COMMUNICATION_ERROR = 14
ECOA:DEADLINE_VIOLATION = 15
ECOA:OVERFLOW_EXCEPTION = 16
ECOA:UNDERFLOW_EXCEPTION = 17
ECOA:OPERATION_OVERRATED = 18
ECOA:OPERATION_UNDERRATED =19

The ECOA:exception_id is an enumeration (see section 9.3.3) defined in the ECOA namespace
as follows:

<enum name="‘exception_id" type="uint32">
<value name="NO_RESPONSE" valnum="1"/>
<value name="OPERATION_ABORTED" valnum="2" />
<value name=""RESOURCE_NOT_AVAILABLE" valnum="3" />
<value name=""OPERATION_NOT_INVOKED" valnum="4" />
<value name=""ILLEGAL_INPUT_ARGS" valnum="5" />
<value name="NO_RESPONSE"™ valnum="5" />
<value name="OPERATION_ABORTED" valnum="6" />
<value name="ILLEGAL_OUTPUT_ARGS" valnum="6" />
<value name=""MEMORY_VIOLATION" valnum="7" />
<value name="DIVISION_BY_ZERO" valnum="8" />
<value name="FLOATING_POINT_EXCEPTION" valnum="9" />
<value name=""1LLEGAL_INSTRUCTION" valnum="10" />
<value name="'STACK_OVERFLOW"™ valnum="11" />
<value name=""HARDWARE_FAULT" valnum="12" />
<value name="POWER_FAIL" valnum="13" />
<value name="COMMUNICATION_ERROR" valnum="14" />
<value name="DEADLINE_VIOLATION" valnum="15" />
<value name="OVERFLOW_EXCEPTION" valnum="16" />

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 21

<value name=""UNDERFLOW_EXCEPTION" valnum="17" />

<value name=""OPERATION_OVERRATED" valnum="18" />

<value name=""OPERATION_UNDERRATED" valnum="19" />
</enum>

9.3 Derived Types

This Section describes the derived types that can be constructed from the ECOA pre-defined
types.

9.31 Simple Types

A simple type is a refinement of a predefined type with a new name and optional additional
restrictions (e.g. a more restrictive range). These restrictions can be expressed directly in
strongly typed languages such as Ada, however in less strongly typed languages such a C/C++
they are expressed indirectly using min and max constants. A simple type can also be defined
based upon another user defined simple type.

Example 1 — defining a simple type based on a predefined ECOA simple type:

<simple type="#ECOA predefined_type_name#" name="#simple_type_ name#" /> I

Example 2 — defining a type based upon a previously defined simple type:

<simple type="#simple_type name#" name="#simple_type_name#" /> I

9.3.2 Constants

A constant is a defined constant value of a given, previously defined, type. A constant may be an
integer or floating point. Constants can be referenced when defining other types; allowing a type
to be sized or constrained.

<constant name="#constant_name#'" type="#type_name#" value="#constant_value#" /> I

The #constant_value# may be an integer or floating-point value.

Example 1 - defining a constant of type ECOA:uint32:

<constant name="my_message_max_size" type="ECOA:uint32" value="1024" /> I

Example 2 — defining a constant of type ECOA:double64:

<constant name="Pi" type="ECOA:double64" value="3.141592654" /> I

Constants can be used with the XML notation by using the following syntax:
%constant_name%.

Example 3 using a constant to bound an array:

<array name="my_message" itemType="ECOA:char8" maxNumber="%my_message_max_size%" /> I

9.3.3 Enumerations

An enumeration type is the definition of a set of labels, derived from a pre-defined type, with
optional values or integer-based constant definitions. Where the optional values are not defined
they default to incrementing from zero.

All labels used in an enum shall be unique within the enum scope. The enum type shall be a pre-
defined integer type, or a simple type derived from a pre-defined integer type.

Example — defining an enumeration type:

<enum name="#enum_type_name#" type="#type name#"> I

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 22

<value name="#enumeration_constant_namel#" valnum="#optional_enum_value_valuel#"/>

<value name="#enumeration_constant_name2#" valnum="#optional_enum_value_value2#"/>

<value name="#enumeration_constant_name3#" valnum="%#optional_enum_constant_name#%"/>
</enum>;

Where: #optional_enum_value_valueX# is of type #type_name#.

9.34 Records

Records types are types containing a fixed set of fields of given types. All types used in a record
shall be previously defined or ECOA pre-defined types.

All fields used in a record shall be unique within the record scope.
Example — defining a record type:

<record name="#record_type_name#">
<field type="#type_name#" name="#record_field_name#" />
<l— a record may consist of multiple <fields... /> -->
[<field type="#type_name#" name="#record_field_name#" />]
</record>

9.35 Variant Records
Variant Record types
e may contain a fixed set of fields of given type

¢ shall contain a set of optional fields and a selector. The selector chooses the format of the
record by controlling which optional fields are actually included in the record at runtime.

Variant records allow the definition of flexible data types: at runtime an instance of the variant
record will contain any specified fixed fields plus a subset of the optional fields specified.

Example — defining a variant record:

<variantrecord name="#record_type_name#" selectName="#selector_name#" selectType="#type_name#">
<field type="#type_name#" name="#record_field_name#" />
<union type="#type_name#" name="#union_name#" when="#selector_value_constant#" />
<l— a variantrecord may consist of multiple {<field... /><union... />} pairs... -->
[<field type="#type_name#" name="#record_field_name#" />
<union type="#type_name#" name="#union_name#" when="#selector_value_constant#" />]
</record>

9.3.6 Fixed Arrays

A fixed array is an ordered collection of a defined maximum number of elements of the same
type. The value of maximum number shall be a positive constant of an integer type, and the array
shall always contain this number of elements.

Example — defining a fixed array:

<fixedarray name="#array_type_name#" itemType="#type_name#" maxNumber="#int64_constant#" /> I

9.3.7 Variable Arrays

A variable array is an ordered collection of elements of the same type. The variable array has a
“current size” and a “maximum size”. The “current size” enables the amount of data that needs to
be copied to be minimised. The "maximum size" bounds the memory and data transfer
requirements. Variable arrays of char8 shall be used to store character strings.

The values of “maximum size” and “current size” shall be positive and “current size” shall be less
than or equal to “maximum size”.

Example — defining a variable array:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 23

<array name="#array_type_name#" itemType="#type_name#" maxNumber="#int64_constant#" /> I

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 24

10 Module Interface

The Module Interface specifies the interface to a module, which is used by the container to call
module operations.

10.1 Operations

The Module Interface provides a number of entry points that allow the Container to invoke
Module Operations that cause a Module Instance to execute a block of functionality.

10.1.1 Request-Response

For modules which are declared as a server of a request response operation, two operation types exist:
e Immediate Response, which is analogous to a Synchronous Request
o Deferred Response, which is analogous to an Asynchronous Request

Immediate Response is the default behaviour.

For modules which are declared as a client of an asynchronous request response operation,
Response_Received is provided to return the result of an asynchronous request.

10.1.1.1 Request Received Immediate Response

For a Module declared as server of a request-response operation with immediate response, a function is
implemented by the Module to handle the request generated by the client Module. The declaration carries
the input and output parameters. The name of the function shall be generated to include the name of the
operation.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void
[#module_implementation_name#:]#operation_name#__Request_Received([#context#, J#parameters_in#,
#parameters_out#);

10.1.1.2 Request Received Deferred Response

For a Module declared as server of a request-response operation with deferred response, a function is
implemented by the Module to handle the request generated by the client Module. The declaration carries
the input parameters. The name of the function shall be generated to include the name of the operation.

Request_Received_Deferred provides an ID parameter which is required by the infrastructure to associate
the reply with the initiating request.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#module_implementation_name#:]#operation_name#__Request Received_Deferred([#context#,]
ECOA:uint32 1D, #parameters_in#);

10.1.1.3Response Received

For a Module declared as client of an asynchronous request-response operation, a function is implemented
by the Module to handle the response generated by the server Module. The declaration carries the input
and output parameters. The name of the function shall be generated to include the name of the operation.

Response_Received provides an ID parameter which is used by the module instance to associate the
response with the initiating request. This is required because the module could initiate multiple requests
prior to receiving any responses.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 25

void [#module_implementation_name#:]#operation_name# Response_Received([#context#,],ECOA:uint32
ID, ECOA:error status, #parameters_out#);

Response Received operations may return the following error codes:

[ECOA:error:0K]

. No error
[ECOA:error:NO_RESPONSE]

e No response received within the expected time
[ECOA:error:OPERATION_NOT_AVAILABLE]

. Required service is not available

e The server module queue is full

. Server module is IDLE/STOPPED
[ECOA:error:OPERATION_ABORTED]

. Server has called raise_*_error()

10.1.2 Versioned Data

The Module Interface provides an optional entry point that is used to notify a Module when a new
value of Versioned data is available.

10.1.2.1 Updated

The Updated module operation is a callback used by the Container to notify a module when a
new value of Versioned data is available. The Module is provided with direct access to the data;
the Container automatically calls Get_Read_Access and Release_Read_Access at the start and
end of the operation respectively. This entry point is used to avoid the use of polling to identify
when new values are available.

Note: The default behaviour of versioned data read operations is no notification callback.

The following is a prototype definition for the operation:

[#module_impl_name#:]#operation_name# Updated([#context#,]
[#module_impl_name#:J#operation_name#_handle*);

10.1.3 Events
The Module Interface provides an entry point for the receipt of Events.

10.1.3.1 Received

For a Module declared as a handler of an event, a function, method or procedure shall be implemented by
the Module to handle the reception of the event from all possible senders. Its input parameters shall
correspond to the typed data carried by the event. The name of the function shall be generated to include
the name of the operation.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#module_implementation_name#:]#operation_name#__Received([#context#, |#parameters#);

10.2 Component Lifecycle

The Component Lifecycle provides functionality to allow a supervision module within a
component to manage its lifecycle state. It is the responsibility of the supervision module to

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 26

determine the state of the component based upon the states of its internal non-supervision
modules and any lifecycle operations invoked by manager components.

The component and module lifecycles are discussed more fully in reference 7.

The service to manage the lifecycle of a component from another component is composed of:
e The current state of the component (versioned data)

¢ A command to change the state (event):

o INITIALIZE - order the supervision module(s) to change the state of the appropriate
modules to READY in order to reach the component-level STOPPED state,

0 STOP - order the supervision module(s) to change the state of the appropriate modules to
READY in order to reach the component-level STOPPED state,

0 START - order the supervision module(s) to change the state of the appropriate modules
to RUNNING in order to reach the component-level RUNNING state,

0 RESTART - order the supervision module(s) to change the state of the appropriate
modules from RUNNING through READY and back to RUNNING in order to reach the
component-level RUNNING state,

0 RESET - order the supervision module(s) to change the state of the appropriate modules
from RUNNING through IDLE, READY and back to RUNNING in order to reach the
component-level RUNNING state,

o0 SHUTDOWN - order the supervision module(s) to change the state of all modules to IDLE
in order to reach the component-level IDLE state.

e A notification (event) on state change (new component-level lifecycle state reached):
o initialized — STOPPED reached from INITIALIZING

started — RUNNING reached

stopped — STOPPED reached from STOPPING

idle — IDLE reached

failed —FAILURE reached

O O O O

The XML definition of supervision module operations that are connected to the lifecycle service is
shown below:

<moduleType name="SupervisionModule_type'>
<operations>
<eventReceived name='start_component"/>
<eventReceived name=''stop_component "/>
<eventReceived name="restart_component "/>
<eventReceived name="reset_component "/>
<eventReceived name='shutdown_component *'/>
<eventReceived name="initialize_component ''/>
<eventSent name=" component_initialized"/>
<eventSent name=" component_started'/>
<eventSent name=" component_stopped'/>
<eventSent name=" component_idle"/>
<eventSent name=" component_failed"/>
<dataWritten name="component_state' type='component_states_ type" />
</operations>
</moduleType>

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 27

10.2.1 Supervision Module Component Lifecycle API

The Component Lifecycle Service is provided by the supervision module of a component, and requires the
supervision module to provide the functionality for the following module operations.

10.2.1.1Initialize Component
This is an event received to instruct the component to initialize. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]initialize_component__Received([#context#]);

10.2.1.2 Stop Component
This is an event received to instruct the component to stop. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]stop_component__Received([#context#]);

10.2.1.3 Restart Component
This is an event received to instruct the component to restart. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]restart_component__Received([#context#]);

10.2.1.4Reset Component
This is an event received to instruct the component to reset. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]reset_component__Received([#context#]);

10.2.1.5 Shutdown Component
This is an event received to instruct the component to shut down. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]shutdown_component__Received([#context#]);

10.2.1.6 Start Component

This is an event received to instruct the component to start. The event carries no parameters.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]start_component__Received([#context#]);

10.3 Module Lifecycle

The Module Interface provides functionality to allow the container to command changes to the
lifecycle state of the Module Instances it hosts under the direction of a Supervision Module. The
lifecycle of Modules is controlled by one or more Supervision Modules. Each Component must
contain a Supervision Module, which may be the only Module hosted by the container i.e. it may
also provide the functionality required to provide the Component’s Services. Any Supervision
Module is initialised and started automatically by the container.

The component and module lifecycles are discussed more fully in reference 7.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 28

10.3.1 Generic Module API

Functionality is provided by the Module Interface to support the following Module Lifecycle
functionality. These operations are applicable to all supervision, non-supervision, trigger and
dynamic trigger module instances.

e INITIALIZE_Received: this is the initialisation entry-point of the module used to perform its local
initialisation; the Initialise entry-point of a Module is the function in which the Module is supposed
to initialise all its local variables to be functionally initialised. This event is sent to the Module when
it has changed state from IDLE to READY.

e REINITIALIZE_Received: this is the reinitialisation entry-point of the module used to perform a
subset of what is done by INITIALIZE_Received, mainly to initialise its local variables. This event
is sent to the Module when it has changed state from RUNNING or READY back to READY.

e START_Received: this event is sent to the Module when it has changed state from READY to
RUNNING

e STOP_Received: this event is sent to the Module when it has changed state from RUNNING to
READY

e SHUTDOWN_Received: this event is sent to the Module when it has changed state from READY
or RUNNING to IDLE

At API level, the following abstract functions will be invoked by the container and shall be implemented by
the Module.

void [#module_implementation_name#:]INTIALIZE__ Received([#context#]);

void [#module_implementation_name#:]START__Received([#context#]);

void [#module_implementation_name#:]STOP__Received([#context#]);

void [#module_implementation_name#:]SHUTDOWN__Received([#context#]);

void [#module_implementation_name#:]JREINTIALIZE__Received([#context#]);

Within these five functions the module is restricted such that it may not call any Request Response

container operation API (i.e. Request_Sync, Request_Async or Reply_Deferred). This is to prevent race
conditions and deadlock due to the start-up order of modules.

10.3.2 Supervision Module Lifecycle API

The Supervision Module API provides functionality to allow the container to notify the supervision
module that a module/trigger/dynamic trigger has changed state. The notification informs the
Supervision Module of both the previous and new states of the Module.

The following is a prototype definition for the operation:

void [#supervision_module_impl_name#:]lifecycle_notification__#module_instance_name#
([#context#,ECOA:modulle_states_type previous_state, ECOA:module_states_type new_state);

Note: the supervision module API will contain a Lifecycle Notification procedure for every
module/trigger/dynamic trigger in the Component i.e. the above API will be duplicated for every
#module_instance_name# module/trigger/dynamic trigger in the Component.
ECOA.Module_States_Type is an enumerated type that contains all of the possible lifecycle states of
the module instance.

10.4 Service Availability

The Module Interface provides functionality to allow the container to notify the supervision
module of a client component about changes to the availability of required services.
10.4.1 Service Availability Changed

Supervision modules shall provide an entry point for the receipt of a natification that a required service has
changed its availability state. The operation will only be available if the component has one or more

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 29

required services. The service instance is identified by the enumeration type reference_id defined in the
Container Interface (Section 11.5.4)

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:
void [#supervision_module_implementation_name#:]service_availability_changed([#context#,]

[#supervision_module_implementation_name#_container:]reference_id instance, ECOA:boolean8
available);

10.4.2 Service Provider Changed

Supervision modules shall provide an entry point for the receipt of a notification that a required service has
changed provider. The operation will only be available if the component has one or more required services.
The service instance is identified by the enumeration type reference_id defined in the Container Interface
(Section 11.5.4)

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#supervision_module_implementation_name#:]service_provider_changed([#context#,]
[#supervision_module_implementation_name# container:]reference_id instance);

10.5 Error handling

The Supervision Module Interface provides error handling functionality that may be used by the container
to provide information to a Supervision Module Instance when an error occurs.

The following is an abstract description of the operation:

void [#supervision_module_implementation_name#:]exception_notification_handler([#context#], const
ECOA:exception* exception);

This exception notification handler can be called when an asynchronous error occurs at container level
(e.g. the container internal buffers are full) or at hardware level (e.g. a divide by zero exception) based on
predefined actions specified at configuration time.

Note: the error handling functionality that is provided by an ECOA system has not been fully defined: the
above is a preliminary outline of the functionality that may be provided and is not complete.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 30

11 Container Interface

11.1 Operations

The Container Interface provides a number of operations that allow a module to invoke Container
Operations to request Services from other Modules in the system.

11.1.1 Request Response
Two operations are provided to allow Modules to issue requests to other modules:
e Synchronous Request, which is analogous to an Immediate Response

e Asynchronous Request, which is analogous to a Deferred Response

A further operation, Reply_Deferred is provided to return the result of a deferred response to the
requesting module.

11.1.1.1 Synchronous Request

An operation provided by the Container, used by a Module to invoke an operation provided by a
server Module. Its parameters correspond to the “in” and “out” parameters of the request-
response. The calling Module is blocked until the response is received.

An error indication is returned to caller if the call fails and the fault is then handled via the fault
management infrastructure.
The following is a prototype definition for the operation:

ECOA:error
[#module_implementation_name# container:]#operation_name# Request_Sync([#context#, J#parameters_in
#, #parameters_out#);

Synchronous Request operations may return the following error codes:
[ECOA:error:0K]

e No error
[ECOA:error:NO_RESPONSE]

e No response received within the expected time
[ECOA:error:OPERATION_NOT_AVAILABLE]

. Required service is not available

e The server module queue is full

. Server module is IDLE/STOPPED
[ECOA:error:OPERATION_ABORTED]

. Server has called raise_*_error()
[ECOA:error:RESOURCE_NOT_AVAILABLE]

e Container unable to send request

11.1.1.2 Asynchronous Request

An operation provided by the Container, used by a Module to invoke an operation provided by a
server Module. The first parameter is an ID, which is provided by the infrastructure to allow the
module instance to associate the response with the request. This ID is unique for each module

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 31

instance and for each call of the operation (because the module could initiate multiple requests
prior to receiving any responses). The remaining parameters correspond to the “in” parameters of
the request-response.

The operation returns immediately so the calling Module is not blocked. An error message is returned to
the caller if an infrastructure problem prevents the call from succeeding. The fault is then handled via the
fault management infrastructure.

The following is a prototype definition for the operation:

ECOA:error
[#module_implementation_name#_container:]#operation_name# _Request_Async([#context#,],ECOA:uint32*

ID, #parameters_in#);

Asynchronous Request operations may return the following error codes:
[ECOA:error:0K]
e No error
[ECOA:error:RESOURCE_NOT_AVAILABLE]

e Container unable to send request

11.1.1.3Reply Deferred

An operation provided by the Container, used by the Module to send a Deferred Response. The first
parameter is an ID, which is provided by the infrastructure to identify the calling Module Instance and to
allow that module to associate the response with the request. The remaining parameters correspond to the
“out” parameters of the request-response.

An error indication is returned if an infrastructure problem prevents the API from succeeding, and
the fault is handled via the fault management infrastructure.
The following is a prototype definition for the operation:

ECOA:error [#module_implementation_name#_container:]#operation_name#__Reply_Deferred([#context#,]
ECOA:uint32 ID, #parameters_out#);

Deferred Reply operations may return the following error codes:
[ECOA:error:0K]
. No error
[ECOA:error: INVALID_IDENTIFIER]

e APl called with an invalid request-response identifier

11.1.2 Versioned Data

The container provides operations that allow Modules to read from or write to Versioned Data.
The operations provided allow a module instance to:

Get (request) Read Access

Release Read Access

Get (request) Write Access

Cancel Write Access (without writing new data)

Publish (write) new data (automatically releases write access)

A Data Handle is provided by the container for each instance of Versioned data to allow Module
Instances to access that Versioned Data.

A Data Handle structure contains the following fields:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 32

e An attribute used to provide access to a local copy of the data
o A timestamp structure, which reflects the last ‘commit' time for that version of the data

e A platform hook, which is opaque to the user, and used by the ECOA infrastructure to
handle that data

The platform hook is typed as an array of bytes, to enable portability, to allow the infrastructure to
allocate memory areas in order to store data handles. It is assumed that a size of 32 bytes is
sufficient to cover any platform implementation.

The following is a prototype definition for a Data Handle

typedef struct {
#type_name#* data;
ECOA:timestamp timestamp;
ECOA:byte platform_hook[32];
} [#module_impl_name#_container:]#operation_name#_handle;

11.1.2.1Get_Read_Access

For a Module declared as a reader of a Versioned Data, the container shall provide a function to
get read access to the Versioned Data. This operation shall output the Data Handle parameter
that allows the subsequent code to access the data space containing a local, read-only copy of
the data. The name of the function shall be generated to include the name of the operation.

The operation does not block and returns immediately with the latest available copy of data. The
timestamp in the data handle enables the caller to determine the currency of the data. The error
code ECOA:NO_DATA is returned if no data is available and the Data Handle contains a null
pointer.

If there is an infrastructure problem that prevents the API from succeeding, an error indication is
returned to the caller and the fault is handled via the fault management infrastructure. If an error
is returned from Get_Read_Access, the call to Release_Read_Access is not required.

The following is a prototype definition for the operation:

ECOA:error [#module_impl_name# container:]#operation_name# Get Read_Access([#context#,]
[#module_impl_name# container:]#operation_name# handle* data_handle);

Get Read Access operations may return the following error codes:

[ECOA:error:0K]

e No error
[ECOA:error:NO_DATA]

e No error — the data has never been written
[ECOA:error: INVALID_HANDLE]

e APl called with an invalid versioned data handle
[ECOA:error:RESOURCE_NOT_AVAILABLE]

. Maximum number of versioned data reached

e Container unable to provide a versioned data

11.1.2.2Release_Read Access

This operation signals to the container that the calling module has finished working with the local
copy of the Versioned Data, and that the data handle is no longer required. The module should
not access the local copy of the data after calling this operation as it cannot be guaranteed to be
consistent.

The following is a prototype definition for the operation:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 33

ECOA:error [#module_impl_name# container:]#operation_name# Release Read_Access([#context#,]
[#module_impl_name# container:]#operation_name# handle* data_handle);

Release Read Access operations may return the following error codes:
[ECOA:error:0K]
. No error
[ECOA:error: INVALID_HANDLE]

. APl called with an invalid versioned data handle

11.1.2.3Get_Write_Access

For a Module declared as a writer of a Versioned Data, the container shall provide a function to
get write access to the versioned data. This operation shall output the Data Handle parameter
that allows the subsequent code to access the data space containing a local, read-write copy of
the data.

The operation does not block and returns immediately with the latest copy of the data. Each call
to Get_Write_Access will use a new dedicated platform resource represented by the returned
data handle and pointing to a new memory area with the most updated value. Hence, each call to
Get_Write_Access will require a call to either Cancel_Write_Access or Publish_Write_Access to
free that corresponding platform resources, and commit (publish) the modified data is required.

If data has never been written, Get_Write_Access returns the error code
ECOA:DATA_NOT_INITIALISED but returns a valid data handle towards a valid memory area.

If there is an infrastructure problem that prevents the API from succeeding, another error
indication (RESOURCE_NOT_AVAILABLE, etc) is returned to the caller and the infrastructure
handles the fault via the fault management infrastructure. In the present issue the behaviour of
the fault management infrastructure is not defined.

Obtains a handle that allows access to a copy of the data. Get_Write_Access does not block and
returns immediately. If there is an infrastructure problem that prevents the API from succeeding,
an error indication is returned to caller and the fault is handled via the fault management
infrastructure. If an error is returned from Get_Write_Access, the call to Cancel_Write_Access is
not required.

The following is a prototype definition for the operation:

ECOA:error [#module_impl_name# container:]#operation_name# Get Write_ Access([#context#,]
[#module_impl_name# container:]#operation_name# handle* data_handle);

Get Write Access operations may return the following error codes:
[ECOA:error:0K]

. No error
[ECOA:error:DATA_NOT_INITIALIZED]

e No error — the data has never been written
[ECOA:error: INVALID_HANDLE]

e APl called with an invalid versioned data handle
[ECOA:error:RESOURCE_NOT_AVAILABLE]

. Maximum number of versioned data reached

e Container unable to provide versioned data

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 34

11.1.2.4Cancel_Write_Access

This operation signals to the container that the calling module has finished working with the local
copy of the Versioned Data, that no updates are required, and that the data handle is no longer
required. Any local updates which may have been made should not be published to any readers
of that versioned data. The module should not access the local copy of the data after calling this
operation as it cannot be guaranteed to be consistent.

The following is a prototype definition for the operation:

ECOA:error [#module_impl_name# container:]#operation_name# Cancel_Write_Access([#context#,]
[#module_impl_name# container:]#operation_name# handle* data_handle);

Cancel Write Access operations may return the following error codes:
[ECOA:error:0K]

. No error
[ECOA:error: INVALID_HANDLE]

. APl called with an invalid versioned data handle

11.1.2.5Publish_Write_Access

This operation signals to the container that the calling module has finished working with the local
copy of the Versioned Data and that the container is authorised to broadcast the revised data to
all readers of the Versioned Data. The module should not access the local copy of the data after
calling this operation as it cannot be guaranteed to be consistent.

The operation does not block. An error message is returned to the caller if the call is
unsuccessful (e.g. a queue within the container is full), and the fault is handled by the
infrastructure.

The following is an abstract definition of the operation:

ECOA:error [#module_impl_name#_container:]#operation_name# Publish_Write_Access([#context#,]
[#module_impl_name# container:]#operation_name# handle* data_handle);

Publish Write Access operations may return the following error codes:
[ECOA:error:0K]

e No error
[ECOA:error: INVALID_HANDLE]

e APl called with an invalid versioned data handle
[ECOA:error:RESOURCE_NOT_AVAILABLE]

e Container unable to write the versioned data

e Container unable to “push” the versioned data

11.1.3 Events
The Container Interface provides an operation that allows a Module to send Events.

11.1.3.1Send

For a Module declared as a sender of an event, a function, method or procedure shall be implemented by
the Container to send that event with typed parameters to all receivers. The name of the function shall be
generated to include the name of the operation.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 35

The operation returns immediately so the calling Module is not blocked. An error message is returned to
the caller if an infrastructure problem prevents the call from succeeding (e.g. if erroneous parameters are
given). The fault is then handled via the fault management infrastructure.

The following is a prototype definition for the operation:

ECOA:error
[#module_implementation_name# container:]#operation_name# Send([#context#,]#parameters#);

Send operations may return the following error codes:
[ECOA:error:0K]

. No error
[ECOA:error:RESOURCE_NOT_AVAILABLE]

e Container unable to send any event

11.2 Properties

The Container Interface APl may include operations that can be used by the Modules to access
component properties defined at the component level. These properties are defined within the
component definition, assigned a value within the system assembly, and may then be mapped
into module instances within the component implementation. It is also possible to provide module
properties within the component implementation that are not specified at the component level.
This allows for different instances of modules to have access to specific properties defined at
both the module and component instance level.

11.2.1 Get_Value

Used by Module Instances to get read only access to the properties The abstract format of the
message is:

void [#module_impl_name#_container:]get_#property_name# value([#context#,] #property_type_name#*
value);

Where:
o #Hproperty_ name# is the name of the property used in the component definition,

o #Hproperty_ type name# is the name of the data-type of the property.

11.2.2 Expressing Property Values

Values given to properties are set in component definitions, component implementations or in assembly
schemas through the writing of character strings. This section describes the way to write these strings. It is
based on a syntax allowing simple or complex data to be represented.

e « Predef », « Simple » : direct value
o Examples: 16, OXFFFFFFFF, -10, 100.234, true (=1), false (=0)
e «Enum » : symbol
0 The case shall follow the one used in the XML type definition.
0 Examples: AIR, GROUND, etc.
e « Record » : list of field names and values, separated by ",", surrounded with curly braces
0 The case shall follow the one used in the XML type definition.
o ({isValid: true,x: 10,y: 100.0, mode:GROUND}

e « VariantRecord » : same as "record", except that first field is always the discriminant (name
of this field = "select")

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 36

o Some fields may not exist, depending on the value of the discriminant.
o Examples:
o {select: AIR, position3d: {x:2,y:3,z:4}}
o {select: GROUND, position2d: {x:5,y:6}}
o “FixedArray » : list of « maxNumber » values, comma separated, surrounded by []
o0 Example: [1,2,3,4,5]
0 Special case if element type is char8: string syntax with surrounded

¢ Equivalent to an array of int with values of ASCII codes
e The number of characters must be equal to maxNumber.
e Escape character for ' is ‘\'.
o Example (for a fixedarray with maxNumber=5): "ABCDE"
e « Array » : list of N values, comma separated, surrounded by [] (with O<N<maxNumber):
0 Examples: [] (empty array), [100.5, 329.3, -456.99]
0 Special case if element type is char8: string syntax with

e Example (for maxNumber=7): “ABCDE” = [0x41, 0x42, 0x43, 0x44, 0x45]
¢ Notion of « multiplier » to repeat an element in an array : #N:element

o Examples:

e [#10:0] (10 times the value 0)
e arecord repeated 10 times: [#20:{isValid:true, x:100.0, y:-10, mode:AIR}]
e repeat until the end of the array: [1,2,3,#*:999]
e 10*10 matrix with zeroes: [#10:[#10:0]]
e Support for constants

0 Suppose the following is defined in the library "mylib":

e <constant name="MY_CONST" type="int32" value="32"/>
0 Then the expression "%mylib:MY_CONSTANT%" is allowed in properties values:

0 This is only valid for integer and floating-point types only.
e Character syntax
o Fortype char8, the expression '0x' is allowed in properties values to represent characters
by their ASCII codes. By example, 'A' can also be written as the ASCII code 0x41.

11.2.3 Example of Defining and Using Properties

The following XML defines a component with a simple property “Update_Rate” (example.componentType):

<componentType>

<service .../>

<reference .../>

<property name="Update_ Rate" type="'xs:string" ECOA-sca:type="float32"/>
</componentType>

The following XML defines how the module type and instance defines how the property is mapped. Also a
property local to the module instance is defined (Module_Inst_Prop), which allows the module instance to
have different values:

<moduleType name="‘example_mod_type"™ isSupervisionModule="false">
<properties>

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 37

<property name="Update_Rate" type="float32"/>
<property name="Module_Inst_Prop"™ type="uint32"/>
</properties>

</moduleType>

<modulelnstance name="example_mod_instl"
moduleDeadl ine=""245"
implementationName=""example_mod_impl">
<propertyValues>
<propertyValue name="Update_Rate''>$Update_Rate</propertyValue>
<propertyValue name="Module_Inst_Prop'> 20 </propertyValue>
</propertyValues>

</modulelnstance>

<modulelnstance name="example_mod_inst2"
moduleDeadl ine="245"
implementationName=""example_mod_impl*>
<propertyValues>
<propertyValue name="Update_Rate''>$Update_Rate</propertyValue>
<propertyValue name="Module_Inst_Prop'> 2 </propertyValue>
</propertyValues>

</modulelnstance>

Values are assigned to component properties in the system assembly schema (.impl.composite):

<csa:component name="example'>
<ECOA-sca:instance componentType="example_instance'>
<ECOA-sca: implementation name="example_component'/>
</ECOA-sca: instance>
<csa:property name="Update_Rate''><csa:value>10.0</csa:value></csa:property>
</csa:property>
</csa:component>

The above example would generate two Get_Value APlIs:
void [example_mod_impl_container:]Jget _Update_Rate_ value([#context#,] ECOA:float32* value);

void [example_mod_impl_container:]get Module_Inst_Prop_value([#context#,] ECOA:uint32* value);

For the component instance “example_instance” the get Update_Rate_value APl would return 10.0 for
both the “example_mod_instl” and “example_mod_inst2” module instances. However the
get_Module_Inst_Prop_value API would return 20 for the “example_mod_inst1” module instance, but 2 for
the “example_mod_inst2” module instance.

11.3 Component Lifecycle

This section describes the container operations that are used to perform the required component
lifecycle activities.

The component and module lifecycles are discussed more fully in reference 7.

11.3.1 Supervision Module Component Lifecycle API
The Container Interface provides functionality to allow the supervision module to manage the
component lifecycle.

11.3.1.1 Component Initialized
This is an event sent to indicate that the component has initialized. The event carries no parameters.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 38

The appropriate language binding will define the correct syntax for this container operation, but the abstract
format is given below:

ECOA:error
[#supervision_module_implementation_name#_container:]component_initialized__Send([#context#]);

11.3.1.2Component Started

This is an event sent to indicate that the component has started. The event carries no parameters.

The appropriate language binding will define the correct syntax for this container operation, but the abstract
format is given below:

ECOA:error
[#supervision_module_implementation_name# container:]component_started__Send([#context#]);

11.3.1.3Component Stopped

This is an event sent to indicate that the component has stopped. The event carries no parameters.

The appropriate language binding will define the correct syntax for this container operation, but the abstract
format is given below:

ECOA:error
[#supervision_module_implementation_name# container:]component_stopped__Send([#context#]);

11.3.1.4Component Idle
This is an event sent to indicate that the component has gone idle. The event carries no parameters.

The appropriate language binding will define the correct syntax for this container operation, but the abstract
format is given below:

ECOA:error [#supervision_module_implementation_name#_ container:]Jcomponent_idle__Send([#context#]);

11.3.1.5Component Failed
This is an event sent to indicate that the component has failed. The event carries no parameters.

The appropriate language binding will define the correct syntax for this container operation, but the abstract
format is given below:

ECOA:error
[#supervision_module_implementation_name# container:]component_failed__Send([#context#]);

11.3.1.6 Component State
This is versioned data operation published to indicate the current component state.

The appropriate language binding will define the correct syntax for the component state, but the abstract
format is given below:

#define ECOA_VERSIONED_DATA_ HANDLE_PRIVATE_SIZE 32
typedef struct {

ECOA:component_states_type* data;

ECOA:timestamp timestamp;

ECOA:byte platform_hook[ECOA VERSIONED DATA HANDLE_PRIVATE_SIZE];
} [#supervision_module_impl_name#_container:]component_state_handle;

The appropriate language binding will define the correct syntax for the container operations, but the
abstract formats are given below:

ECOA:error [#supervision_module_impl_name#_container:]state Get Read_Access([#context#,]
[#supervision_module_impl_name#_container:]component_state handle* data_handle);

ECOA:error [#supervision_module_impl_name# container:]state Release_ Read_Access([#context#,]
[#supervision_module_impl_name# container:]component_state handle* data_handle);

ECOA:error [#supervision_module_impl_name#_container:]state__Get_Write_Access([#context#,]
[#supervision_module_impl_name#_container:]component_state handle* data_handle);

ECOA:error [#supervision_module_impl_name# container:]state Cancel_Write_Access([#context#,]
[#supervision_module_impl_name# container:]component_state handle* data_handle);

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 39

ECOA:error [#supervision_module_impl_name# container:]state Publish_Write_Access([#context#,]
[#supervision_module_impl_name# container:]component_state handle* data_handle);

The container will also provide an operation to allow the component to publish its state and send the
appropriate event using one call.

The appropriate language binding will define the correct syntax, but the abstract format is given below:

ECOA:error [#supervision_module_impl_name#_container:]set_component_state([#context#,]
ECOA:component_states_type state);

The event sent by the set_component_state container operation is given in the table below
(invalid transitions have been greyed out):

New State
IDLE INITIALIZING STOPPED STOPPING RUNNING STARTING FINISHING FAILURE
Evt Evt
component_idle component_failed
VD IDLE VD FAILURE
Previous | IDLE VD IDLE No event Evt
State VD component_failed
INITIALIZING VD FAILURE
INITIALIZING VD Evt Evt
INITIALIZING | component_initialized component_failed
VD STOPPED VD FAILURE
STOPPED No event VD STOPPED No event No event Evt
VD VD VD component_failed
INITIALIZING STARTING FINISHING | VD FAILURE
STOPPING Evt VD Evt
component_stopped STOPPING component_failed
VD STOPPED VD FAILURE
RUNNING No event No event VD RUNNING No event Evt
VD VD VD component_failed
INITIALIZING STOPPING FINISHING VD FAILURE
STARTING Evt VD Evt
component_started STARTING component_failed
VD RUNNING VD FAILURE
FINISHING Evt VD Evt
component_idle FINISHING | component_failed
VD IDLE VD FAILURE
FAILURE VD FAILURE

The Set Component State operation may return the following error codes:
[ECOA:error:0K]
. No error
[ECOA:error: INVALID_STATE]
e Operation called with invalid state

e State transition not allowed by component lifecycle state automata

11.4 Module Lifecycle

This section describes the container operations that are used to perform the required module
lifecycle activities.

The component and module lifecycles are discussed more fully in reference 7.

11.41 Generic Module API

Container operations are only available to supervision modules to allow them to manage the
module lifecycle of non-supervision modules.

11.4.2 Supervision Module API

The Container Interface provides functionality to allow the supervision module to command
changes to the lifecycle states of other module/trigger/dynamic trigger instances.

An instance of the following operations is provided for each non-supervision module, trigger and
dynamic trigger hosted by the container controlled by that Supervision Module:

o Get lifecycle_state: request the current state of a module/trigger/dynamic trigger

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014
Page 40

o STOP: request the module/trigger/dynamic trigger to stop

¢ START: request the module/trigger/dynamic trigger to start

e INITIALISE: request the module/trigger/dynamic trigger to initialise

e SHUTDOWN: request the module/trigger/dynamic trigger to shutdown

The appropriate language binding will define the correct syntax for these container operations, but the
abstract format is given below:

void

[#supervision_module_implementation_name#_container:]get_lifecycle_state #module_instance_name#([
#context#,] ECOA:module_states_type* current_state);

ECOA:error
[#supervision_module_implementation_name#_container:]INTIALIZE_ #module_instance_name#([#context#]

);

ECOA:error [#supervision_module_implementation_name#_container
ISTART___#module_instance_name#([#context#]);

ECOA:error [#supervision_module_implementation_name#_container
:]STOP__#module_instance_name#([#context#]);

ECOA:error [#supervision_module_implementation_name#_ container
JSHUTDOWN__ #module_instance_name#([#context#]);

The INITIALIZE, START, STOP and SHUTDOWN operations may return the following error
codes:

[ECOA:error:0K]
. No error
[ECOA:error: INVALID_TRANSITION]

e State transition not allowed by module lifecycle state automata

11.5 Service Availability

The Container Interface provides functionality to allow a supervision module to set the availability
of its provided services and get the availability of its required services.

1151 Set Service Availability (Server Side)

An operation is provided to allow a supervision module to set the availability state of its provided
services. The operation will only be available if the component has one or more provided
services. The service instance is identified by the enumeration type service_id defined in the
Container Interface (Section 11.5.3)

The following is a prototype definition for the operation:

ECOA:error
[#supervision_module_implementation_name#_container:]set_service_availability([#context#,]
[#supervision_module_implementation_name#_container:]service_id instance, ECOA:boolean8
available);

The Set Service Availability operation may return the following error codes:
[ECOA:error:0K]
e No error
[ECOA:error: INVALID_SERVICE_ID]

e Operation called with invalid service ID

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 41

11.5.2 Get Service Availability (Client Side)

An operation is provided to allow a supervision module to get the availability state of its required
services. The operation will only be available if the component has one or more required
services. The service instance is identified by the enumeration type reference_id defined in the
Container Interface (Section 11.5.4)

The following is a prototype definition for the operation:

ECOA:error
[#supervision_module_implementation_name# container:]get_service_availability([#context#,]
[#supervision_module_implementation_name#_container:]reference_id instance, ECOA:boolean8*
available);

The Get Service Availability operation may return the following error codes:
[ECOA:error:0K]
. No error
[ECOA:error: INVALID_SERVICE_ID]

e Operation called with invalid reference ID

11.5.3 Service ID Enumeration

service_id is an enumeration type which identifies one of the service instances provided by the
component.

The abstract enumeration type name is the following:

#supervision_module_implementation_name#_container:]service_id.

This enumeration has a value for each element <service/> defined in the file .componentType,
whose nhame is given by its attribute name and the numeric value is the position (starting at 0).

The service_id enumeration is only available if the component provides one or more services.

11.5.4 Reference ID Enumeration

reference_id is an enumeration type which identifies one of the service instances required by the
component.

The abstract enumeration type name is the following:
#supervision_module_implementation_name#_container:]reference_id.

This enumeration has a value for each element <reference/> defined in the file .componentType,
whose hame is given by its attribute name and the numeric value is the position (starting at 0).

The reference_id enumeration is only available if the component requires one or more services.

11.6 Logging and Fault Management

The Container Interface provides dedicated functionality for each Module Instance to provide
information to the infrastructure. This information may be logged and falls into two categories:

e Faults for which the infrastructure is able to provide run-time responses
e Execution Information that can aid offline analysis of problems for system development
and integration
Six categories of information can be recorded: two categories for faults and four categories
relating to execution information as shown in Table 5.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 42

Maskable Within the

Category Definition Infrastructure Response Deployment Schema

L . Module shall be shutdown by
Used by the application to raise . -
S . the infrastructure and fault is
severe errors from which it knows it

FATAL T reported to the fault No
cannot recover. No filtering is useful or :
management infrastructure.

desirable. Information is logged.

The fault management

Used by the application to raise errors | infrastructure shall filter these
ERROR from which the application may be errors to determine whether No
able to recover, with assistance. the Module is to be shutdown
or not. Information is logged.

Used by the application to log runtime
situations that are undesirable or
unexpected, but not necessarily

WARNING "wrong". Useful for non-intrusive Information is logged. Yes

analysis. The current module instance

is not stopped and continues
execution.

Used by the application to log
interesting runtime events (eg.
startup/shutdown). Useful for non-
intrusive analysis. The current module
instance is not stopped and continues
execution.

INFO Information is logged. Yes

DEBUG Detailed information on the flow Information is logged. Yes
through the system.

TRACE More detailed information. Information is logged. Yes

Table 5 - Logging Error Level

An entry-point in the Container Interface is associated with each of the categories in Table 5. If
necessary the container shall truncate to the data to the maximum size of ECOA: : 1og. An output
log is associated with each Module Instance. The logs are configured in the Deployment where:

e The output destination file name for each module instance is given, (where applicable)
e Certain categories may be masked, except for ERROR and FATAL.

Logging configuration information defined at Component Instance level is applied for any Module
Instances where no configuration information is present in the Deployment. The following
defaults are applied where no configuration information is given at the Component Instance level:

e A dedicated logging directory is associated with the Component Instance within a
specified Logging device (where applicable)

¢ Alllogging levels are enabled.

The actual log output configuration is platform dependant, and may be assigned to text files; flash
disk etc. depending on the platform capabilities.

The following are prototype definitions for the logging and fault operations:

void [#module_impl_name#_container:]log_trace([#context#],const ECOA:log l0Qg);
void [#module_impl_name#_container:]log_debug([#context#],const ECOA:log log);
void [#module_impl_name#_container:]log_info ([#context#],const ECOA:log log);

void [#module_impl_name# container:]log_warning([#context#],const ECOA:log l10Qg);

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 43

void [#module_impl_name#_container:]raise_error([#context#],const ECOA:log log);

void [#module_impl_name#_container:]raise_fatal_error([#context#],const ECOA:log log);

11.7 Time Services

The Container Interface API provides the Modules with a set of library functions used to access
time services. Three, possibly distinct, time sources shall be provided:

¢ Relative Local Time - The high-resolution real-time clock local to the current computing
node, representing the time elapsed since node start up.

¢ Absolute System Time — The synchronised time across an ECOA system, relative to a
system clock reference defined by the system integrator. Absolute System Time may or
may not coincide with UTC Time.

e UTC Time - The synchronised time across all systems (ECOA and non-ECOA). Defined
in terms of UTC, and offset such that zero corresponds to 00:00 1 Jan 1970. UTC Time
may not be available in all ECOA systems.

The first time source may generally be used to compute and express durations with a high
resolution required for real-time precision services. The ECOA infrastructure provides the
modules with a high resolution clock which may not be synchronized with other time sources.

As a consequence, the HR clock is considered as local to a Module, and should only be used to
locally compute RT durations. The HR clock (called type ECOA:-hr_time) expressed in seconds
and nanoseconds and representing the time elapsed since system start up on that CPU. Itis
represented as two 32 bit unsigned integers expressed in seconds and nanoseconds. It may only
be considered as local to the Module, as Modules may be deployed in different protection
domains and hence on different computing nodes, which would mean that the HR time cannot be
guaranteed to be synchronised between them.

The ECOA infrastructure may provide the SW modules with UTC time. The globally defined clock
has a less precise clock, and should be used to date events. The ECOA infrastructure provides
the SW modules with a function to return the currently most precise UTC clock accessible on the
current computing node.

A non-UTC global time source is also useful because it may not be desirable to convert to UTC
time (e.g. for performance reasons).

The ECOA:global_time is used for both UTC and non-UTC system times comprising two 32
bits unsigned integers , seconds and nanoseconds.
The following are prototype definitions for the get time service operations:

ECOA:error [#module_impl_name#_container:]get_relative_local_time([#context#],const ECOA:hr_time
*relative_local_time);

ECOA:error [#module_impl_name#_container:]get UTC_time([#context#],const ECOA:global_time
*utc_time);

ECOA:error [#module_impl_name#_container:]get_absolute_system_time([#context#],const ECOA:global_time
*absolute_system_time);

Get Relative Local Time operations may return the following error codes:
[ECOA:error:0K]

. No error

Get UTC Time operations may return the following error codes:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 44

[ECOA:error:0K]
e No error
[CLOCK_UNSYNCHRONIZED]
e No error — clock is unsynchronized; a valid value is still returned
Get Absolute System Time operations may return the following error codes:
[ECOA:error:0K]
e No error
[CLOCK_UNSYNCHRONIZED]

. No error — clock is unsynchronized; a valid value is still returned

In addition, it is possible to retrieve the time resolution through the following API:

void [#module_impl_name#_container:]get_relative_local_time_resolution([#context#],const ECOA:duration
*relative_local_time_resolution);

void [#module_impl_name#_container:]get_UTC_time_resolution ([#context#],const ECOA:duration
*utc_time_resolution);

void [#module_impl_name#_container:]get_absolute_system_time_resolution ([#context#],const ECOA:duration
*absolute_system_time_resolution);

The output resolution parameter contains the time resolution provided the underlying software
environment. The time resolution is the shortest duration between two updates of the associated
clock.

The get time resolution functions shall always return a valid value.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 45

12 References

Ref. Document Number Version Title

1. IAWG-ECOA-TR-001 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume | Key Concepts

2. IAWG-ECOA-TR-002 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Developers Guide

3. IAWG-ECOA-TR-003 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 1: Ada
Binding Reference Manual

4, IAWG-ECOA-TR-004 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Ill Part 2: C Binding
Reference Manual

5. IAWG-ECOA-TR-005 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 3: C++
Binding Reference Manual

6. IAWG-ECOA-TR-006 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume IIl Part 4: ELI and
Transport Binding Reference Manual

7. IAWG-ECOA-TR-007 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 5:
Mechanisms Reference Manual

8. IAWG-ECOA-TR-008 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 6: Platform
Requirements Reference Manual

9. IAWG-ECOA-TR-009 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 7: Approach
to Safety and Security Reference Manual

10. IAWG-ECOA-TR-011 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume Il Part 9: Metamodel
and XSD Schemas Reference Manual

11. IAWG-ECOA-TR-012 Issue 2 European Component Oriented
Architecture (ECOA) Collaboration
Programme: Volume IV Common
Terminology

Table 6 - Table of ECOA references

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 46

	1 Table of Contents
	2 List of Figures
	3 List of Tables
	4 Abbreviations
	5 Introduction
	6 Module to Language Mapping
	7 Parameters
	8 Module Context
	8.1 Timestamping
	8.1.1 Request Response and Events
	8.1.2 Versioned Data

	9 Types
	9.1 Namespaces
	9.2 Predefined Types
	9.2.1 ECOA:error
	9.2.2 ECOA:hr_time
	9.2.3 ECOA:global_time
	9.2.4 ECOA:duration
	9.2.5 ECOA:timestamp
	9.2.6 ECOA:log
	9.2.7 ECOA:component_states_type
	9.2.8 ECOA:module_states_type
	9.2.9 ECOA:exception
	9.2.9.1 ECOA:service_id
	9.2.9.2 ECOA:operation_id
	9.2.9.3 ECOA:module_id
	9.2.9.4 ECOA:exception_id

	9.3 Derived Types
	9.3.1 Simple Types
	9.3.2 Constants
	9.3.3 Enumerations
	9.3.4 Records
	9.3.5 Variant Records
	9.3.6 Fixed Arrays
	9.3.7 Variable Arrays

	10 Module Interface
	10.1 Operations
	10.1.1 Request-Response
	10.1.1.1 Request Received Immediate Response
	10.1.1.2 Request Received Deferred Response
	10.1.1.3 Response Received

	10.1.2 Versioned Data
	10.1.2.1 Updated

	10.1.3 Events
	10.1.3.1 Received

	10.2 Component Lifecycle
	10.2.1 Supervision Module Component Lifecycle API
	10.2.1.1 Initialize Component
	10.2.1.2 Stop Component
	10.2.1.3 Restart Component
	10.2.1.4 Reset Component
	10.2.1.5 Shutdown Component
	10.2.1.6 Start Component

	10.3 Module Lifecycle
	10.3.1 Generic Module API
	10.3.2 Supervision Module Lifecycle API

	10.4 Service Availability
	10.4.1 Service Availability Changed
	10.4.2 Service Provider Changed

	10.5 Error handling

	11 Container Interface
	11.1 Operations
	11.1.1 Request Response
	11.1.1.1 Synchronous Request
	11.1.1.2 Asynchronous Request
	11.1.1.3 Reply Deferred

	11.1.2 Versioned Data
	11.1.2.1 Get_Read_Access
	11.1.2.2 Release_Read_Access
	11.1.2.3 Get_Write_Access
	11.1.2.4 Cancel_Write_Access
	11.1.2.5 Publish_Write_Access

	11.1.3 Events
	11.1.3.1 Send

	11.2 Properties
	11.2.1 Get_Value
	11.2.2 Expressing Property Values
	11.2.3 Example of Defining and Using Properties

	11.3 Component Lifecycle
	11.3.1 Supervision Module Component Lifecycle API
	11.3.1.1 Component Initialized
	11.3.1.2 Component Started
	11.3.1.3 Component Stopped
	11.3.1.4 Component Idle
	11.3.1.5 Component Failed
	11.3.1.6 Component State

	11.4 Module Lifecycle
	11.4.1 Generic Module API
	11.4.2 Supervision Module API

	11.5 Service Availability
	11.5.1 Set Service Availability (Server Side)
	11.5.2 Get Service Availability (Client Side)
	11.5.3 Service ID Enumeration
	11.5.4 Reference ID Enumeration

	11.6 Logging and Fault Management
	11.7 Time Services

	12 References

