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5 Executive Summary 
The European Component Oriented Architecture (ECOA) programme represents a concerted 
effort to reduce development and through-life-costs of the increasingly complex, software 
intensive systems within military platforms.  

ECOA aims to facilitate rapid system development and upgrade to support a network of flexible 
platforms that can cooperate and interact, enabling maximum operational effectiveness with 
minimum resource cost. ECOA provides the improved software architectural approaches 
required to achieve this. 

The standard is primarily focussed on supporting the mission system software of combat air 
platforms - both new build and legacy upgrades - however the ECOA solution is equally 
applicable to mission system software of land, sea and non-combat air platforms. 

The ECOA specification is documented in four volumes, collectively identified as the Architecture 
Specification: 

• Volume 1, this document, Key Concepts, introduces ECOA, its objectives, and the concepts 
and methods that are inherent to ECOA.  

• Volume 2, the Developers Guide, covers the development of an ECOA system including 
software development, platform development and system integration.  

• Volume 3, the Reference Manuals, specify technical details such as API language bindings 
and software interfaces.  

• Volume 4 provides definitions for Common Terminology. 
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6 Architecture Specification Introduction 

 
Figure 1 - ECOA Documentation 

The Architecture Specification provides the definitive specification for creating ECOA-based 
systems. It describes the standardised programming interfaces and data-model that allow 
developers to produce ECOA components and construct ECOA-based systems. It uses terms 
defined in the Common Terminology (Reference 11). For this reason, the reader should refer to 
this document, whilst reading this document. The details of the other documents comprising the 
rest of the Architecture Specification can be found in Section 10. 

The Architecture Specification consists of four volumes, as shown in Figure 1: 

• Volume I: Key Concepts 

• Volume II: Developer’s Guide 

• Volume III: Reference Manuals 

• Volume IV: Common Terminology 

This document is Volume I of the ECOA Architecture Specification; it acts as an introduction to 
ECOA. 

The document is structured as follows: 

• Section 7 provides an overview of ECOA: why it was developed, the general development 
approach and the benefits it offers. 

• Section 8 provides a tour of key ECOA concepts and terminology, placing these in context 
with each other. 

• Section 9 introduces supporting concepts that should aid the understanding of how ECOA is 
intended to be applied in practice. 

Architecture 
Specification 

Vol I: Key Concepts 

Vol II: Developers Guide 

Vol III: Reference Manuals 

Vol IV: Common Terminology 

Part 2 - C Binding Manual 

Part 3 - C++ Binding Manual 

Part 4 - ELI Binding Manual 

Part 5 - Mechanisms Manual 

Part 6 - Platform Requirements Manual 

Part 1 - Ada Binding Manual 

Part 7 - Safety and Security Manual 

Part 8 - Software Interface Manual 

Part 9 - Metamodel/Schemas Manual 
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7 ECOA Overview 

7.1 Background 

In the future, platform mission system software is expected to grow in size and complexity. This 
situation drives the need for improved software architectural approaches and these are the focus 
of ECOA. 

There is a desire to reduce costs both in development and deployment of platforms while at the 
same time having the capabilities to be effective over the diverse array of theatres in which 
modern operations are conducted.  

Future development programmes are likely to require more efficient collaborative software 
development as cost pressures increase and systems become complex. Work share is expected 
to be an increasingly important factor in future contracts. In addition there is a desire to support 
an expanded software supplier base, driving innovation and reducing cost. All this is set in an 
environment of increasingly complex and connected capability.  

The diversity of the platforms and sub-systems will require an architecture that can support mixed 
safety-integrity and mixed security-integrity systems. The architecture will be required to handle 
faults in a robust manner in order to restrict fault propagation and mitigate any effects on the rest 
of the operational system. 

A large part of platform development cost derives from the risk associated with integrating 
complex, software-intensive systems. Systems are continuing to grow in size and complexity so 
the ECOA programme must provide a way to manage this integration risk and help ensure that 
integration of independently developed subsystems is straightforward.  

To maximise re-use of software elements they must be portable and computing-platform 
independent. They should be designed in such a way as to anticipate the need for system 
evolution. The process of re-validation of a system following upgrades is supported by 
modularization and abstraction of its software elements such that re-use of existing validation 
evidence is made possible. The outcome should be to the reduce time and cost associated with 
upgrades. 

7.1.1 Rationale for Improved Software Architectural Principles 
Traditionally platform-level software-intensive systems for military aircraft have been developed 
both “top-down”, to meet a set of user requirements, and “bottom-up”, to incorporate modified off-
the-shelf subsystems with pre-conceived functionality and interfaces. 

Such systems have been developed, or have evolved, without following a strong set of 
architectural principles governing the structure of the system or the interactions between 
elements of that system. Instead, system design solutions have been driven by what is available, 
or what adaptations can be negotiated with suppliers.  

Much of the knowledge about interface peculiarities and of why subsystems behave in the 
specific way they do is entrenched with suppliers and so the approach has become self-
sustaining.  

Thus system design has been pragmatic rather than principled. 

As a result of this approach the interactions between subsystems and the host system are 
commonly not solely defined by the fundamental abstract function(s) of the subsystem in 
question. 

• Subsystems may include functionality unrelated to their prime purpose which ideally belongs 
elsewhere, but included for convenience at design time. 
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• Subsystems may replicate functionality explicitly performed elsewhere to simplify a design-
time negotiation, causing potential ambiguity in system data     

• They may include adaptations to cope with the peculiarities of subsystem interfaces – 
especially relating to timing and the frame to frame coherence of related data items. 

• They may include local work-arounds and compensations for the subtle details of sub-system 
or host-system behaviour. 

This has resulted in platform-level systems with a number of undesirable properties: 

• Their characteristics are obscure, and at best are understood by a small number of experts 
who have gained knowledge of the idiosyncrasies of the system through experience.  

• They are brittle. That is small changes, which may be inevitable for reasons of evolving 
requirements or obsolescence, can result in significant fracturing of the system and 
disproportionate difficulties and expense to repair it. 

Thus system integration, test and upgrade is difficult, expensive and risky. 

Such pragmatically-engineered systems tend to be intricate and convoluted because of their 
development history. This is a form of complexity which results from the design approach, rather 
than the requirement.  

The modular, service-oriented, open architecture approaches of modern ICT have been shown to 
produce robust solutions which are capable of rapid integration and expansion.  

There is a pressing need for more adaptable and more affordable military avionics systems, and 
the ECOA programme has set out to address that need. 

ECOA is developing the architectural principles, specifications and supporting infra-structure 
which will allow the functionality of avionic systems to be realised from a set of subsystems 
designed to offer access to their fundamental capabilities in terms of clearly defined service calls.  
This will promote modularity, ease of integration, re-use and adaptability, each of which will 
impact significantly on the affordability of future military avionic systems.  

7.1.2 Rationale for An Open Standard 
In order for all of the above to be achieved, it is necessary for the development community to 
work together using common standards. This standard must support the integration and re-use of 
existing products (including Commercial-Off-The-Shelf (COTS) software) alongside the 
integration of newly developed products.  

This indicates the need for published standards defining a common exchange format and 
standard interfaces that can be used to develop modular architecture components that can be 
exchanged and reused use by the subscribed community. 

The community includes the traditional aircraft primes and suppliers, but by creating an open 
standard it is a goal to create a more open market for avionic software. For example small and 
medium enterprises may be able to provide innovative new capabilities. 

7.2 Aims of ECOA 

ECOA aims to reduce development and through-life costs for new collaborative development 
programmes by reducing risk in the integration of complex mission systems, promoting software 
reuse and improving competition in the software supplier base. 

ECOA is initially being developed for avionic mission systems software in its widest sense but it 
is anticipated that the concepts and standards of ECOA would apply equally well in the land and 
sea domains, and particularly in contexts where mission capability spans all three.  
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A prime aim is to facilitate rapid system development and upgrade to support a network of 
flexible platforms that can cooperate and interact enabling maximum operational effectiveness 
with minimum resource cost. 

This aim requires that the underlying architecture is scalable from LRU to network level 
interaction and incorporates standard interfaces. It may require ad-hoc connectivity and 
distribution over multiple platforms supported by discovery, cooperation and interaction. The 
architecture will also be required to support real time service expectations of system 
components. 

An aim of ECOA is to support implementation of the majority of the non-critical software of a 
mission system with open, agreed interfaces; the longer term aspiration is to support more critical 
and mixed integrity software. An ECOA implementation must be capable of interacting with 
legacy / system specific areas that may not be hosted on the ECOA architecture.  
In summary, ECOA is intended to achieve the following: 

• Portability of software applications across diverse target environments 

• Re-use of software applications over time and across platforms 

• Interchangeability of application components 

• Economical and collaborative development processes 

• Ease of integration (risk reduction for new build and system upgrade) 

• Scalability (of applications, in capacity, throughput, multiplicity) 

• Commonality (of application software across platforms) 

• Ease of deployment & integration of application components 

• Rapid technology insertion (new solutions to the application needs) 

• Configurability (behavioural variability in the implementation) 

• Tolerance (to cope with mission modes and resilience to failures) 

• Interoperability (between subsystems of different provenance) 

• Multi-vehicle (deployment of components across multiple vehicles) 

• Synchronised training (use of common components in live and training systems) 

• Exportable (configurable for export) 

• Usable in high assurance safety & security contexts 

• Usable in systems with real-time behaviour 

• Catering for legacy applications (encompass and interact with legacy systems) 

• Catering for integration of COTS and other non-ECOA software 

• Protection from future obsolescence 

• Support an open market for application software development 

• An architecture that supports 80% of a combat-air mission system  

7.3 Approach to ECOA 

ECOA seeks to exploit architectural concepts and systems engineering techniques that are 
already widespread in other industry sectors in the development of complex information systems. 
These include: 
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• Component-based software engineering; 

• Loosely-coupled, service-oriented architectures; 

• Model-driven engineering and model-driven development; 

• Publisher-subscriber data-oriented architectures. 

These approaches offer increased flexibility, but ECOA also recognizes the need for rigorous 
qualification and certification in the target avionics software environment. 

ECOA must also support:  

• Deployment of ECOA technology on a variety of hardware and software platforms; 

• Integration of ECOA applications with non-ECOA applications. 

7.4 Objectives for an ECOA conformant system 

The ECOA programme proposes to achieve its stated aims by specifying the following: 

In relation to Process 

• Aspects of the software development process that supports modelling at a platform 
independent level, deployment into a platform specific form and implementation in a 
predetermined manner. 

• Tools to support the full ECOA lifecycle, including those that might be held by third parties 
such as the ECOA Agency. 

• Tool support for the generation of integration code to support deployment of components on a 
given software platform. 

At a Platform Independent level 

• Application components, in a formalised manner that includes what is provided, what is 
required in support, and aspects of "quality of service" (required and provided): by which the 
suitability of a component for the intended purpose may be assessed. 

• Assembly of components in a logical configuration, which is independent of any physical 
computing environment. 

At the Platform Specific level 

• Deployment of components across protection domains / computing nodes in an integrator-
defined configuration. 

• Execution of application components in a prescribed manner, including triggering of 
operations (functions, procedures) from external events, mechanisms to control sequencing 
(using threading & queuing), and synchronisation. 

• Interactions between components (local or remote) defined in terms of the ECOA prescribed 
mechanisms, specified in a formalised manner (eg, using XML). 

• System management according to a prescribed paradigm (to be consistent across a platform 
at least), which should include Initialisation, (re-)configuration, Health Monitoring, Fault 
Management. 

At the Implementation level 

• The building of software components in together with the necessary integration code 
(containers) to form the linkage between components and the underlying software platform. 

• Support for interactions between application components by specified Component APIs 
(request-response, events, data). 
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• Infrastructure services provided as appropriate for the context of usage (generic infrastructure 
where possible), which should Include time, error handling, file system access. 

Concerning Safety & Security 

• Safety & security aspects "assured", which may include both functional (e.g. data integrity 
checks, authentication function) and non-functional (e.g. determinism, level of assurance) 
requirements / properties. 
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8 A Tour of Key ECOA Concepts  
In this section, as key concepts and elements of ECOA terminology are introduced these are 
highlighted in Bold Italic and, thereafter, Capitalised. The reader may refer to Ref. 11 : Vol IV, 
Common Terminology for clarification of terms. 

8.1 Application Software Components and Services 

From the top-down perspective of overall system architecture, software design in ECOA is 
expressed in terms of Application Software Components (ASC or ‘Component’) and the 
Services that they provide to, and require of, each other. 

 

 

Figure 2 - An Application Software Component 

 

Figure 3, below, shows the relationship of entities that make up an Application Software 
Component Definition. Artefacts of this kind serve as formal specifications: contracts to which a 
Component developer will work in order to develop Application Software Component 
Implementations.  
In an ECOA System, an Application Software Component embodies some element of system 
functionality, and will have well-specified behavior (functional, temporal etc.) which may be 
tailored through Component Properties. Insertion Policies that accompany an ASC Definition 
express those necessary characteristics of any platform that is to host an instance of such a 
Component. 

For a given ASC Definition, a system integrator may be in a position to choose from very different 
ASC Implementations from different suppliers, but in terms of the Properties and Services they 
expose they will be indistinguishable, although they may be differentiated in the Quality of 
Service (QoS) they can provide. 

A Service in ECOA comprises a cohesive group of Service Operations through which the 
Component that is the client (of a Required Service) may access the facilities of the Provided 
Service. Service Operations may take the form of publish/subscribe Versioned Data access or 
various flavours of Event and Request-Response exchanges between connected Components. 
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Figure 3 - Simplfied Entity-Relationship Diagram for a Component Definition 

Ref. 6 contains a full description of the Service Operations that can be used to make up a Service 
Definition 

8.2 Architectural Design and the Assembly Schema 

The architecture of an ECOA based system is defined from a Component and Service Oriented 
Architecture perspective. 

A system’s architecture is assembled by linking Components together according to SOA 
principles: 

• in defining the interactions between ASCs, a requirer of a Service and the provider of that 
Service will refer to a common Service Definition. 

• Quality of Service attribute compatibility is taken into consideration when constructing 
Service Links.  

Component 
C

Component 
B

Component 
D

Component 
A

Service
Link  

Figure 4 - Simplified Representation of an Assembly Schema 

An Assembly Schema comprises the set of declarative artefacts that are created during this 
design process. Figure 4 shows a diagrammatic representation of an Assembly Schema for a 
simple system comprising four Components and three Service Links.  
A designer may decide to create new Service and Component Definitions, but will typically 
consider pre-existing Components and Services that could fulfil the system’s functional 
requirements, and will model how these should be linked together. Though existing ASC 
Implementations may be differentiated in terms of QoS (which will always be implementation-
specific) and may come with some particular Insertion Policies, this phase of design is broadly 
technology agnostic. 

The final stages of design must accommodate the physical computing environment. A 
Deployment Schema is used to define how the executables within an ECOA Software System 
are to be distributed across its computing nodes. 
Ref. 1 provides guidance on the process of software system design in ECOA. 

Component 
Definition 

Provided 
Service 

Required 
Service 

Property 

Service 
Definition 

1 1 

* 

* * 

* Insertion 
Policy 
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8.3 ECOA XML Meta-model and Early Validation 

An ECOA System is described using XML declarations that comply with the ECOA XML Meta-
model. Tool support for compliance checking versus this meta-model helps to ensure that the 
description of a system is internally self-consistent.  
Ref. 10 provides the reference material that defines the ECOA XML Meta-model. 

The Assembly Schema works with other ECOA concepts to facilitate an Early Validation 
approach in which a system designer may gain confidence in a design, and to do so well in 
advance of final integration: i.e. that the system, once completed, will meet its functional and non-
functional requirements.  
For example, the provided and required Services, at each end of a Service Link, can be checked 
to ensure they have compatible QoS attributes. Analysis in this area may identify, at an early 
stage, parts of the design where timing or other issues are critical to correct performance. 

A further element of a system description is the Logical System definition. It is a description of a 
system’s Computing Nodes and physical connectivity of the final system. Using such 
information, further Early Validation work can take into consideration how Components are 
distributed. 

Having a declarative, machine-readable system description opens up scope for sophisticated 
model-checking in support of Early Validation. In addition, the precise, declarative format is 
suitable for generation from a wide variety of system modelling tools, to permit engineers to use 
familiar methodologies with UML or SysML etc. to model and check a system which will then be 
realised in an ECOA compliant form. 

8.3.1 XML Artefacts and Modularity 
An overview of the XML files that follow the XML Schema Definitions (XSDs) of the ECOA XML 
Meta-model is given in Table 8-1 - XML files used for system description1. 

Data Type Definitions: describe the data types used in Service Operations 
Service Definitions: describe the Services and their Service Operations 

Component Definitions: identify provided and required services, referring to their 
Service Definitions, alongside associated Quality-of-Service 
definitions. Refer to Figure 3  

Component QoS Definitions: specify non-functional characteristics for the Services relating to  
Components 

Component Implementations: define the executable entities, named Module Instances, that 
comprise a Component and the connections between them 

Assembly Schema: defines the ASC Instances and the service links between them 
Logical System: provides a model of a system’s computing topology 

Deployment Schema: maps Module Instances onto the Logical System 

Table 8-1 - XML files used for system description 

As can be seen, much of the ECOA XML Meta-model is given over to aspects of ASC Definition, 
and ASC Implementation, with such declarations being partitioned into distinct artefacts. 

1 Some terms in this table are described in later sections of this document. 
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This partitioning is designed to create a modular format which permits functional units to be 
independently specified and contributed by different parties for later integration: for storage in a 
local ECOA Library or for submission to an ECOA Agency for wider reuse.  
Ref. 10 provides the ECOA XSD schema definitions.. 

8.4 The Application Software Component Abstraction 

A basic definition of an ASC is that it is a building block of a system. The power of the ASC 
abstraction lies in the different roles it fulfils: 

a) Sections 8.1 and 8.2 described the modelling of an overall system architecture. From this 
top-down perspective ASCs are characterised by the Services they provide to, and 
require of, each other.  

b) ASCs fulfil a key role in ECOA as the unit of exchange between software developers 
and/or integrators. This role is reflected in the focus on, and partitioning of, declarative 
artefacts pertaining to Application Software Components, as described in 8.3.1 

c) Upcoming sections describe a bottom-up perspective in which ASC Implementations may 
be seen as aggregations of functional application code in the form of software Modules. 

It is from these different perspectives that a system architect will approach the trade-off between 
logical top-down system decomposition involving the invention of new Service and ASC types, 
versus a bottom-up assembly process based on reuse of pre-existing Components and their 
Modules. An iterative architectural design approach may be called for. 

ASC Definitions and other ECOA abstractions are expressed as declarations in XML at design-
time. The nature of these declarations is preserved during the translation from XML into language 
and target-specific implementation code.  

8.5 The Container and Inversion of Control 

In ECOA it is the infrastructure code that controls the execution of the system specific code, 
provided by the Module Operations in response to the actions of other Modules. This is an 
Inversion of Control (IoC) with respect to traditional procedural programming in which 
application code commonly calls into the OS/Middleware to perform task scheduling activities. 

The benefits of IoC are that it helps: 

• To decouple the execution of a task from implementation; 

• To focus a software implementation on the task for which it is designed; 

• To provide the developer with contracts to be satisfied rather than concerns arising from how 
other subsystems are implemented; 

• To reduce side effects when replacing software. 

An implementation of Infrastructure code is called an ECOA Software Platform. It encompasses 
the Platform Integration Code, the computing facilities provided by the underlying operating 
system or middleware, as well as the means to interconnect with other ECOA Software 
Platforms.  
Ref. 1 contains guidance for development of an ECOA Software Platform. 
Ref. 7 is the Platform Requirements Reference Manual. 

An ECOA Software Platform provides within its Platform Integration Code, Containers : one for 
each or for several of the ASC Implementations that it hosts. The Container and ASC are 
constrained to interact via their respective interfaces, which represent a set of custom, narrowed 
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APIs which are designed to expose the minimum ‘surface area’ between an ASC and the ECOA 
Software Platform.  

It is only through these APIs that an ASC may interact with the wider ECOA environment beyond: 
Infrastructure services and the Services of other Components. Scope for unwanted coupling is 
thus reduced and prospects for future ASC reuse is enhanced. 

The Container concept is an important one in ECOA. Containers are explained in greater detail in 
the following sections. 

8.6 Software Modules 

Software reuse is a motivating principle of ECOA. The concepts described up to this point 
support reuse at the Component and Service level. As section 8.4 points out, Components are 
system building blocks which will be assembled from (or decomposed into, depending on your 
perspective) smaller units – ECOA Modules (or simply Modules). 

A Module embodies some functionality of a Component and ECOA seeks to impose minimal 
constraints on how its internals may be implemented. Modules are the unit of deployment in 
ECOA. 

A declarative entity in the ECOA XML Meta-model called a Module Type provides the contract 
for implementing a Module, in terms of both the Module Operations it must implement and those 
that it depends upon. See Figure 5. Different Module Implementations may exist: perhaps 
targeting different hardware; perhaps written in different languages; but compliant with the same 
Module Type contract. 

  
Figure 5 - Modules comprising an ASC, and example Module Operations 

Module developers can conceivably use any technology, languages, libraries etc. they need to 
get the job done. However, to guarantee portability and reusability a Module should operate by 
using only the facilities provided by the Container that surrounds it.  
Ref. 1 describes the process of Module software development and construction of ASC Implementations 

The precise specification for transformation of XML declarations to code means that portable 
Module Implementations can be developed: - Cross-compiled object code may be delivered to 
system integrators who can compose Modules from different suppliers together to form their 
systems, without the need to share source code or header files. 

Following the Inversion-of-Control principle, ECOA Modules are passive and (with some specific 
exceptions detailed in 8.9) do not assume control over, or even knowledge of, the wider system, 
but instead are hosted and operated under control of the ECOA Software Platform. 
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Module Implementations should be re-entrant. Modules are instantiated by the ECOA Software 
Platform, and can expect the platform to maintain a Context and to call into the Entry Points 
that implement Module Operations. A Container-provided thread is used for all interaction at a 
Module Instance’s boundary with the ECOA Infrastructure: one thread per Module Instance. 
Ref. 9 defines the Module Context. 

8.7 Module and Container Interfaces 

Section 8.5 introduced the Container concept and the custom, narrowed API through which 
Containers and Components must interact. This API is realised at the ECOA Module level with 
the Container-facing aspect of a Module being termed the Module Interface and the Module-
facing aspect of a Container termed the Container Interface.  

The Module Interface is derived from the Module Type. Module Interface entry points are 
handlers for Module Operation invocations coming via the Container from the wider ECOA 
System. 

Methods exposed by the Container Interface provide the means by which Modules can call 
Module Operations on other Modules or Components, or make use of Infrastructure services. A 
Container Interface implementation may be mechanistically derived (code generated) in its 
entirety from the Module Type, Module Implementation and Module Instance and supporting 
declarations. 

Infrastructure facilities provided by the Container Interface include time services, logging and 
fault management. In addition, Container Interfaces for ECOA Supervision Modules provide 
methods through which a Supervision Module may manage the state of all Modules 
implementing the ASC. Supervision Modules and the lifecycle of Modules, Components and their 
Services are covered in greater detail in section 8.9. 

8.8 Module Operation Links 

Sections 8.4 c) and 8.6 both refer to the realisation of an Application Software Component 
Implementation from Module Implementations. An ASC Implementation may comprise many 
Module Instances, perhaps with multiple instances for a given Module Type.  Such Modules 
Instances must be identified and connected together appropriately in order to fully elaborate the 
ASC Implementation. 

Module Operation Links, depicted in Figure 6, define the connectivity among the Module 
Operations of a Component’s Module Instances in addition to specifying which Module 
Operations are to fulfil an ASC Implementation’s Services2.  

2 Services are aggregations of Module Operations, just as ASC Implementations are aggregations of Module Instances. 
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Figure 6 - An Example Component Implementation 

 
Ref. 1 describes all aspects of the Module development process. 

8.9 Control of System Functionality in ECOA 

The subsections that follow describe standard ECOA approaches to the introduction of custom 
control of application execution. 
Ref. 9 is the reference manual for these concepts. 

Ref. 1 provides guidance and rules for correct implementation of Component and Module lifecycle. 

8.9.1 Trigger Instance 
Given the general IoC principal that Module Operations are entirely passive, the question arises 
as to how the developer should create active ASCs. A special pseudo Module called a Trigger 
Instance provides a mechanism to allow this.  

A Trigger Instance is specified in XML and wired to other Modules like any Module Instance, but 
its implementation is provided by the Infrastructure. Using a Trigger Instance an ASC developer 
can implement periodic activation at an operation level without reference to the underlying 
OS/Middleware, and without or the need to depend on activation from an incoming Request or 
Event from an external Module.  

Figure 7 depicts the Modules Instances and Module Operation Links within a Component which 
provides no Services and is not stimulated by any external calls. It contains two functional 
Modules, an ECOA Supervision Module and a Trigger Instance which is responsible for 
triggering execution of the Component on a periodic basis. ECOA Supervision Modules are 
described in 8.9.2 
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Figure 7 - Trigger Instance linked to a Module within a Component 

8.9.2 ECOA Supervision Modules and Module Lifecycle 
Figure 8, below, depicts the role of the ECOA Supervision Module as the part of a Component 
that implements Component-level concerns, such as Service Availability as well as 
implementing any Component Runtime Lifecycle Service (discussed further in 8.9.3). 

The standard requires a Component Implementation to include only one Supervision Model.3 

Supervision Modules are responsible for managing the lifecycle of the Module Instances that 
provide the functional implementation of an ASC.  

A Component’s Supervision Module is the only Module to be started by the Infrastructure and 
must explicitly initialise, start and stop the other Modules Instances implementing the ASC. It 
achieves this by acting through the Module Lifecycle API segment of its Container Interface.  

When a Module Instance is not in the RUNNING state, any activation requests which are not 
lifecycle events are ignored. 

A Supervision Module will generally control the lifecycle of Module Instances in response to 
higher level events that affect the lifecycle of the ASC as a whole, though a Component 
Implementation's design may result in such control being exerted for other functional or technical 
reasons. 

8.9.3 Component Level Lifecycle and Functional Manager Components 
At the Component level, the implementation of a Component Runtime Lifecycle Service allows 
one Application Software Component to monitor, control and manage the lifecycle of another 
Component.  

Management logic at this level is likely to relate to functional requirements and could be 
compared to application-level management provided by IMA such as ARINC 653 or ASAAC, 
rather than system-level management. It is achieved, as shown in Figure 8, by one Component 
providing the Component Runtime Lifecycle Service and one Component requiring it. As such, 

3 A forthcoming issue of the standard may include provision for having default supervision behavior implemented as part of the Insfrastructure, allowing 
a simple Component to dispense with any Supervision Module 
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this is under the control of the system integrator and securely configured offline. As an example 
of a Component Runtime Lifecycle Service Operation, one Component can request that another 
Component starts or stops. 
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Figure 8 - Component Runtime Lifecycle Service 

 

This scheme offers flexibility because it is under the control of the system integrator. Support for 
hierarchical system management is possible, reflecting the complex control needed in some 
systems. It is also possible for the start-up and shutdown of different Components to be 
completely asynchronous, reflecting a more loosely-coupled approach. 

In addition to the Component Runtime Lifecycle Service, extra services may be used to 
implement functional modes which are meaningful when Application Software Components are 
running. 

8.10 Hardware and Software Interoperability 

The preceding sections describe the declarative entities and concepts required to define a 
Service and Component oriented system to be executed in a realtime, embedded environment. A 
system thus defined is agnostic to any underlying technologies: programming language; 
middleware; (RT)OS; hardware; network etc.  

To deploy and execute the system does, of course, require that the declarative entities and 
portable Module code must be targeted at a physical deployment environment.  

Some of this targeting falls to the selected implementation of the ECOA Platform: it will 
constrain, for instance: programming languages that may be used; types of middleware and 
families of (RT)OS that are supported.  

8.10.1 Logical System definition and Deployment Platforms 
ECOA defines the concept of a Logical System which is a logical definition of a computing 
infrastructure in terms of Computing Nodes, Protection Domains and Logical Links.  Protection 
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Domains allow for spatial, and possibly, temporal isolation or partitioning in order to support 
multiple safety or security levels, for example. Logical Links are a simple abstraction of 
communication connections (eg. VME or Ethernet) and are characterised by attributes such as 
bandwidth and latency. 

Computing Nodes and Logical Links are characterised by simple attributes to enable modelling 
and assessment of a system prior to the completion of development (see Section 8.3 on Early 
Validation). 

The definition of a Computing Node is deliberately abstract and may be a single core of multi-
core processor, a single core processor or a multi-core processor.  

An example of a Logical System is shown below. It depicts machine1 connected to machine2 by 
a Logical Link. On machine1 there are 2 Protection Domains and on machine2 there is only one. 
On machine1 there must be a segregation mechanism at operating system level; whereas 
machine2 does not require this because it is only executing a single Protection Domain.  
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Node
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Logical 
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Figure 9 - Example Logical System 

The deployment of Components is described by a mapping of the Module Instances onto a 
Logical System. The description of this mapping is called a Deployment Schema and relates 
Module Instances, Container Instances, Protection Domains, Computing Nodes and networks. 
This is shown in Figure 10. 

One or more Module Instances are allocated to one Container Instance: the executable is the 
binary image containing the Container Instance and the Module Instances within a Protection 
Domain. 

One or more Protection Domains are allocated to any given Computing Node and communicate 
with other instances through an OS/middleware using physical links. A single instance of an 
ECOA layered software architecture executing on a single processing resource is termed an 
ECOA Stack. 

Much of the internal architecture of a Container is left to the ECOA Platform supplier, as there are 
many options. For example, if multiple Module Instances of an Application Software Component 
are mapped onto a single multi-core processor, options include: 

• Allocating Modules statically to cores at build-time 
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• Dynamically dispatching Modules to cores at run-time4 

 

 
Figure 10 - Deployment View 

8.10.2 Interoperability Protocol: The ECOA Logical Interface 
Communications between Computing Nodes, and between the Container Instances that they 
host, is achieved through the use of the ECOA Logical Interface (ELI). This interface is a 
standard, well defined protocol that is independent of the underlying physical transport media. 
Use of the ELI ensures that independently developed ECOA Systems or ECOA Stacks are able 
to make use of each-other’s Services. 

Service Definitions are composed of Service Operations with associated typed data and 
parameters. The specification of the data types is well-defined, allowing off-line checking of the 
model as well as on-line checks in languages that support this. The “wire format” for 
communication of typed data over the ELI is precisely defined (in terms of endianness etc.) 

All ECOA types exist within namespaces that can be nested. The following data type declarations 
are supported: 

• Predefined types which are a set of basic types (e.g. uint32)  

• Simple types which are refinement of a predefined type or a simple-type itself to give a 
functional meaning to the type (e.g. list_index_type). Simple types can define bounds. 

• Enumerations 

• Fixed records containing fields of any other type 

4 This concept is immature at the current issue of the Architecture Specification 
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• Variant records that allow optional fields 

• Fixed-size arrays 

• Variable-size arrays 

Component Containers use the facilities provided by the underlying operating system and/or 
middleware to provide the transport mechanism for the ECOA Logical Interface. For example, 
this could be via an Internet Protocol (IP) sockets mechanism using Ethernet or over a VME 
backplane.  

Depending on the transport mechanism employed, use of the ELI implies some overhead 
associated with uniformly representating data for communication. 

Though support for the ELI is mandatory for ECOA Platforms, implementations may take 
advantage of circumstances in which the implied overhead can be optimised away. For instance: 
given Modules of the same language, compiled with the same compiler and which are integrated 
into a single Protection Domain, then the ECOA API calling conventions and language bindings 
will ensure that the Modules can exchange messages using simple inter-thread communication 
without any intervening communications or ELI overheads. 

8.11 Development Process and Tool Support 

The ECOA XML Meta-model specifies the artefacts that are used for the exchanging of design 
information (refer to section 8.3).  

The ECOA XML Meta-model format, while precise and fit for purpose, is not suited for the 
capturing and modelling of system designs, and designers familiar with system modeling tools 
and methodologies would not wish to manually transcribe design models from tool formats to 
ECOA XML Meta-model format. It is anticipated that generic design, validation and 
transformation tools and plugins would be developed and provided by independent tool 
developers to form part of an ECOA Toolset that would assist the work of correctly generating 
the XML artefacts. 

It is an intention of ECOA: 

• that it can be supported by a "model-driven" approach,  

• that it supports progressive validation from an early stage in the development lifecycle,  

• that it supports, as far as possible, an automated transition to implementation. 

An ECOA Toolset would not be complete without a means of generating Container source code 
from XML and compiling this into object code – an unmanageable task if performed manually. 
ECOA Platform suppliers would be expected to include basic tool support for these development 
activities. 

Figure 11 shows the general flow of the Component development and integration process, 
relating to the ECOA XML files described above. The arrows on the left and right show, 
respectively, partial views of the Component development and integration processes. 
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Figure 11 - Component Development and Integration Process Overview 
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9 Supporting Concepts 
This section and its subsections summarise the main supporting concepts, which relate to 
practical concerns when designing a system using ECOA. 

9.1 Driver Components and Legacy subsystems 

It is one of the key objectives to be able to deploy ECOA Application Software Components on 
non-ECOA legacy platforms and to be able to integrate non-ECOA software and hardware with 
an ECOA System. Figure 12 shows different cases involving integration of legacy subsystems 
which are discussed further, below 

 

 
Figure 12 - Integration of Legacy Software and Hardware into an ECOA Architecture 

9.1.1 Legacy Software 
The implementation of a legacy software application may not be consistent with the Inversion-of-
Control principle. Legacy applications are likely to be closely coupled to an existing platform 
including operating system interfaces. Such applications may control their own execution (e.g. 
scheduling, threading), unlike an ECOA Application Software Component. This may imply the 
inability to effectively decompose application software into cohesive Modules, and may 
necessitate bespoke modifications. 

A legacy system that consists of hardware and / or software can be integrated with an ECOA 
System using a number of methods including the following: 

1. Wrapping or re-engineering as an ECOA Module that implements the necessary Inversion-
of-Control behaviour (Application X in Figure 12) 

2. Development of an ECOA Conversion Layer for a non-ECOA application to provide an 
interface compliant with the ECOA Logical Interface (ECOA Conversion layer embedded in 
Application Y in Figure 12) 
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3. Or, if the legacy application is (figuratively or literally) a “black box” then a dedicated Driver 
Component would be required. (Component of B connected to Application Z in Figure 12) 
See the next section on this topic. 

Method 1: Re-engineering to provide Inversion-of-Control, or “Componentisation” 

Legacy code will be placed within one or more functional Modules which act as ECOA 
compatible façades or wrappers. Together with a Supervision Module, these wrapper 
Modules will interact with the ECOA Infrastructure according to the IoC rules, while 
internally performing the mapping from ECOA-style execution to that expected by the 
legacy code. Ideally the design of wrapper Component, Module Operations and Services 
will be chosen to make the mapping straightforward.  

This option results in a fully fledged ECOA Application Software Component, lending it a 
limited degree of portability and allowing it to benefit from the same optimisations as other 
Components on the same ECOA Software Platform. For instance: avoiding the overhead 
of using communication channels and the ELI for interoperability within the same 
Protection Domain. 

Method 2: Development of an ECOA Conversion Layer for a non-ECOA application. 

This is an option if the interfacing requirement is simple: i.e. small number of simple 
Services. It may be necessary in cases where the semantic gap between approaches 
adopted by ECOA and legacy code is large, or if the legacy application cannot be hosted 
in ECOA because its implementation depends on underlying technology (implementation 
language, RTOS etc) which is not supported by any ECOA Platform. 

The ECOA Conversion Layer must implement ECOA-conformant ELI message 
transmission (marked  in Figure 12) and reception externally, translating these to legacy 
calls, data retrieval logic etc. internally. Connections marked  and  represent non-ELI 
message transmission and are discussed below. 

9.1.2 Driver Components 
The notion of a Driver Component is introduced to describe an Application Software Component 
that translates the interface protocol used by legacy hardware or software into operations 
specified in a Service Definition with well-specified behaviour. This is shown in Figure 12 : 
Container A communicates with a non-ECOA sensor/effector via the connection marked  and 
for Container B to communicate with non-ECOA application Z via the connection marked . 

The software Modules that implement this kind of Component must behave as standard ECOA 
Modules in all interactions with their respective Containters (refer to 8.5), but they may, internally, 
use legacy (e.g. OS and hardware) interfaces to communicate with legacy devices. Such Driver 
Components will therefore be less portable than pure ECOA Application Software Components. 

9.2 Component Reuse in Relation to System Architecture 
Complex systems, such as avionic mission systems, require a structured organisation of their 
Components in order to be manageable. The ECOA programme has provided recommendations 
for a layered organisation of mission system Components, where the more generic Component 
Definitions reside in the lower layers and the vehicle platform-specific Component Definitions 
reside in the higher layers. This is illustrated in Figure 13.  
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Figure 13 - Layered / Hierarchical Component Based Architecture 

 

Platform-specific Components typically embody top-level functional requirements specific to the 
platform. The potential reuse of these Components on other types of platforms is unlikely, whilst 
Components in the lower layers of the hierarchy are likely to be more generic and therefore the 
best candidates for reuse.  

The same concepts hold within Component Implementations. The judicious separation of 
platform management functionality, for example into Supervision Modules, should enable the 
remaining Modules to be more generic, and hence better candidates for reuse within other 
Components. 
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(ECOA) Collaboration Programme: Volume 
III Part 9: Metamodel and XSD Schemas 
Reference Manual 
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