

European Component Oriented Architecture (ECOA)

Collaboration Programme:
Architecture Specification
Volume I: Key Concepts

BAE Ref No: IAWG-ECOA-TR-001
Dassault Ref No: DGT 144474-B

Issue: 2

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd
and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés .
AgustaWestland Limited, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd.
The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification
make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Note: This specification represents the output of a research programme and contains mature high-level concepts,
though low-level mechanisms and interfaces remain under development and are subject to change. This standard of
documentation is recommended as appropriate for limited lab-based evaluation only. Product development based on
this standard of documentation is not recommended.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 1

1 Table of Contents

1 Table of Contents ... 2

2 List of Figures ... 4

3 List of Tables .. 5

4 Abbreviations .. 6

5 Executive Summary .. 7

6 Architecture Specification Introduction .. 8

7 ECOA Overview ... 9

7.1 Background .. 9

7.1.1 Rationale for Improved Software Architectural Principles ... 9

7.1.2 Rationale for An Open Standard .. 10

7.2 Aims of ECOA .. 10

7.3 Approach to ECOA ... 11

7.4 Objectives for an ECOA conformant system .. 12

8 A Tour of Key ECOA Concepts ... 14

8.1 Application Software Components and Services .. 14

8.2 Architectural Design and the Assembly Schema .. 15

8.3 ECOA XML Meta-model and Early Validation .. 16

8.3.1 XML Artefacts and Modularity .. 16

8.4 The Application Software Component Abstraction .. 17

8.5 The Container and Inversion of Control .. 17

8.6 Software Modules .. 18

8.7 Module and Container Interfaces ... 19

8.8 Module Operation Links ... 19

8.9 Control of System Functionality in ECOA ... 20

8.9.1 Trigger Instance ... 20

8.9.2 ECOA Supervision Modules and Module Lifecycle .. 21

8.9.3 Component Level Lifecycle and Functional Manager Components 21

8.10 Hardware and Software Interoperability ... 22

8.10.1 Logical System definition and Deployment Platforms ... 22

8.10.2 Interoperability Protocol: The ECOA Logical Interface ... 24

8.11 Development Process and Tool Support .. 25

9 Supporting Concepts .. 27

9.1 Driver Components and Legacy subsystems ... 27

9.1.1 Legacy Software .. 27

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 2

9.1.2 Driver Components .. 28

9.2 Component Reuse in Relation to System Architecture ... 28

10 References ... 30

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 3

2 List of Figures

Figure 1 - ECOA Documentation .. 8

Figure 2 - An Application Software Component .. 14

Figure 3 - Simplfied Entity-Relationship Diagram for a Component Definition 15

Figure 4 - Simplified Representation of an Assembly Schema ... 15

Figure 5 - Modules comprising an ASC, and example Module Operations 18

Figure 6 - An Example Component Implementation ... 20

Figure 7 - Trigger Instance linked to a Module within a Component ... 21

Figure 8 - Component Runtime Lifecycle Service ... 22

Figure 9 - Example Logical System .. 23

Figure 10 - Deployment View ... 24

Figure 11 - Component Development and Integration Process Overview 26

Figure 12 - Integration of Legacy Software and Hardware into an ECOA Architecture 27

Figure 13 - Layered / Hierarchical Component Based Architecture .. 29

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 4

3 List of Tables

Table 8-1 - XML files used for system description .. 16

Table 10-1 - Table of ECOA references ... 30

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 5

4 Abbreviations

API Application Programming Interface

ARINC Aeronautical Radio, Incorporated

ASAAC Allied Standards Avionics Architecture Council

ASC Application Software Component

COTS Commercial Off-The-Shelf

ECOA European Component Oriented Architecture

ELI ECOA Logical Interface

IMA Integrated Modular Avionics

IoC Inversion-of-Control

IP Internet Protocol

LRU Line Replaceable Unit

OS Operating System

QoS Quality of Service

RTOS Real-Time Operating System

SOA Service-oriented Architecture

SW Software

UML Unified Modeling Language

VME Versa Module Europa (bus)

XML eXtensible Markup Language

XSD XML Schema Definition

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 6

5 Executive Summary
The European Component Oriented Architecture (ECOA) programme represents a concerted
effort to reduce development and through-life-costs of the increasingly complex, software
intensive systems within military platforms.

ECOA aims to facilitate rapid system development and upgrade to support a network of flexible
platforms that can cooperate and interact, enabling maximum operational effectiveness with
minimum resource cost. ECOA provides the improved software architectural approaches
required to achieve this.

The standard is primarily focussed on supporting the mission system software of combat air
platforms - both new build and legacy upgrades - however the ECOA solution is equally
applicable to mission system software of land, sea and non-combat air platforms.

The ECOA specification is documented in four volumes, collectively identified as the Architecture
Specification:

• Volume 1, this document, Key Concepts, introduces ECOA, its objectives, and the concepts
and methods that are inherent to ECOA.

• Volume 2, the Developers Guide, covers the development of an ECOA system including
software development, platform development and system integration.

• Volume 3, the Reference Manuals, specify technical details such as API language bindings
and software interfaces.

• Volume 4 provides definitions for Common Terminology.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 7

6 Architecture Specification Introduction

Figure 1 - ECOA Documentation

The Architecture Specification provides the definitive specification for creating ECOA-based
systems. It describes the standardised programming interfaces and data-model that allow
developers to produce ECOA components and construct ECOA-based systems. It uses terms
defined in the Common Terminology (Reference 11). For this reason, the reader should refer to
this document, whilst reading this document. The details of the other documents comprising the
rest of the Architecture Specification can be found in Section 10.

The Architecture Specification consists of four volumes, as shown in Figure 1:

• Volume I: Key Concepts

• Volume II: Developer’s Guide

• Volume III: Reference Manuals

• Volume IV: Common Terminology

This document is Volume I of the ECOA Architecture Specification; it acts as an introduction to
ECOA.

The document is structured as follows:

• Section 7 provides an overview of ECOA: why it was developed, the general development
approach and the benefits it offers.

• Section 8 provides a tour of key ECOA concepts and terminology, placing these in context
with each other.

• Section 9 introduces supporting concepts that should aid the understanding of how ECOA is
intended to be applied in practice.

Architecture
Specification

Vol I: Key Concepts

Vol II: Developers Guide

Vol III: Reference Manuals

Vol IV: Common Terminology

Part 2 - C Binding Manual

Part 3 - C++ Binding Manual

Part 4 - ELI Binding Manual

Part 5 - Mechanisms Manual

Part 6 - Platform Requirements Manual

Part 1 - Ada Binding Manual

Part 7 - Safety and Security Manual

Part 8 - Software Interface Manual

Part 9 - Metamodel/Schemas Manual

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 8

7 ECOA Overview

7.1 Background

In the future, platform mission system software is expected to grow in size and complexity. This
situation drives the need for improved software architectural approaches and these are the focus
of ECOA.

There is a desire to reduce costs both in development and deployment of platforms while at the
same time having the capabilities to be effective over the diverse array of theatres in which
modern operations are conducted.

Future development programmes are likely to require more efficient collaborative software
development as cost pressures increase and systems become complex. Work share is expected
to be an increasingly important factor in future contracts. In addition there is a desire to support
an expanded software supplier base, driving innovation and reducing cost. All this is set in an
environment of increasingly complex and connected capability.

The diversity of the platforms and sub-systems will require an architecture that can support mixed
safety-integrity and mixed security-integrity systems. The architecture will be required to handle
faults in a robust manner in order to restrict fault propagation and mitigate any effects on the rest
of the operational system.

A large part of platform development cost derives from the risk associated with integrating
complex, software-intensive systems. Systems are continuing to grow in size and complexity so
the ECOA programme must provide a way to manage this integration risk and help ensure that
integration of independently developed subsystems is straightforward.

To maximise re-use of software elements they must be portable and computing-platform
independent. They should be designed in such a way as to anticipate the need for system
evolution. The process of re-validation of a system following upgrades is supported by
modularization and abstraction of its software elements such that re-use of existing validation
evidence is made possible. The outcome should be to the reduce time and cost associated with
upgrades.

7.1.1 Rationale for Improved Software Architectural Principles
Traditionally platform-level software-intensive systems for military aircraft have been developed
both “top-down”, to meet a set of user requirements, and “bottom-up”, to incorporate modified off-
the-shelf subsystems with pre-conceived functionality and interfaces.

Such systems have been developed, or have evolved, without following a strong set of
architectural principles governing the structure of the system or the interactions between
elements of that system. Instead, system design solutions have been driven by what is available,
or what adaptations can be negotiated with suppliers.

Much of the knowledge about interface peculiarities and of why subsystems behave in the
specific way they do is entrenched with suppliers and so the approach has become self-
sustaining.

Thus system design has been pragmatic rather than principled.

As a result of this approach the interactions between subsystems and the host system are
commonly not solely defined by the fundamental abstract function(s) of the subsystem in
question.

• Subsystems may include functionality unrelated to their prime purpose which ideally belongs
elsewhere, but included for convenience at design time.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 9

• Subsystems may replicate functionality explicitly performed elsewhere to simplify a design-
time negotiation, causing potential ambiguity in system data

• They may include adaptations to cope with the peculiarities of subsystem interfaces –
especially relating to timing and the frame to frame coherence of related data items.

• They may include local work-arounds and compensations for the subtle details of sub-system
or host-system behaviour.

This has resulted in platform-level systems with a number of undesirable properties:

• Their characteristics are obscure, and at best are understood by a small number of experts
who have gained knowledge of the idiosyncrasies of the system through experience.

• They are brittle. That is small changes, which may be inevitable for reasons of evolving
requirements or obsolescence, can result in significant fracturing of the system and
disproportionate difficulties and expense to repair it.

Thus system integration, test and upgrade is difficult, expensive and risky.

Such pragmatically-engineered systems tend to be intricate and convoluted because of their
development history. This is a form of complexity which results from the design approach, rather
than the requirement.

The modular, service-oriented, open architecture approaches of modern ICT have been shown to
produce robust solutions which are capable of rapid integration and expansion.

There is a pressing need for more adaptable and more affordable military avionics systems, and
the ECOA programme has set out to address that need.

ECOA is developing the architectural principles, specifications and supporting infra-structure
which will allow the functionality of avionic systems to be realised from a set of subsystems
designed to offer access to their fundamental capabilities in terms of clearly defined service calls.
This will promote modularity, ease of integration, re-use and adaptability, each of which will
impact significantly on the affordability of future military avionic systems.

7.1.2 Rationale for An Open Standard
In order for all of the above to be achieved, it is necessary for the development community to
work together using common standards. This standard must support the integration and re-use of
existing products (including Commercial-Off-The-Shelf (COTS) software) alongside the
integration of newly developed products.

This indicates the need for published standards defining a common exchange format and
standard interfaces that can be used to develop modular architecture components that can be
exchanged and reused use by the subscribed community.

The community includes the traditional aircraft primes and suppliers, but by creating an open
standard it is a goal to create a more open market for avionic software. For example small and
medium enterprises may be able to provide innovative new capabilities.

7.2 Aims of ECOA

ECOA aims to reduce development and through-life costs for new collaborative development
programmes by reducing risk in the integration of complex mission systems, promoting software
reuse and improving competition in the software supplier base.

ECOA is initially being developed for avionic mission systems software in its widest sense but it
is anticipated that the concepts and standards of ECOA would apply equally well in the land and
sea domains, and particularly in contexts where mission capability spans all three.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 10

A prime aim is to facilitate rapid system development and upgrade to support a network of
flexible platforms that can cooperate and interact enabling maximum operational effectiveness
with minimum resource cost.

This aim requires that the underlying architecture is scalable from LRU to network level
interaction and incorporates standard interfaces. It may require ad-hoc connectivity and
distribution over multiple platforms supported by discovery, cooperation and interaction. The
architecture will also be required to support real time service expectations of system
components.

An aim of ECOA is to support implementation of the majority of the non-critical software of a
mission system with open, agreed interfaces; the longer term aspiration is to support more critical
and mixed integrity software. An ECOA implementation must be capable of interacting with
legacy / system specific areas that may not be hosted on the ECOA architecture.
In summary, ECOA is intended to achieve the following:

• Portability of software applications across diverse target environments

• Re-use of software applications over time and across platforms

• Interchangeability of application components

• Economical and collaborative development processes

• Ease of integration (risk reduction for new build and system upgrade)

• Scalability (of applications, in capacity, throughput, multiplicity)

• Commonality (of application software across platforms)

• Ease of deployment & integration of application components

• Rapid technology insertion (new solutions to the application needs)

• Configurability (behavioural variability in the implementation)

• Tolerance (to cope with mission modes and resilience to failures)

• Interoperability (between subsystems of different provenance)

• Multi-vehicle (deployment of components across multiple vehicles)

• Synchronised training (use of common components in live and training systems)

• Exportable (configurable for export)

• Usable in high assurance safety & security contexts

• Usable in systems with real-time behaviour

• Catering for legacy applications (encompass and interact with legacy systems)

• Catering for integration of COTS and other non-ECOA software

• Protection from future obsolescence

• Support an open market for application software development

• An architecture that supports 80% of a combat-air mission system

7.3 Approach to ECOA

ECOA seeks to exploit architectural concepts and systems engineering techniques that are
already widespread in other industry sectors in the development of complex information systems.
These include:

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 11

• Component-based software engineering;

• Loosely-coupled, service-oriented architectures;

• Model-driven engineering and model-driven development;

• Publisher-subscriber data-oriented architectures.

These approaches offer increased flexibility, but ECOA also recognizes the need for rigorous
qualification and certification in the target avionics software environment.

ECOA must also support:

• Deployment of ECOA technology on a variety of hardware and software platforms;

• Integration of ECOA applications with non-ECOA applications.

7.4 Objectives for an ECOA conformant system

The ECOA programme proposes to achieve its stated aims by specifying the following:

In relation to Process

• Aspects of the software development process that supports modelling at a platform
independent level, deployment into a platform specific form and implementation in a
predetermined manner.

• Tools to support the full ECOA lifecycle, including those that might be held by third parties
such as the ECOA Agency.

• Tool support for the generation of integration code to support deployment of components on a
given software platform.

At a Platform Independent level

• Application components, in a formalised manner that includes what is provided, what is
required in support, and aspects of "quality of service" (required and provided): by which the
suitability of a component for the intended purpose may be assessed.

• Assembly of components in a logical configuration, which is independent of any physical
computing environment.

At the Platform Specific level

• Deployment of components across protection domains / computing nodes in an integrator-
defined configuration.

• Execution of application components in a prescribed manner, including triggering of
operations (functions, procedures) from external events, mechanisms to control sequencing
(using threading & queuing), and synchronisation.

• Interactions between components (local or remote) defined in terms of the ECOA prescribed
mechanisms, specified in a formalised manner (eg, using XML).

• System management according to a prescribed paradigm (to be consistent across a platform
at least), which should include Initialisation, (re-)configuration, Health Monitoring, Fault
Management.

At the Implementation level

• The building of software components in together with the necessary integration code
(containers) to form the linkage between components and the underlying software platform.

• Support for interactions between application components by specified Component APIs
(request-response, events, data).

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 12

• Infrastructure services provided as appropriate for the context of usage (generic infrastructure
where possible), which should Include time, error handling, file system access.

Concerning Safety & Security

• Safety & security aspects "assured", which may include both functional (e.g. data integrity
checks, authentication function) and non-functional (e.g. determinism, level of assurance)
requirements / properties.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 13

8 A Tour of Key ECOA Concepts
In this section, as key concepts and elements of ECOA terminology are introduced these are
highlighted in Bold Italic and, thereafter, Capitalised. The reader may refer to Ref. 11 : Vol IV,
Common Terminology for clarification of terms.

8.1 Application Software Components and Services

From the top-down perspective of overall system architecture, software design in ECOA is
expressed in terms of Application Software Components (ASC or ‘Component’) and the
Services that they provide to, and require of, each other.

Figure 2 - An Application Software Component

Figure 3, below, shows the relationship of entities that make up an Application Software
Component Definition. Artefacts of this kind serve as formal specifications: contracts to which a
Component developer will work in order to develop Application Software Component
Implementations.
In an ECOA System, an Application Software Component embodies some element of system
functionality, and will have well-specified behavior (functional, temporal etc.) which may be
tailored through Component Properties. Insertion Policies that accompany an ASC Definition
express those necessary characteristics of any platform that is to host an instance of such a
Component.

For a given ASC Definition, a system integrator may be in a position to choose from very different
ASC Implementations from different suppliers, but in terms of the Properties and Services they
expose they will be indistinguishable, although they may be differentiated in the Quality of
Service (QoS) they can provide.

A Service in ECOA comprises a cohesive group of Service Operations through which the
Component that is the client (of a Required Service) may access the facilities of the Provided
Service. Service Operations may take the form of publish/subscribe Versioned Data access or
various flavours of Event and Request-Response exchanges between connected Components.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 14

Figure 3 - Simplfied Entity-Relationship Diagram for a Component Definition

Ref. 6 contains a full description of the Service Operations that can be used to make up a Service
Definition

8.2 Architectural Design and the Assembly Schema

The architecture of an ECOA based system is defined from a Component and Service Oriented
Architecture perspective.

A system’s architecture is assembled by linking Components together according to SOA
principles:

• in defining the interactions between ASCs, a requirer of a Service and the provider of that
Service will refer to a common Service Definition.

• Quality of Service attribute compatibility is taken into consideration when constructing
Service Links.

Component
C

Component
B

Component
D

Component
A

Service
Link

Figure 4 - Simplified Representation of an Assembly Schema

An Assembly Schema comprises the set of declarative artefacts that are created during this
design process. Figure 4 shows a diagrammatic representation of an Assembly Schema for a
simple system comprising four Components and three Service Links.
A designer may decide to create new Service and Component Definitions, but will typically
consider pre-existing Components and Services that could fulfil the system’s functional
requirements, and will model how these should be linked together. Though existing ASC
Implementations may be differentiated in terms of QoS (which will always be implementation-
specific) and may come with some particular Insertion Policies, this phase of design is broadly
technology agnostic.

The final stages of design must accommodate the physical computing environment. A
Deployment Schema is used to define how the executables within an ECOA Software System
are to be distributed across its computing nodes.
Ref. 1 provides guidance on the process of software system design in ECOA.

Component
Definition

Provided
Service

Required
Service

Property

Service
Definition

1 1

*

* *

* Insertion
Policy

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 15

8.3 ECOA XML Meta-model and Early Validation

An ECOA System is described using XML declarations that comply with the ECOA XML Meta-
model. Tool support for compliance checking versus this meta-model helps to ensure that the
description of a system is internally self-consistent.
Ref. 10 provides the reference material that defines the ECOA XML Meta-model.

The Assembly Schema works with other ECOA concepts to facilitate an Early Validation
approach in which a system designer may gain confidence in a design, and to do so well in
advance of final integration: i.e. that the system, once completed, will meet its functional and non-
functional requirements.
For example, the provided and required Services, at each end of a Service Link, can be checked
to ensure they have compatible QoS attributes. Analysis in this area may identify, at an early
stage, parts of the design where timing or other issues are critical to correct performance.

A further element of a system description is the Logical System definition. It is a description of a
system’s Computing Nodes and physical connectivity of the final system. Using such
information, further Early Validation work can take into consideration how Components are
distributed.

Having a declarative, machine-readable system description opens up scope for sophisticated
model-checking in support of Early Validation. In addition, the precise, declarative format is
suitable for generation from a wide variety of system modelling tools, to permit engineers to use
familiar methodologies with UML or SysML etc. to model and check a system which will then be
realised in an ECOA compliant form.

8.3.1 XML Artefacts and Modularity
An overview of the XML files that follow the XML Schema Definitions (XSDs) of the ECOA XML
Meta-model is given in Table 8-1 - XML files used for system description1.

Data Type Definitions: describe the data types used in Service Operations
Service Definitions: describe the Services and their Service Operations

Component Definitions: identify provided and required services, referring to their
Service Definitions, alongside associated Quality-of-Service
definitions. Refer to Figure 3

Component QoS Definitions: specify non-functional characteristics for the Services relating to
Components

Component Implementations: define the executable entities, named Module Instances, that
comprise a Component and the connections between them

Assembly Schema: defines the ASC Instances and the service links between them
Logical System: provides a model of a system’s computing topology

Deployment Schema: maps Module Instances onto the Logical System

Table 8-1 - XML files used for system description

As can be seen, much of the ECOA XML Meta-model is given over to aspects of ASC Definition,
and ASC Implementation, with such declarations being partitioned into distinct artefacts.

1 Some terms in this table are described in later sections of this document.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 16

This partitioning is designed to create a modular format which permits functional units to be
independently specified and contributed by different parties for later integration: for storage in a
local ECOA Library or for submission to an ECOA Agency for wider reuse.
Ref. 10 provides the ECOA XSD schema definitions..

8.4 The Application Software Component Abstraction

A basic definition of an ASC is that it is a building block of a system. The power of the ASC
abstraction lies in the different roles it fulfils:

a) Sections 8.1 and 8.2 described the modelling of an overall system architecture. From this
top-down perspective ASCs are characterised by the Services they provide to, and
require of, each other.

b) ASCs fulfil a key role in ECOA as the unit of exchange between software developers
and/or integrators. This role is reflected in the focus on, and partitioning of, declarative
artefacts pertaining to Application Software Components, as described in 8.3.1

c) Upcoming sections describe a bottom-up perspective in which ASC Implementations may
be seen as aggregations of functional application code in the form of software Modules.

It is from these different perspectives that a system architect will approach the trade-off between
logical top-down system decomposition involving the invention of new Service and ASC types,
versus a bottom-up assembly process based on reuse of pre-existing Components and their
Modules. An iterative architectural design approach may be called for.

ASC Definitions and other ECOA abstractions are expressed as declarations in XML at design-
time. The nature of these declarations is preserved during the translation from XML into language
and target-specific implementation code.

8.5 The Container and Inversion of Control

In ECOA it is the infrastructure code that controls the execution of the system specific code,
provided by the Module Operations in response to the actions of other Modules. This is an
Inversion of Control (IoC) with respect to traditional procedural programming in which
application code commonly calls into the OS/Middleware to perform task scheduling activities.

The benefits of IoC are that it helps:

• To decouple the execution of a task from implementation;

• To focus a software implementation on the task for which it is designed;

• To provide the developer with contracts to be satisfied rather than concerns arising from how
other subsystems are implemented;

• To reduce side effects when replacing software.

An implementation of Infrastructure code is called an ECOA Software Platform. It encompasses
the Platform Integration Code, the computing facilities provided by the underlying operating
system or middleware, as well as the means to interconnect with other ECOA Software
Platforms.
Ref. 1 contains guidance for development of an ECOA Software Platform.
Ref. 7 is the Platform Requirements Reference Manual.

An ECOA Software Platform provides within its Platform Integration Code, Containers : one for
each or for several of the ASC Implementations that it hosts. The Container and ASC are
constrained to interact via their respective interfaces, which represent a set of custom, narrowed

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 17

APIs which are designed to expose the minimum ‘surface area’ between an ASC and the ECOA
Software Platform.

It is only through these APIs that an ASC may interact with the wider ECOA environment beyond:
Infrastructure services and the Services of other Components. Scope for unwanted coupling is
thus reduced and prospects for future ASC reuse is enhanced.

The Container concept is an important one in ECOA. Containers are explained in greater detail in
the following sections.

8.6 Software Modules

Software reuse is a motivating principle of ECOA. The concepts described up to this point
support reuse at the Component and Service level. As section 8.4 points out, Components are
system building blocks which will be assembled from (or decomposed into, depending on your
perspective) smaller units – ECOA Modules (or simply Modules).

A Module embodies some functionality of a Component and ECOA seeks to impose minimal
constraints on how its internals may be implemented. Modules are the unit of deployment in
ECOA.

A declarative entity in the ECOA XML Meta-model called a Module Type provides the contract
for implementing a Module, in terms of both the Module Operations it must implement and those
that it depends upon. See Figure 5. Different Module Implementations may exist: perhaps
targeting different hardware; perhaps written in different languages; but compliant with the same
Module Type contract.

Figure 5 - Modules comprising an ASC, and example Module Operations

Module developers can conceivably use any technology, languages, libraries etc. they need to
get the job done. However, to guarantee portability and reusability a Module should operate by
using only the facilities provided by the Container that surrounds it.
Ref. 1 describes the process of Module software development and construction of ASC Implementations

The precise specification for transformation of XML declarations to code means that portable
Module Implementations can be developed: - Cross-compiled object code may be delivered to
system integrators who can compose Modules from different suppliers together to form their
systems, without the need to share source code or header files.

Following the Inversion-of-Control principle, ECOA Modules are passive and (with some specific
exceptions detailed in 8.9) do not assume control over, or even knowledge of, the wider system,
but instead are hosted and operated under control of the ECOA Software Platform.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 18

Module Implementations should be re-entrant. Modules are instantiated by the ECOA Software
Platform, and can expect the platform to maintain a Context and to call into the Entry Points
that implement Module Operations. A Container-provided thread is used for all interaction at a
Module Instance’s boundary with the ECOA Infrastructure: one thread per Module Instance.
Ref. 9 defines the Module Context.

8.7 Module and Container Interfaces

Section 8.5 introduced the Container concept and the custom, narrowed API through which
Containers and Components must interact. This API is realised at the ECOA Module level with
the Container-facing aspect of a Module being termed the Module Interface and the Module-
facing aspect of a Container termed the Container Interface.

The Module Interface is derived from the Module Type. Module Interface entry points are
handlers for Module Operation invocations coming via the Container from the wider ECOA
System.

Methods exposed by the Container Interface provide the means by which Modules can call
Module Operations on other Modules or Components, or make use of Infrastructure services. A
Container Interface implementation may be mechanistically derived (code generated) in its
entirety from the Module Type, Module Implementation and Module Instance and supporting
declarations.

Infrastructure facilities provided by the Container Interface include time services, logging and
fault management. In addition, Container Interfaces for ECOA Supervision Modules provide
methods through which a Supervision Module may manage the state of all Modules
implementing the ASC. Supervision Modules and the lifecycle of Modules, Components and their
Services are covered in greater detail in section 8.9.

8.8 Module Operation Links

Sections 8.4 c) and 8.6 both refer to the realisation of an Application Software Component
Implementation from Module Implementations. An ASC Implementation may comprise many
Module Instances, perhaps with multiple instances for a given Module Type. Such Modules
Instances must be identified and connected together appropriately in order to fully elaborate the
ASC Implementation.

Module Operation Links, depicted in Figure 6, define the connectivity among the Module
Operations of a Component’s Module Instances in addition to specifying which Module
Operations are to fulfil an ASC Implementation’s Services2.

2 Services are aggregations of Module Operations, just as ASC Implementations are aggregations of Module Instances.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 19

Figure 6 - An Example Component Implementation

Ref. 1 describes all aspects of the Module development process.

8.9 Control of System Functionality in ECOA

The subsections that follow describe standard ECOA approaches to the introduction of custom
control of application execution.
Ref. 9 is the reference manual for these concepts.

Ref. 1 provides guidance and rules for correct implementation of Component and Module lifecycle.

8.9.1 Trigger Instance
Given the general IoC principal that Module Operations are entirely passive, the question arises
as to how the developer should create active ASCs. A special pseudo Module called a Trigger
Instance provides a mechanism to allow this.

A Trigger Instance is specified in XML and wired to other Modules like any Module Instance, but
its implementation is provided by the Infrastructure. Using a Trigger Instance an ASC developer
can implement periodic activation at an operation level without reference to the underlying
OS/Middleware, and without or the need to depend on activation from an incoming Request or
Event from an external Module.

Figure 7 depicts the Modules Instances and Module Operation Links within a Component which
provides no Services and is not stimulated by any external calls. It contains two functional
Modules, an ECOA Supervision Module and a Trigger Instance which is responsible for
triggering execution of the Component on a periodic basis. ECOA Supervision Modules are
described in 8.9.2

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 20

Figure 7 - Trigger Instance linked to a Module within a Component

8.9.2 ECOA Supervision Modules and Module Lifecycle
Figure 8, below, depicts the role of the ECOA Supervision Module as the part of a Component
that implements Component-level concerns, such as Service Availability as well as
implementing any Component Runtime Lifecycle Service (discussed further in 8.9.3).

The standard requires a Component Implementation to include only one Supervision Model.3

Supervision Modules are responsible for managing the lifecycle of the Module Instances that
provide the functional implementation of an ASC.

A Component’s Supervision Module is the only Module to be started by the Infrastructure and
must explicitly initialise, start and stop the other Modules Instances implementing the ASC. It
achieves this by acting through the Module Lifecycle API segment of its Container Interface.

When a Module Instance is not in the RUNNING state, any activation requests which are not
lifecycle events are ignored.

A Supervision Module will generally control the lifecycle of Module Instances in response to
higher level events that affect the lifecycle of the ASC as a whole, though a Component
Implementation's design may result in such control being exerted for other functional or technical
reasons.

8.9.3 Component Level Lifecycle and Functional Manager Components
At the Component level, the implementation of a Component Runtime Lifecycle Service allows
one Application Software Component to monitor, control and manage the lifecycle of another
Component.

Management logic at this level is likely to relate to functional requirements and could be
compared to application-level management provided by IMA such as ARINC 653 or ASAAC,
rather than system-level management. It is achieved, as shown in Figure 8, by one Component
providing the Component Runtime Lifecycle Service and one Component requiring it. As such,

3 A forthcoming issue of the standard may include provision for having default supervision behavior implemented as part of the Insfrastructure, allowing
a simple Component to dispense with any Supervision Module

S1
rr1

S3
ev1

Module 1

Module 2

Periodic_Trigger ()

Ie ()

Trigger Instance
Period = 20ms

Ev1()

Ie ()

RR1()
RR1__callback()

Supervision
Module

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 21

this is under the control of the system integrator and securely configured offline. As an example
of a Component Runtime Lifecycle Service Operation, one Component can request that another
Component starts or stops.

Level 2
c2

c2

Level 1

m1
(root)

c1

m1
(Supervisor)

m1
(root)

c3

m1
(Supervisor)

other
modules

m1
(root)

c2

m1
(Supervisor)

other
modules

other
modules

Lifecycle
service

Figure 8 - Component Runtime Lifecycle Service

This scheme offers flexibility because it is under the control of the system integrator. Support for
hierarchical system management is possible, reflecting the complex control needed in some
systems. It is also possible for the start-up and shutdown of different Components to be
completely asynchronous, reflecting a more loosely-coupled approach.

In addition to the Component Runtime Lifecycle Service, extra services may be used to
implement functional modes which are meaningful when Application Software Components are
running.

8.10 Hardware and Software Interoperability

The preceding sections describe the declarative entities and concepts required to define a
Service and Component oriented system to be executed in a realtime, embedded environment. A
system thus defined is agnostic to any underlying technologies: programming language;
middleware; (RT)OS; hardware; network etc.

To deploy and execute the system does, of course, require that the declarative entities and
portable Module code must be targeted at a physical deployment environment.

Some of this targeting falls to the selected implementation of the ECOA Platform: it will
constrain, for instance: programming languages that may be used; types of middleware and
families of (RT)OS that are supported.

8.10.1 Logical System definition and Deployment Platforms
ECOA defines the concept of a Logical System which is a logical definition of a computing
infrastructure in terms of Computing Nodes, Protection Domains and Logical Links. Protection

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 22

Domains allow for spatial, and possibly, temporal isolation or partitioning in order to support
multiple safety or security levels, for example. Logical Links are a simple abstraction of
communication connections (eg. VME or Ethernet) and are characterised by attributes such as
bandwidth and latency.

Computing Nodes and Logical Links are characterised by simple attributes to enable modelling
and assessment of a system prior to the completion of development (see Section 8.3 on Early
Validation).

The definition of a Computing Node is deliberately abstract and may be a single core of multi-
core processor, a single core processor or a multi-core processor.

An example of a Logical System is shown below. It depicts machine1 connected to machine2 by
a Logical Link. On machine1 there are 2 Protection Domains and on machine2 there is only one.
On machine1 there must be a segregation mechanism at operating system level; whereas
machine2 does not require this because it is only executing a single Protection Domain.

Logical
Computing

Node
machine1

Logical
Computing

Node
machine1

Logical
Computing

Node
machine2

Logical
Computing

Node
machine2

Protection
Domain

Ex1

Protection
Domain

Ex2

Protection
Domain

Ex3

Logical Link
Figure 9 - Example Logical System

The deployment of Components is described by a mapping of the Module Instances onto a
Logical System. The description of this mapping is called a Deployment Schema and relates
Module Instances, Container Instances, Protection Domains, Computing Nodes and networks.
This is shown in Figure 10.

One or more Module Instances are allocated to one Container Instance: the executable is the
binary image containing the Container Instance and the Module Instances within a Protection
Domain.

One or more Protection Domains are allocated to any given Computing Node and communicate
with other instances through an OS/middleware using physical links. A single instance of an
ECOA layered software architecture executing on a single processing resource is termed an
ECOA Stack.

Much of the internal architecture of a Container is left to the ECOA Platform supplier, as there are
many options. For example, if multiple Module Instances of an Application Software Component
are mapped onto a single multi-core processor, options include:

• Allocating Modules statically to cores at build-time

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 23

• Dynamically dispatching Modules to cores at run-time4

Figure 10 - Deployment View

8.10.2 Interoperability Protocol: The ECOA Logical Interface
Communications between Computing Nodes, and between the Container Instances that they
host, is achieved through the use of the ECOA Logical Interface (ELI). This interface is a
standard, well defined protocol that is independent of the underlying physical transport media.
Use of the ELI ensures that independently developed ECOA Systems or ECOA Stacks are able
to make use of each-other’s Services.

Service Definitions are composed of Service Operations with associated typed data and
parameters. The specification of the data types is well-defined, allowing off-line checking of the
model as well as on-line checks in languages that support this. The “wire format” for
communication of typed data over the ELI is precisely defined (in terms of endianness etc.)

All ECOA types exist within namespaces that can be nested. The following data type declarations
are supported:

• Predefined types which are a set of basic types (e.g. uint32)

• Simple types which are refinement of a predefined type or a simple-type itself to give a
functional meaning to the type (e.g. list_index_type). Simple types can define bounds.

• Enumerations

• Fixed records containing fields of any other type

4 This concept is immature at the current issue of the Architecture Specification

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 24

• Variant records that allow optional fields

• Fixed-size arrays

• Variable-size arrays

Component Containers use the facilities provided by the underlying operating system and/or
middleware to provide the transport mechanism for the ECOA Logical Interface. For example,
this could be via an Internet Protocol (IP) sockets mechanism using Ethernet or over a VME
backplane.

Depending on the transport mechanism employed, use of the ELI implies some overhead
associated with uniformly representating data for communication.

Though support for the ELI is mandatory for ECOA Platforms, implementations may take
advantage of circumstances in which the implied overhead can be optimised away. For instance:
given Modules of the same language, compiled with the same compiler and which are integrated
into a single Protection Domain, then the ECOA API calling conventions and language bindings
will ensure that the Modules can exchange messages using simple inter-thread communication
without any intervening communications or ELI overheads.

8.11 Development Process and Tool Support

The ECOA XML Meta-model specifies the artefacts that are used for the exchanging of design
information (refer to section 8.3).

The ECOA XML Meta-model format, while precise and fit for purpose, is not suited for the
capturing and modelling of system designs, and designers familiar with system modeling tools
and methodologies would not wish to manually transcribe design models from tool formats to
ECOA XML Meta-model format. It is anticipated that generic design, validation and
transformation tools and plugins would be developed and provided by independent tool
developers to form part of an ECOA Toolset that would assist the work of correctly generating
the XML artefacts.

It is an intention of ECOA:

• that it can be supported by a "model-driven" approach,

• that it supports progressive validation from an early stage in the development lifecycle,

• that it supports, as far as possible, an automated transition to implementation.

An ECOA Toolset would not be complete without a means of generating Container source code
from XML and compiling this into object code – an unmanageable task if performed manually.
ECOA Platform suppliers would be expected to include basic tool support for these development
activities.

Figure 11 shows the general flow of the Component development and integration process,
relating to the ECOA XML files described above. The arrows on the left and right show,
respectively, partial views of the Component development and integration processes.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 25

Figure 11 - Component Development and Integration Process Overview

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 26

9 Supporting Concepts
This section and its subsections summarise the main supporting concepts, which relate to
practical concerns when designing a system using ECOA.

9.1 Driver Components and Legacy subsystems

It is one of the key objectives to be able to deploy ECOA Application Software Components on
non-ECOA legacy platforms and to be able to integrate non-ECOA software and hardware with
an ECOA System. Figure 12 shows different cases involving integration of legacy subsystems
which are discussed further, below

Figure 12 - Integration of Legacy Software and Hardware into an ECOA Architecture

9.1.1 Legacy Software
The implementation of a legacy software application may not be consistent with the Inversion-of-
Control principle. Legacy applications are likely to be closely coupled to an existing platform
including operating system interfaces. Such applications may control their own execution (e.g.
scheduling, threading), unlike an ECOA Application Software Component. This may imply the
inability to effectively decompose application software into cohesive Modules, and may
necessitate bespoke modifications.

A legacy system that consists of hardware and / or software can be integrated with an ECOA
System using a number of methods including the following:

1. Wrapping or re-engineering as an ECOA Module that implements the necessary Inversion-
of-Control behaviour (Application X in Figure 12)

2. Development of an ECOA Conversion Layer for a non-ECOA application to provide an
interface compliant with the ECOA Logical Interface (ECOA Conversion layer embedded in
Application Y in Figure 12)

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 27

3. Or, if the legacy application is (figuratively or literally) a “black box” then a dedicated Driver
Component would be required. (Component of B connected to Application Z in Figure 12)
See the next section on this topic.

Method 1: Re-engineering to provide Inversion-of-Control, or “Componentisation”

Legacy code will be placed within one or more functional Modules which act as ECOA
compatible façades or wrappers. Together with a Supervision Module, these wrapper
Modules will interact with the ECOA Infrastructure according to the IoC rules, while
internally performing the mapping from ECOA-style execution to that expected by the
legacy code. Ideally the design of wrapper Component, Module Operations and Services
will be chosen to make the mapping straightforward.

This option results in a fully fledged ECOA Application Software Component, lending it a
limited degree of portability and allowing it to benefit from the same optimisations as other
Components on the same ECOA Software Platform. For instance: avoiding the overhead
of using communication channels and the ELI for interoperability within the same
Protection Domain.

Method 2: Development of an ECOA Conversion Layer for a non-ECOA application.

This is an option if the interfacing requirement is simple: i.e. small number of simple
Services. It may be necessary in cases where the semantic gap between approaches
adopted by ECOA and legacy code is large, or if the legacy application cannot be hosted
in ECOA because its implementation depends on underlying technology (implementation
language, RTOS etc) which is not supported by any ECOA Platform.

The ECOA Conversion Layer must implement ECOA-conformant ELI message
transmission (marked  in Figure 12) and reception externally, translating these to legacy
calls, data retrieval logic etc. internally. Connections marked  and  represent non-ELI
message transmission and are discussed below.

9.1.2 Driver Components
The notion of a Driver Component is introduced to describe an Application Software Component
that translates the interface protocol used by legacy hardware or software into operations
specified in a Service Definition with well-specified behaviour. This is shown in Figure 12 :
Container A communicates with a non-ECOA sensor/effector via the connection marked  and
for Container B to communicate with non-ECOA application Z via the connection marked .

The software Modules that implement this kind of Component must behave as standard ECOA
Modules in all interactions with their respective Containters (refer to 8.5), but they may, internally,
use legacy (e.g. OS and hardware) interfaces to communicate with legacy devices. Such Driver
Components will therefore be less portable than pure ECOA Application Software Components.

9.2 Component Reuse in Relation to System Architecture
Complex systems, such as avionic mission systems, require a structured organisation of their
Components in order to be manageable. The ECOA programme has provided recommendations
for a layered organisation of mission system Components, where the more generic Component
Definitions reside in the lower layers and the vehicle platform-specific Component Definitions
reside in the higher layers. This is illustrated in Figure 13.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 28

Components increasingly generic
and potentially reusable

Components increasingly
vehicle platform specificSystem

Figure 13 - Layered / Hierarchical Component Based Architecture

Platform-specific Components typically embody top-level functional requirements specific to the
platform. The potential reuse of these Components on other types of platforms is unlikely, whilst
Components in the lower layers of the hierarchy are likely to be more generic and therefore the
best candidates for reuse.

The same concepts hold within Component Implementations. The judicious separation of
platform management functionality, for example into Supervision Modules, should enable the
remaining Modules to be more generic, and hence better candidates for reuse within other
Components.

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 29

10 References
Ref. Document Number Version Title

1. IAWG-ECOA-TR-002 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume II
Developers Guide

2. IAWG-ECOA-TR-003 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 1: Ada Binding Reference Manual

3. IAWG-ECOA-TR-004 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 2: C Binding Reference Manual

4. IAWG-ECOA-TR-005 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 3: C++ Binding Reference Manual

5. IAWG-ECOA-TR-006 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 4: ELI and Transport Binding
Reference Manual

6. IAWG-ECOA-TR-007 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 5: Mechanisms Reference Manual

7. IAWG-ECOA-TR-008 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 6: Platform Requirements Reference
Manual

8. IAWG-ECOA-TR-009 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 7: Approach to Safety and Security
Reference Manual

9. IAWG-ECOA-TR-010 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 8: Software Interface Reference
Manual

10. IAWG-ECOA-TR-011 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
III Part 9: Metamodel and XSD Schemas
Reference Manual

11. IAWG-ECOA-TR-012 Issue 2 European Component Oriented Architecture
(ECOA) Collaboration Programme: Volume
lV Common Terminology

Table 10-1 - Table of ECOA references

©BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés . AgustaWestland Limited, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Selex ES Ltd 2014

Page 30

	1 Table of Contents
	2 List of Figures
	3 List of Tables
	4 Abbreviations
	5 Executive Summary
	6 Architecture Specification Introduction
	7 ECOA Overview
	7.1 Background
	7.1.1 Rationale for Improved Software Architectural Principles
	7.1.2 Rationale for An Open Standard

	7.2 Aims of ECOA
	7.3 Approach to ECOA
	7.4 Objectives for an ECOA conformant system

	8 A Tour of Key ECOA Concepts
	8.1 Application Software Components and Services
	8.2 Architectural Design and the Assembly Schema
	8.3 ECOA XML Meta-model and Early Validation
	8.3.1 XML Artefacts and Modularity

	8.4 The Application Software Component Abstraction
	8.5 The Container and Inversion of Control
	8.6 Software Modules
	8.7 Module and Container Interfaces
	8.8 Module Operation Links
	8.9 Control of System Functionality in ECOA
	8.9.1 Trigger Instance
	8.9.2 ECOA Supervision Modules and Module Lifecycle
	8.9.3 Component Level Lifecycle and Functional Manager Components

	8.10 Hardware and Software Interoperability
	8.10.1 Logical System definition and Deployment Platforms
	8.10.2 Interoperability Protocol: The ECOA Logical Interface

	8.11 Development Process and Tool Support

	9 Supporting Concepts
	9.1 Driver Components and Legacy subsystems
	9.1.1 Legacy Software
	9.1.2 Driver Components

	9.2 Component Reuse in Relation to System Architecture

	10 References

