

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 i

European Component Oriented Architecture (ECOA

®
)

Collaboration Programme:
Architecture Specification

Part 10: Ada Language Binding

BAE Ref No: IAWG-ECOA-TR-003
Dassault Ref No: DGT 144476-F

Issue: 6

Prepared by

BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

Note: This specification represents the output of a research programme. Compliance with this specification shall not in
itself relieve any person from any legal obligations imposed upon them. Product development should rely on the
DefStan or BNAE publications of the ECOA standard.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 ii

Contents

0 Introduction v

1 Scope 1

2 Warning 1

3 Normative References 1

4 Definitions 2

5 Abbreviations 2

6 Module to Language Mapping 3

6.1 Module Interface Template 4

6.2 Container Interface Template 6

6.3 Container Types Template 9

6.4 User Module Context Template 9

7 Parameters 11

8 Module Context 12

8.1 User Module Context 13

9 Types 16

9.1 Filenames and Namespace 16

9.2 Basic Types 16

9.3 Derived Types 17

9.3.1 Simple Types 17

9.3.2 Constants 17

9.3.3 Enumerations 17

9.3.4 Records 18

9.3.5 Variant Records 18

9.3.6 Fixed Arrays 19

9.3.7 Variable Arrays 19

9.4 Predefined Types 19

9.4.1 ECOA:return_status 20

9.4.2 ECOA:hr_time 20

9.4.3 ECOA:global_time 21

9.4.4 ECOA:duration 21

9.4.5 ECOA:log 21

9.4.6 ECOA:error_id 22

9.4.7 ECOA:error_code 22

9.4.8 ECOA:asset_id 22

9.4.9 ECOA:asset_type 23

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 iii

9.4.10 ECOA:error_type 24

9.4.11 ECOA:recovery_action_type 24

9.4.12 ECOA:pinfo_filename 25

9.4.13 ECOA:seek_whence_type 25

9.4.14 ECOA:seconds and ECOA:nanoseconds 26

9.4.15 ECOA:request_response_id_type 26

9.4.16 ECOA:pinfo_size_type 26

9.4.17 ECOA:pinfo_offset_type 27

9.4.18 ECOA:pinfo_position_type 27

10 Module Interface 27

10.1 Operations 27

10.1.1 Request-Response 27

10.1.2 Versioned Data Updated 28

10.1.3 Event Received 28

10.2 Module Lifecycle 29

10.2.1 Initialize_Received 29

10.2.2 Start_Received 29

10.2.3 Stop_Received 29

10.2.4 Shutdown_Received 29

10.3 Error_notification at Fault Handler level 30

11 Container Interface 30

11.1 Operations 30

11.1.1 Request Response 30

11.1.2 Versioned Data 31

11.1.3 Events 33

11.2 Properties 34

11.2.1 Get Value 34

11.2.2 Expressing Property Values 34

11.2.3 Example of Defining and Using Properties 34

11.3 Logging and Fault Management 34

11.3.1 Log_Trace 34

11.3.2 Log_Debug 35

11.3.3 Log_Info 35

11.3.4 Log_Warning 35

11.3.5 Raise_Error 35

11.3.6 Raise_Fatal_Error 36

11.4 Time Services 36

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 iv

11.4.1 Get_Relative_Local_Time 36

11.4.2 Get_UTC_Time 36

11.4.3 Get_Absolute_System_Time 36

11.4.4 Get_Relative_Local_Time_Resolution 37

11.4.5 Get_UTC_Time_Resolution 37

11.4.6 Get_Absolute_System_Time_Resolution 37

11.5 Persistent Information management (PINFO) 37

11.5.1 PINFO read 37

11.5.2 PINFO seek 38

11.5.3 Example of Defining Private PINFO 38

11.5.4 Example of Defining Public PINFO 38

11.6 Recovery Action 38

11.7 Save Warm Start Context 38

12 Container Types 39

12.1.1 Versioned Data Handles 39

13 External Interface 39

14 Default Values 40

15 Trigger Instances 40

16 Dynamic Trigger Instances 40

17 Reference Ada Specification 40

Figures

Figure 1 Ada Files Organization 3

Tables

Table 1 Filename Mapping for Ada 95 4

Table 2 Parameter Typing 11

Table 3 Ada 95 Basic Types 17

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 v

0 Introduction

This Architecture Specification provides the specification for creating ECOA
®
-based systems. It describes

the standardised programming interfaces and data-model that allow a developer to construct an ECOA
®
-

based system. It uses terms defined in the Definitions (Architecture Specification Part 2). The details of the
other documents comprising the rest of this Architecture Specification can be found in Section 3.

This document is Part 10 of the Architecture Specification, and describes the Ada 95 (reference ISO/IEC
8652:1995(E) with COR.1:2000) language binding for the Module and Container APIs that facilitate
communication between the Module Instances and their Container in an ECOA

®
 system.

The document is structured as follows:

 Section 6 describes the Module to Language Mapping;

 Section 7 describes the method of passing parameters;

 Section 8 describes the Module Context;

 Section 9 describes the basic types that are provided and the types that can be derived from them;

 Section 10 describes the Module Interface;

 Section 11 describes the Container Interface;

 Section 12 describes the Container Types;

 Section 13 describes the External Interface;

 Section 14 describes the Default Values;

 Section 15 describes Trigger Instances;

 Section 16 describes Dynamic Trigger Instances;

 Section 17 provides a reference Ada specification for the ECOA
®
 package, usable in any Ada binding

implementation;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 1

1 Scope

This Architecture Specification specifies a uniform method for design, development and integration of
software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme. Compliance with this specification shall
not in itself relieve any person from any legal obligations imposed upon them. Product development should
rely on the DefStan or BNAE publications of the ECOA standard.

3 Normative References

Architecture Specification
Part 1

 IAWG-ECOA-TR-001 / DGT 144474

Issue 6

Architecture Specification Part 1 – Concepts

Architecture Specification
Part 2

 IAWG-ECOA-TR-012 / DGT 144487

Issue 6

Architecture Specification Part 2 – Definitions

Architecture Specification
Part 3

 IAWG-ECOA-TR-007 / DGT 144482

Issue 6

Architecture Specification Part 3 – Mechanisms

Architecture Specification
Part 4

 IAWG-ECOA-TR-010 / DGT 144485

Issue 6

Architecture Specification Part 4 – Software Interface

Architecture Specification
Part 5

 IAWG-ECOA-TR-008 / DGT 144483

Issue 6

Architecture Specification Part 5 – High Level Platform
Requirements

Architecture Specification
Part 6

 IAWG-ECOA-TR-006 / DGT 144481

Issue 6

Architecture Specification Part 6 – ECOA
®
 Logical Interface

Architecture Specification
Part 7

 IAWG-ECOA-TR-011 / DGT 144486

Issue 6

Architecture Specification Part 7 – Metamodel

Architecture Specification
Part 8

 IAWG-ECOA-TR-004 / DGT 144477

Issue 6

Architecture Specification Part 8 – C Language Binding

Architecture Specification
Part 9

 IAWG-ECOA-TR-005 / DGT 144478

Issue 6

Architecture Specification Part 9 – C++ Language Binding

Architecture Specification
Part 10

 IAWG-ECOA-TR-003 / DGT 144476

Issue 6

Architecture Specification Part 10 – Ada Language Binding

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 2

Architecture Specification
Part 11

 IAWG-ECOA-TR-031 / DGT 154934

Issue 6

Architecture Specification Part 11 – High Integrity Ada Language
Binding

ISO/IEC 8652:1995(E)
with COR.1:2000

 Ada95 Reference Manual

Issue 1

ISO/IEC 9899:1999(E) Programming Languages – C

ISO/IEC 14882:2003(E) Programming Languages C++

SPARK_LRM The SPADE Ada Kernel (including RavenSPARK) Issue 7.3

4 Definitions

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

5 Abbreviations

API Application Programming Interface

ECOA European Component Oriented Architecture. ECOA
®
 is a registered trademark.

PINFO Persistent Information

UK United Kingdom

UTC Coordinated Universal Time

XML eXtensible Markup Language

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 3

6 Module to Language Mapping

This section gives an overview of the Module and Container APIs, in terms of filename and the overall
structure of the files.

The Ada 95 language allows tagged types (which allow object-oriented behaviour), however the Ada
bindings will not use tagged types. This corresponds to traditional use within the avionics industry in the
UK. Therefore the mapping is similar to C, apart from support for proper namespacing using Packages. The
filename mapping is specified in Table 1.

The Module Interface will be composed of a set of procedures corresponding to each entry-point of the
Module Implementation. The declaration of these procedures will be accessible in a package spec file

called #module_impl_name#.ads.

The Container Interface will be composed of a set of procedures corresponding to the required operations.
The declaration of these procedures will be accessible in a package spec file called

#module_impl_name#_Container.ads.

The Container Types will be composed of the types which the Module Implementation needs in order to
declare, use and store various handles. The declaration of these types will be accessible in a package spec

file called #module_impl_name#_Container_Types.ads.

A dedicated structure named Context_Type, and called Module Context structure in the rest of the
document will be generated by the ECOA toolchain in the Module Container specification

(#module_impl_name#_Container.ads) and shall be extended by the Module implementer to contain

all the user variables of the Module. This structure will be allocated by the Container before Module
Instance start-up and passed to the Module Instance in each activation entry-point (i.e. received events,
received requests or received asynchronous responses).

Figure 1 shows the relationship between the Ada files mentioned above, whilst Table 1 shows the filename
mappings.

Figure 1 Ada Files Organization

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 4

Table 1 Filename Mapping for Ada 95

Filename Use

#module_impl_name#.ads Package #module_impl_name# specifies the

Module interface.

#module_impl_name#.adb Package body #module_impl_name# implements

the Module interface.

#module_impl_name#_Container.{ads|adb} Package #module_impl_name#_Container

specifies and implements the Container Interface
(functions provided by the Container and callable by
the Module). It also specifies the standard Module
context information. The Container may actually be a
collection of source files depending upon the platform
implementation.

#module_impl_name#_Container_Types.ads Package
#module_impl_name#_Container_Types

specifies Container Types declaration (Container-level
data types usable by the Module). These types are
related to the Container for a Module Implementation
and are functionally related to the
#module_impl_name#_Container namespace,

however the Ada language requires the types to be
declared in a package that matches the filename i.e.
#module_impl_name#_Container_Types.

#module_impl_name#_User_Context.ads Extensions to Module Context. These types are related
to the Module Implementation and are functionally
related to the #module_impl_name# namespace,

however the Ada language requires the types to be
declared in a package that matches the filename i.e.
#module_impl_name#_User_Context.

Templates for the files in Table 1 are provided below:

6.1 Module Interface Template

-- @file #module_impl_name#.ads

-- Module Interface package specification for Module #module_impl_name#

-- Generated automatically from specification; do not modify here

-- Standard ECOA Types

with ECOA;

-- Additionally Created Types

with #additionally_created_types#;

-- Include Container

with #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 5

-- Include Container Types

with #module_impl_name#_Container_Types;

-- Include User Context

with #module_impl_name#_User_Context;

package #module_impl_name# is

 procedure INITIALIZE_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

 procedure START_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

 procedure STOP_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

 procedure SHUTDOWN_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

 -- Event operation handlers specifications

 #list_of_event_operations_specifications#

 -- Request-Response operation handlers specifications

 #list_of_request_response_operations_specifications#

 -- Versioned Data Notifying operation handlers specifications

 #list_of_versioned_data_notifying_operations_specifications#

 -- Error notification handler specification if this module is a Fault

 -- Handler

 #error_notification_operation_specification#

end #module_impl_name#;

-- @file #module_impl_name#.adb

-- Module Interface package for Module #module_impl_name#

-- Generated automatically from specification; do not modify here

-- autogenerated by the ECOA toolset and filled in by the module

-- developer.

-- Standard ECOA Types

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 6

with ECOA;

-- Additionally Created Types

with #additionally_created_types#;

-- Include Container Types

with #module_impl_name#_Container_Types;

-- Include Container

with #module_impl_name#_Container;

-- Additional children or other packages implementing the module

with #additional_with_clauses#;

package body #module_impl_name# is

 -- Event operation handlers

 #list_of_event_operations#

 -- Request-Response operation handlers

 #list_of_request_response_operations#

 -- Versioned Data Notifying operation handlers

 #list_of_versioned_data_notifying_operations#

 -- Lifecycle operation handlers

 #list_of_lifecycle_operations#

 -- Error notification handler specification if this module is a Fault

 -- Handler

 #error_notification_operation_specification#

end module_impl_name#;

6.2 Container Interface Template

-- @file #module_impl_name#_Container.ads

-- Container Interface package specification for Module #module_impl_name#

-- Generated automatically from specification; do not modify here

-- Standard ECOA Types

with ECOA;

-- Additionally Created Types

with #additionally_created_types#;

-- Include Container Types

with #module_impl_name#_Container_Types;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 7

-- Optional User Context: the “#module_impl_name#_User_Context.ads” header

-- inclusion is optional (depends if user and/or warm start context

-- are being used

with #module_impl_name#_User_Context;

package #module_impl_name#_Container is

 -- Module Implementation Context data type is specified here. This enables a

 -- module instance to hold its own private data in a non-OO fashion.

 type Context_Type is record

 -- A hook to implementation dependant private data

 Platform_Hook : System.Address;

 -- When the optional user context is used

 -- Information that is private to a module implementation

 User_Context : #module_impl_name#_User_Context.User_Context_Type;

 -- When the optional user context is used

 Warm_Start_Context :

 #module_impl_name#_User_Context.Warm_Start_Context_Type;

 end record;

 procedure Log_Trace

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Log_Debug

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Log_Info

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Log_Warning

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Raise_Error

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Raise_Fatal_Error

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 8

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

 procedure Get_Relative_Local_Time

 (Context : in out Context_Type;

 Relative_Local_Time : out ECOA.HR_Time_Type);

 procedure Get_UTC_Time

 (Context : in out Context_Type;

 UTC_Time : out ECOA.Global_Time_Type;

 Status : out ECOA.Return_Status_Type);

 procedure Get_Absolute_System_Time

 (Context : in out Context_Type;

 Absolute_System_Time : out ECOA.Global_Time_Type;

 Status : out ECOA.Return_Status_Type);

 procedure Get_Relative_Local_Time_Resolution

 (Context : in out Context_Type;

 Relative_Local_Time_Resolution : out ECOA.Duration);

 procedure Get_UTC_Time_Resolution

 (Context : in out Context_Type;

 UTC_Time_Resolution : out ECOA.Duration);

 procedure Get_Absolute_System_Time_Resolution

 (Context : in out Context_Type;

 Absolute_System_Time_Resolution : out ECOA.Duration);

 -- Event operation call specifications

 #event_operation_call_specifications#

 -- Request-response call specifications

 #request_response_call_specifications#

 -- Versioned data call specifications

 #versioned_data_call_specifications#

 -- Functional parameters call specifications

 #properties_call_specifications#

 -- Recovery action service API call specification if this is a Fault Handler

 -- module

 #recovery_action_call_specification#

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 9

 -- Persistent Information management operations

 #PINFO_read_call_specifications#

 #PINFO_seek_call_specifications#

 -- Optional API for saving the warm start context

 -- Context management operation

 #Save_Warm_Start_Context_operation#

end #module_impl_name#_Container;

6.3 Container Types Template

-- @file #module_impl_name#_Container_Types.ads

-- Container Types package specification for Module #module_impl_name#

-- Generated automatically from specification; do not modify here

-- Standard ECOA Types

with ECOA;

package #module_impl_name#_Container_Types is

 -- The following describes the data types generated with regard to APIs:

 -- For any Versioned Data Read Access: data_handle

 -- For any Versioned Data Write Access: data_handle

end #module_impl_name#_Container_Types;

6.4 User Module Context Template

-- @file #module_impl_name#_User_Context.ads

-- This is the module implementation private user context data type

-- that is included in the module context.

-- Standard ECOA Types

with ECOA;

-- Additionally Created Types

with #additionally_created_types#;

-- Include Container Types

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 10

with #module_impl_name#_Container_Types;

package #module_impl_name#_User_Context is

 type User_Context_Type is record

 -- Declare the User Module Context “local” data here.

 end record;

 type Warm_Start_Context_Type is record

 -- Declare the Module Warm Start Context “local” data here.

 end record;

end module_impl_name#_User_Context;

Data declared within the Module User Context and the Module Warm Start Context can be of any type.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 11

7 Parameters

In the Ada programming language, the manner in which parameters are passed is specified as ‘in’, ‘out’ or
‘in out’. ‘in’ Parameters are only passed into a procedure; ‘out’ parameters are only passed out from a
procedure; and ‘in out’ parameters are passed in, modified and passed out from a procedure. The compiler
then makes an appropriate choice as to whether to pass-by-value or pass-by-reference.

Table 2 Parameter Typing

 Input parameter Output parameter Input and Output parameter

Simple type in out in out

Complex type in out in out

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 12

8 Module Context

In the Ada language binding, the Module Context is a structure which holds both the user local data (called
“User Module Context” and “Warm Start Context”) and Infrastructure-level technical data (which is
implementation dependant). User context and warm start context are optional and must be declared (or not
declared) in the Module Context record according to the corresponding metamodel attributes declared for
the Module Type. The record is defined in the Container Interface.

The following shows the Ada syntax for the Module Context:

-- @file “#module_impl_name#_Container.ads”

-- Container package specification for Module #module_impl_name#

-- Generated automatically from specification; do not modify here

with System;

-- Standard ECOA Types

with ECOA;

-- Include Container Types

with #module_impl_name#_Container_Types;

-- Additionally Created Types

with #additionally_created_types#;

-- Optional User Context: the “#module_impl_name#_User_Context.ads” header

-- inclusion is optional (depends if user and/or warm start context

-- are being used

with #module_impl_name#_User_Context;

package #module_impl_name#_Container is

 -- Module Implementation Context data type is specified here. This enables a

 -- module instance to hold its own private data in a non-OO fashion.

 type Context_Type is record

 -- A hook to implementation dependant private data

 Platform_Hook : System.Address;

 -- When the optional user context is used

 -- Information that is private to a module implementation

 User_Context : #module_impl_name#_User_Context.User_Context_Type;

 -- When the optional warm start context is used

 -- Information that is private to a module implementation

 Warm_Start_Context :

 #module_impl_name#_User_Context.Warm_Start_Context_Type;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 13

 end record;

end #module_impl_name#_Container;

8.1 User Module Context

The Ada syntax for the optional user context is shown below (including an example data item;

My_Counter) and the Module Warm Start Context (including an example data item My_Data and validity

flag Warm_Start_Valid. The Module User Context header file is needed only if the user context and/or
warm start context are used:

-- @file “#module_impl_name#_User_Context.ads”

-- This is the module implementation private user context data type

-- that is included in the module context.

-- Standard ECOA Types

with ECOA;

-- Include Container Types

with #module_impl_name#_Container_Types;

-- Additionally Created Types

with #additionally_created_types#;

package #module_impl_name#_User_Context is

 type User_Context_Type is record

 -- Example user context

 My_Counter : Integer;

 end record;

 type Warm_Start_Context_Type is record

 -- Example warm start context

 Warm_Start_Valid : ECOA.Boolean_8_Type; -- example of validity flag

 My_Data : Unsigned_Long;

 end record;

end module_impl_name#_User_Context;

EXAMPLE The following illustrates the usage of the Module context in the entry-point corresponding to an event-received:

-- @file “#module_impl_name#.adb”

-- Generic operation implementation example

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 14

-- Standard ECOA Types

with ECOA;

-- Additionally Created Types

with #additionally_created_types#;

-- Include Container Types

with #module_impl_name#_Container_Types;

-- Include Container

with #module_impl_name#_Container;

-- Additional children or other packages implementing the module

with #additional_with_clauses#;

package body #module_impl_name# is

 procedure #operation_name#_Received

 (Context : in out #module_impl_name#_Container.Context_Type;

 #event_parameters#)

 is

 begin

 -- To be implemented by the module.

 -- Increments a local user defined counter.

 Context.User_Context.My_Counter := Context.User_Context.My_Counter + 1;

 end #operation_name#_Received;

end module_impl_name#;

The optional user extensions to Module Context need to be known by the Container in order to allocate the
required memory area. This means that the component supplier is requested to provide the associated
header file. If the supplier does not want to divulge the original contents of the header file, then:

 It may be replaced by an array with a size equivalent to the original data; or

 Memory management may be dealt with internally to the code, using memory allocation functions,
however the current Architecture Specification does not specify any memory allocation function. So,
this case may lead to non-portable code.

 The size of the Module User Context and Warm Start Context may be declared in the bin-desc file
related to the Component.

To extend the Module Context structure, the Module implementer shall define the User Module Context

structure, named #module_impl_name#_User_Context, in a package spec file called

#module_impl_name#_User_Context.ads. All the private data of the Module Implementation shall be

added as members of this record, and will be accessible within the “User_Context” field of the Module
Context.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 15

The Module Context structure will be passed by the Container to the Module as the first parameter for each
operation (i.e. received events, received requests or received asynchronous responses). The Module
Context defines the instance of the Module being invoked by the operation. This structure shall be passed
by the Module to all Container interface API functions it can call.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 16

9 Types

This section describes the convention for creating namespaces, and how the ECOA basic types and
derived types are represented in Ada.

9.1 Filenames and Namespace

The type definitons are contained within one or more namespaces: all types for specific namespace defined

in #namespace1#[__#namespacen#].types.xml shall be placed in a file called #namespace1#[-

#namespacen#].ads.

Below is an example of a simple type being defined within a nested namespace in Ada.

--

-- @file #namespace1#[-#namespacen#].ads

-- Data-type declaration file

-- Generated automatically from specification; do not modify here

--

package #namespace1#[.#namespacen#] is

 type #simple_type_name# is new #basic_type_name# range #min# .. #max#;

end #namespace1#[.#namespacen#];

9.2 Basic Types

Basic types in Ada 95, shown in Table 3, shall be located in the “ECOA” namespace and hence in

ECOA.ads.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 17

Table 3 Ada 95 Basic Types

ECOA Basic Type Ada 95 Type

ECOA:boolean8 ECOA.Boolean_8_Type

ECOA:int8 ECOA.Signed_8_Type

ECOA:char8 ECOA.Character_8_Type

ECOA:byte ECOA.Byte_Type

ECOA:int16 ECOA.Signed_16_Type

ECOA:int32 ECOA.Signed_32_Type

ECOA:int64 ECOA.Signed_64_Type

ECOA:uint8 ECOA.Unsigned_8_Type

ECOA:uint16 ECOA.Unsigned_16_Type

ECOA:uint32 ECOA.Unsigned_32_Type

ECOA:uint64 ECOA.Unsigned_64_Type

ECOA:float32 ECOA.Float_32_Type

ECOA:double64 ECOA.Float_64_Type

Ada provides the ‘First and ‘Last attributes, so there is no requirement to refer to explicit constants for the
maximum and minimum values of the type range.

All basic types shall be specified with a representation clause to ensure they occupy the correct number of
bits, and have the correct alignment.

9.3 Derived Types

9.3.1 Simple Types

The Ada syntax for a Simple Type called “#simple_type_name#” with an optional restricted range, which

is derived from a Basic Type is:

type #simple_type_name# is new #basic_type_name# range #min# .. #max#;

9.3.2 Constants

The syntax for declaring a constant called “#constant_name#” of type #type_name# in Ada is as follows:

#constant_name# : constant #type_name# := #constant_value#;

Where #constant_value# is either an integer or a floating-point value, compatible with the type.

9.3.3 Enumerations

For an enumerated type named #enum_type_name#, a set of constants named from

#enum_value_name_1# to #enum_value_name_n# are defined with a set of optional values named

#enum_value_value_1# to #enum_value_value_n#. The syntax is defined below.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 18

The order of fields in the type shall follow the order of fields in the XML definition.

type #enum_type_name# is new #base_type_name#;

#enum_type_name#_#enum_value_name_1# : constant #enum_type_name# :=

 #enum_value_value_1#;

#enum_type_name#_#enum_value_name_2# : constant #enum_type_name# :=

 #enum_value_value_2#;

--…

#enum_type_name#_#enum_value_name_n# : constant #enum_type_name# :=

 #enum_value_value_n#;

Where:

 #enum_value_name_X# is the name of a label

 #enum_value_value_X# is the optional value of the label. If not set, this value is computed from the

previous label value, by adding 1 (or set to 0 if it is the first label of the enumeration).

9.3.4 Records

The Ada syntax for a record type named #record_type_name# with a set of fields named

#field_name1# to #field_namen# of given types #data_type_1# to #data_type_n# is given below.

The order of fields in the Ada record shall follow the order of fields in the XML definition.

type #record_type_name# is

 record

 #field_name1# : #data_type_1#;

 #field_name2# : #data_type_2#;

 --…

 #field_namen# : #data_type_n#;

 end record;

9.3.5 Variant Records

The syntax for a variant record named #variant_record_type_name# containing:

 a set of fields (named #field_name1# to #field_namen#) of given types #data_type_1# to
#data_type_n#

 optional fields (named #optional_field_name1# to #optional_field_namen#) of type

(#optional_type_name1# to #optional_type_namen#) with selector #selector_name# of

type #selector_type_name#

is given below.

The order of fields in the Ada record shall follow the order of fields in the XML definition.

-- #selector_type_name# can be of any simple basic type, or an enumeration

type #variant_record_type_name# (#selector_name# : #selector_type_name#) is

 record

 #field_name1# : #data_type_1#;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 19

 #field_name2# : #data_type_2#;

 --…

 #field_namen# : #data_type_n#;

 case #selector_name# is

 when #selector_value_constant1# =>

 #optional_field_name1# : #optional_type_name1#;

 when #selector_value_constant2# =>

 #optional_field_name2# : #optional_type_name2#;

 --…

 when #selector_value_constantn# =>

 #optional_field_namen# : #optional_type_namen#;

 end case;

 end record;

9.3.6 Fixed Arrays

The Ada syntax for a fixed array named #array_type_name# of #max_number# elements with index

range 0 to #max_number#-1, and with elements of type #data_type_name# is given below. The index

to an array must be specified as a distinct type.

type #array_type_name#_Index is new ECOA.Unsigned_32_Type range

 0..#max_number#-1;

type #array_type_name# is array (#array_type_name#_Index) of #data_type_name#;

9.3.7 Variable Arrays

The Ada syntax for a variable array (named #var_array_type_name#) of #max_number# elements with

index range 0 to #max_number#-1, and with elements of type #data_type_name# and a current size

of Current_Size is given below.

type #var_array_type_name#_Size is new ECOA.Unsigned_32_Type range

 0..#max_number#;

subtype #var_array_type_name#_Index is #var_array_type_name#_Size range

 0..#max_number#-1;

type #var_array_type_name#_Data is array (#var_array_type_name#_Index) of

 #data_type_name#;

type #var_array_type_name# is

 record

 Current_Size : #var_array_type_name#_Size;

 Data : #var_array_type_name#_Data;

 end record;

9.4 Predefined Types

The data types described in the following sections are also defined in the ECOA namespace.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 20

9.4.1 ECOA:return_status

In Ada ECOA:return_status translates to ECOA.Return_Status_Type, with the enumerated values

shown below:

package ECOA is

 …

 type Return_Status_Type is new Unsigned_32_Type;

 Return_Status_Type_OK : constant Return_Status_Type

 := 0;

 Return_Status_Type_INVALID_HANDLE : constant Return_Status_Type

 := 1;

 Return_Status_Type_DATA_NOT_INITIALIZED : constant Return_Status_Type

 := 2;

 Return_Status_Type_NO_DATA : constant Return_Status_Type

 := 3;

 Return_Status_Type_INVALID_IDENTIFIER : constant Return_Status_Type

 := 4;

 Return_Status_Type_NO_RESPONSE : constant Return_Status_Type

 := 5;

 Return_Status_Type_OPERATION_ALREADY_PENDING : constant Return_Status_Type

 := 6;

 Return_Status_Type_CLOCK_UNSYNCHRONIZED : constant Return_Status_Type

 := 7;

 Return_Status_Type_RESOURCE_NOT_AVAILABLE : constant Return_Status_Type

 := 8;

 Return_Status_Type_OPERATION_NOT_AVAILABLE : constant Return_Status_Type

 := 9;

 Return_Status_Type_INVALID_PARAMETER : constant Return_Status_Type

 := 10;

 …

end ECOA;

9.4.2 ECOA:hr_time

The binding for hr_time makes use of ECOA:Seconds and ECOA:Nanoseconds types (section 9.4.14), and
is defined as:

package ECOA is

 …

 type HR_Time_Type is

 record

 Seconds : Seconds_Type;

 Nanoseconds : Nanoseconds_Type;

 end record;

 for HR_Time_Type'size use 64;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 21

 for HR_Time_Type'Alignment use 4;

 …

end ECOA;

9.4.3 ECOA:global_time

The binding for global_time makes use of ECOA:Seconds and ECOA:Nanoseconds types (section 9.4.14),
and is defined as:

package ECOA is

 …

 type Global_Time_Type is

 record

 Seconds : Seconds_Type;

 Nanoseconds : Nanoseconds_Type;

 end record;

 for Global_Time_Type'size use 64;

 for Global_Time_Type'Alignment use 4;

 …

end ECOA;

9.4.4 ECOA:duration

The binding for duration makes use of ECOA:Seconds and ECOA:Nanoseconds types (section 9.4.14), and
is defined as:

package ECOA is

 …

 type Duration_Type is

 record

 Seconds : Seconds_Type;

 Nanoseconds : Nanoseconds_Type;

 end record;

 for Duration_Type'size use 64;

 for Duration_Type'Alignment use 4;

 …

end ECOA;

9.4.5 ECOA:log

The syntax for a log is:

package ECOA is

 …

 type Log_Elements_Size_Type is range 0..256;

 for Log_Elements_Size_Type'size use 32;

 for Log_Elements_Size_Type'Alignment use 4;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 22

 subtype Log_Elements_Index_Type is Log_Elements_Size_Type range 0..255;

 type Log_Elements_Type is array (Log_Elements_Index_Type) of

 ECOA.Character_8_Type;

 for Log_Elements_Type'size use 2048;

 for Log_Elements_Type'Alignment use 4;

 type Log_Type is

 record

 Current_Size : Log_Elements_Size_Type;

 Data : Log_Elements_Type;

 end record;

 for Log_Type'size use 2080;

 for Log_Type'Alignment use 4;

 …

end ECOA;

9.4.6 ECOA:error_id

In Ada the syntax for an ECOA:error_id is:

package ECOA is

 …

 type Error_Id_Type is new Unsigned_32_Type;

 …

end ECOA;

9.4.7 ECOA:error_code

In Ada the syntax for an ECOA:error_code is:

package ECOA is

 …

 type Error_Code_Type is new Unsigned_32_Type;

 …

end ECOA;

9.4.8 ECOA:asset_id

In Ada the syntax for an ECOA:asset_id is:

package ECOA is

 …

 type Asset_Id_Type is new Unsigned_32_Type;

 …

end ECOA;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 23

In Ada the ECOA:asset_id definitions will be generated as constants declared in a file named

ECOA_Assets.ads using the following syntax:

-- File ECOA_Assets.ads

with ECOA;

package ECOA_Assets is

 CMP_#component_instance_name1# : constant ECOA.Asset_Id_Type := #CMP_ID1#;

 CMP_#component_instance_name2# : constant ECOA.Asset_Id_Type := #CMP_ID2#;

 CMP_#component_instance_nameN# : constant ECOA.Asset_Id_Type := #CMP_IDN#;

 PD_#protection_domain_name1# : constant ECOA.Asset_Id_Type := #PD_ID1#;

 PD_#protection_domain_name2# : constant ECOA.Asset_Id_Type := #PD_ID2#;

 PD_#protection_domain_nameN# : constant ECOA.Asset_Id_Type := #PD_IDN#;

 NOD_#computing_node_name1# : constant ECOA.Asset_Id_Type := #NOD_ID1#;

 NOD_#computing_node_name2# : constant ECOA.Asset_Id_Type := #NOD_ID2#;

 NOD_#computing_node_nameN# : constant ECOA.Asset_Id_Type := #NOD_IDN#;

 PF_#computing_platform_name1# : constant ECOA.Asset_Id_Type := #PF_ID1#;

 PF_#computing_platform_name2# : constant ECOA.Asset_Id_Type := #PF_ID2#;

 PF_#computing_platform_nameN# : constant ECOA.Asset_Id_Type := #PF_IDN#;

 SOP_#service_operation_name1# : constant ECOA.Asset_Id_Type := #ELI_UID#;

 SOP_#service_operation_name2# : constant ECOA.Asset_Id_Type := #ELI_UID#;

 SOP_#service_operation_nameN# : constant ECOA.Asset_Id_Type := #ELI_UID#;

 DEP_#deployment_name1# : constant ECOA.Asset_Id_Type := #DEP_ID1#;

 DEP_#deployment_name2# : constant ECOA.Asset_Id_Type := #DEP_ID2#;

 DEP_#deployment_nameN# : constant ECOA.Asset_Id_Type := #DEP_IDN#;

end ECOA_Assets;

9.4.9 ECOA:asset_type

In Ada ECOA:asset_type translates to ECOA.Asset_Type, with the enumerated values shown below:

package ECOA is

 …

 type Asset_Type is new Unsigned_32_Type;

 Asset_Type_COMPONENT : constant Asset_Type := 0;

 Asset_Type_PROTECTION_DOMAIN : constant Asset_Type := 1;

 Asset_Type_NODE : constant Asset_Type := 2;

 Asset_Type_PLATFORM : constant Asset_Type := 3;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 24

 Asset_Type_SERVICE : constant Asset_Type := 4;

 Asset_Type_DEPLOYMENT : constant Asset_Type := 5;

 …

end ECOA;

9.4.10 ECOA:error_type

In Ada ECOA:error_type translates to ECOA.Error_Type, with the enumerated values shown below:

package ECOA is

 …

 type Error_Type is new Unsigned_32_Type;;

 Error_Type_RESOURCE_NOT_AVAILABLE : constant Error_Type := 0;

 Error_Type_UNAVAILABLE : constant Error_Type := 1;

 Error_Type_MEMORY_VIOLATION : constant Error_Type := 2;

 Error_Type_NUMERICAL_ERROR : constant Error_Type := 3;

 Error_Type_ILLEGAL_INSTRUCTION : constant Error_Type := 4;

 Error_Type_STACK_OVERFLOW : constant Error_Type := 5;

 Error_Type_DEADLINE_VIOLATION : constant Error_Type := 6;

 Error_Type_OVERFLOW : constant Error_Type := 7;

 Error_Type_UNDERFLOW : constant Error_Type := 8;

 Error_Type_ILLEGAL_INPUT_ARGS : constant Error_Type := 9;

 Error_Type_ILLEGAL_OUTPUT_ARGS : constant Error_Type := 10;

 Error_Type_ERROR : constant Error_Type := 11;

 Error_Type_FATAL_ERROR : constant Error_Type := 12;

 Error_Type_HARDWARE_FAULT : constant Error_Type := 13;

 Error_Type_POWER_FAIL : constant Error_Type := 14;

 Error_Type_COMMUNICATION_ERROR : constant Error_Type := 15;

 Error_Type_INVALID_CONFIG : constant Error_Type := 16;

 Error_Type_INITIALISATION_PROBLEM : constant Error_Type := 17;

 Error_Type_CLOCK_UNSYNCHRONIZED : constant Error_Type := 18;

 Error_Type_UNKNOWN_OPERATION : constant Error_Type := 19;

 Error_Type_OPERATION_OVERRATED : constant Error_Type := 20;

 Error_Type_OPERATION_UNDERRATED : constant Error_Type := 21;

 …

end ECOA;

9.4.11 ECOA:recovery_action_type

In Ada ECOA:recovery_action_type translates to ECOA.Recovery_Action_Type, with the

enumerated values shown below:

package ECOA is

 …

 type Recovery_Action_Type is new Unsigned_32_Type;

 Recovery_Action_Type_SHUTDOWN : constant Recovery_Action_Type := 0;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 25

 Recovery_Action_Type_COLD_RESTART : constant Recovery_Action_Type := 1;

 Recovery_Action_Type_WARM_RESTART : constant Recovery_Action_Type := 2;

 Recovery_Action_Type_CHANGE_DEPLOYMENT : constant Recovery_Action_Type := 3;

 …

end ECOA;

9.4.12 ECOA:pinfo_filename

The syntax for a log is:

package ECOA is

 …

 type Pinfo_Filename_Elements_Size_Type is range 0..256;

 for Pinfo_Filename_Elements_Size_Type'size use 32;

 for Pinfo_Filename_Elements_Size_Type'Alignment use 4;

 subtype Pinfo_Filename_Elements_Index_Type is

Pinfo_Filename_Elements_Size_Type range 0..255;

 type Pinfo_Filename_Elements_Type is array

 (Pinfo_Filename_Elements_Index_Type) of ECOA.Character_8_Type;

 for Pinfo_Filename_Elements_Type'size use 2048;

 for Pinfo_Filename_Elements_Type'Alignment use 4;

 type Pinfo_Filename_Type is

 record

 Current_Size : Pinfo_Filename_Elements_Size_Type;

 Data : Pinfo_Filename_Elements_Type;

 end record;

 for Pinfo_Filename_Type'size use 2080;

 for Pinfo_Filename_Type'Alignment use 4;

 …

end ECOA;

9.4.13 ECOA:seek_whence_type

In Ada ECOA:seek_whence_type translates to ECOA.Seek_Whence_Type, with the enumerated values

shown below:

package ECOA is

 …

 type Seek_Whence_Type is new Unsigned_32_Type;

 Seek_Whence_Type_SEEK_SET : constant Seek_Whence_Type := 0;

 Seek_Whence_Type_SEEK_CUR : constant Seek_Whence_Type := 1;

 Seek_Whence_Type_SEEK_END : constant Seek_Whence_Type := 2;

 …

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 26

end ECOA;

9.4.14 ECOA:seconds and ECOA:nanoseconds

Seconds and Nanosecond types1 are defined as follows:

package ECOA is

 …

 type Seconds_Type is mod 2 ** 32;

 for Seconds_Type'Size use 32;

 for Seconds_Type'Alignment use 4;

 type Nanoseconds_Type is range 0 .. 10 ** 9 - 1;

 for Nanoseconds_Type'Size use 32;

 for Nanoseconds_Type'Alignment use 4;

 …

end ECOA;

9.4.15 ECOA:request_response_id_type

In Ada, the Request Response ID type is defined as follows:

package ECOA is

 …

 type Request_Response_ID_Type is new Unsigned_32_Type;

 …

end ECOA;

9.4.16 ECOA:pinfo_size_type

In Ada, the PINFO Size type is defined as follows:

package ECOA is

 …

 type PINFO_Size_Type is new Unsigned_32_Type;

 …

end ECOA;

1 With the difference of C and C++ bindings, the Ada binding defines new types suitable for time management by
limiting the possible values of the considered temporal units.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 27

9.4.17 ECOA:pinfo_offset_type

In Ada, the PINFO Offset type is defined as follows:

package ECOA is

 …

 type PINFO_Offset_Type is new Signed_32_Type;

 …

end ECOA;

9.4.18 ECOA:pinfo_position_type

In Ada, the PINFO Position type is defined as follows:

package ECOA is

 …

 type PINFO_Position_Type is new Unsigned_32_Type;

 …

end ECOA;

10 Module Interface

10.1 Operations

This section contains details of the operations that comprise the Module API i.e. the operations that can
invoked by the Container on a Module.

10.1.1 Request-Response

10.1.1.1 Request Received

The following is the Ada syntax for invoking a request received by a Module Instance, where

#module_impl_name# is the name of the Module Implementation providing the service and

#operation_name# is the operation name. The same syntax is applicable for both synchronous and

asynchronous request-response operations.

package #module_impl_name# is

 procedure #operation_name#_Request_Received

 (Context : in out #module_impl_name#_Container.Context_Type;

 ID : in ECOA.Request_Response_ID_Type;

 #request_parameters#);

end #module_impl_name#;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 28

10.1.1.2 Response Received

The following is the Ada syntax for an operation used by the Container to send a response to an
asynchronous request response operation to the Module Instance that originally issued the request, where

#module_impl_name# is the name of the Module Implementation providing the service and

#operation_name# is the operation name. (The reply to a synchronous request response is provided by

the return of the response).

package #module_impl_name# is

 procedure #operation_name#_Response_Received

 (Context : in out #module_impl_name#_Container.Context_Type;

 ID : in ECOA.Request_Response_ID_Type;

 Status : in ECOA.Return_Status_Type;

 #response_parameters#);

end #module_impl_name#;

The “#response_parameters#” are the “out” parameters of the request-response operation, but are treated
as inputs to the function.

10.1.2 Versioned Data Updated

The following is the Ada syntax that is used by the Container to inform a Module Instance that reads an
item of versioned data that new data has been written.

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name# is

 procedure #operation_name#_Updated

 (Context : in out #module_impl_name#_Container.Context_Type);

end #module_impl_name#;

10.1.3 Event Received

The following is the Ada syntax for an event received by a Module Instance.

package #module_impl_name# is

 procedure #operation_name#_Received

 (Context : in out #module_impl_name#_Container.Context_Type;

 #event_parameters#);

end #module_impl_name#;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 29

10.2 Module Lifecycle

The following operations are applicable to application, Trigger and Dynamic-Trigger Module Instances.

10.2.1 Initialize_Received

The Ada syntax for a procedure to initialise a Module Instance is:

package #module_impl_name# is

 procedure INITIALIZE_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

end #module_impl_name#;

10.2.2 Start_Received

The Ada syntax for a procedure to start a Module Instance is:

package #module_impl_name# is

 procedure START_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

end #module_impl_name#;

10.2.3 Stop_Received

The Ada syntax for a procedure to stop a Module Instance is:

package #module_impl_name# is

 procedure STOP_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

end #module_impl_name#;

10.2.4 Shutdown_Received

The Ada syntax for a procedure to shutdown a Module Instance is:

package #module_impl_name# is

 procedure SHUTDOWN_Received

 (Context : in out #module_impl_name#_Container.Context_Type);

end #module_impl_name#;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 30

10.3 Error_notification at Fault Handler level

The Ada syntax for the Container to report an error to a Fault Handler is:

package #fault_handler_impl_name# is

 procedure Error_Notification

 (Context : in out #fault_handler_impl_name#_Container.Context_Type;

 Error_Id : in ECOA.Error_Id_Type;

 Timestamp : in ECOA.Global_Time_Type;

 Asset_Id : in ECOA.Asset_Id_Type;

 Asset_Type : in ECOA.Asset_Type;

 Error_Type : in ECOA.Error_Type;

 Error_Code : in ECOA.Error_Code_Type);

end #fault_handler_impl_name#;

11 Container Interface

This section contains details of the operations that comprise the Container API i.e. the operations that can
be called by a Module.

11.1 Operations

11.1.1 Request Response

11.1.1.1 Response Send

The Ada syntax, applicable to both synchronous and asynchronous request response operations, for
sending a reply is:

package #module_impl_name#_Container is

 procedure #operation_name#_Response_Send

 (Context : in out Context_Type;

 ID : in ECOA.Request_Response_ID_Type;

 #response_parameters#;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 31

The “#response_parameters#” are the “out” parameters of the request-response operation, but are treated

as inputs to the function. The ID parameter is that which was passed in during the invocation of the request

received operation.

11.1.1.2 Synchronous Request

The Ada syntax for a Module Instance to perform a synchronous request response operation is:

package #module_impl_name#_Container is

 procedure #operation_name#_Request_Sync

 (Context : in out Context_Type;

 #request_parameters#;

 #response_parameters#;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.1.3 Asynchronous Request

The Ada syntax for a Module Instance to perform an asynchronous request response operation is:

package #module_impl_name#_Container is

 procedure #operation_name#_Request_Async

 (Context : in out Context_Type;

 ID : out ECOA.Request_Response_ID_Type;

 #request_parameters#;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.2 Versioned Data

This section contains the Ada syntax for versioned data operations, which allow a Module Instance to:

 Get (request) Read Access

 Release Read Access

 Get (request) Write Access

 Cancel Write Access (without writing new data)

 Publish (write) new data (automatically releases write access)

 Note: the definition of versioned data handles involved in all #operation_name# is done in the
Container Types ads file, as specified in Section 12.1.1.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 32

11.1.2.1 Get Read Access

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure #operation_name#_Get_Read_Access

 (Context : in out Context_Type;

 Data_Handle : out

 #module_impl_name#_Container_Types.#operation_name#_Handle_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.2.2 Release Read Access

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure #operation_name#_Release_Read_Access

 (Context : in out Context_Type;

 Data_Handle : in

 #module_impl_name#_Container_Types.#operation_name#_Handle_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.2.3 Get Write Access

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure #operation_name#_Get_Write_Access

 (Context : in out Context_Type;

 Data_Handle : out

 #module_impl_name#_Container_Types.#operation_name#_Handle_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 33

11.1.2.4 Cancel Write Access

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure #operation_name#_Cancel_Write_Access

 (Context : in out Context_Type;

 Data_Handle : in

 #module_impl_name#_Container_Types.#operation_name#_Handle_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.2.5 Publish Write Access

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure #operation_name#_Publish_Write_Access

 (Context : in out Context_Type;

 Data_Handle : in

 #module_impl_name#_Container_Types.#operation_name#_Handle_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.1.3 Events

11.1.3.1 Send

The Ada syntax for a Module Instance to perform an event send operation is:

package #module_impl_name#_Container is

 procedure #operation_name#_Send

 (Context : in out Context_Type;

 #event_parameters#);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 34

11.2 Properties

This section describes the syntax for the Get_Value operation to request the Module properties.

11.2.1 Get Value

The syntax for Get_Value is shown below where:

 #property_name# is the name of the property used in the component definition.

 #property_type_name# is the name of the data-type of the property.

package #module_impl_name#_Container is

 procedure Get_#property_name#_Value

 (Context : in out Context_Type;

 Value : out #property_type_name#);

end #module_impl_name#_Container;

11.2.2 Expressing Property Values

Not applicable to the Ada Binding.

11.2.3 Example of Defining and Using Properties

Not applicable to the Ada Binding.

11.3 Logging and Fault Management

This section describes the Ada syntax for the logging and fault management procedures provided by the
Container. There are six procedures:

 Trace: a detailed runtime trace to assist with debugging

 Debug: debug information

 Info: to log runtime events that are of interest e.g. changes of Module state

 Warning: to report and log warnings

 Raise_Error: to report an error from which the application may be able to recover

 Raise_Fatal_Error: to raise a severe error from which the application cannot recover.

11.3.1 Log_Trace

package #module_impl_name#_Container is

 procedure Log_Trace

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 35

11.3.2 Log_Debug

package #module_impl_name#_Container is

 procedure Log_Debug

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

end #module_impl_name#_Container;

11.3.3 Log_Info

-- Include Container Types

with #module_impl_name#_Container_Types;

package #module_impl_name#_Container is

 procedure Log_Info

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

end #module_impl_name#_Container;

11.3.4 Log_Warning

package #module_impl_name#_Container is

 procedure Log_Warning

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type);

end #module_impl_name#_Container;

11.3.5 Raise_Error

package #module_impl_name#_Container is

 procedure Raise_Error

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type;

 Error_Code : in ECOA.Error_Code_Type);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 36

11.3.6 Raise_Fatal_Error

package #module_impl_name#_Container is

 procedure Raise_Fatal_Error

 (Context : in out Context_Type;

 Log : in ECOA.Log_Type;

 Error_Code : in ECOA.Error_Code_Type);

end #module_impl_name#_Container;

11.4 Time Services

11.4.1 Get_Relative_Local_Time

package #module_impl_name#_Container is

 procedure Get_Relative_Local_Time

 (Context : in out Context_Type;

 Relative_Local_Time : out ECOA.HR_Time_Type);

end #module_impl_name#_Container;

11.4.2 Get_UTC_Time

package #module_impl_name#_Container is

 procedure Get_UTC_Time

 (Context : in out Context_Type;

 UTC_Time : out ECOA.Global_Time_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.4.3 Get_Absolute_System_Time

package #module_impl_name#_Container is

 procedure Get_Absolute_System_Time

 (Context : in out Context_Type;

 Absolute_System_Time : out ECOA.Global_Time_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 37

11.4.4 Get_Relative_Local_Time_Resolution

package #module_impl_name#_Container is

 procedure Get_Relative_Local_Time_Resolution

 (Context : in out Context_Type;

 Relative_Local_Time_Resolution : out ECOA.Duration);

end #module_impl_name#_Container;

11.4.5 Get_UTC_Time_Resolution

package #module_impl_name#_Container is

 procedure Get_UTC_Time_Resolution

 (Context : in out Context_Type;

 UTC_Time_Resolution : out ECOA.Duration);

end #module_impl_name#_Container;

11.4.6 Get_Absolute_System_Time_Resolution

package #module_impl_name#_Container is

 procedure Get_Absolute_System_Time_Resolution

 (Context : in out Context_Type;

 Absolute_System_Time_Resolution : out ECOA.Duration);

end #module_impl_name#_Container;

11.5 Persistent Information management (PINFO)

11.5.1 PINFO read

The Ada syntax for a Module Instance to read persistent data (PINFO) is:

package #module_impl_name#_Container is

 procedure Read_#PINFOname#

 (Context : in out Context_Type;

 Memory_Address : in System.Address;

 In_Size : in ECOA.PINFO_Size_Type;

 Out_Size : out ECOA.PINFO_Size_Type;

 Status : out ECOA.Return_Status_Type);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 38

end #module_impl_name#_Container;

11.5.2 PINFO seek

The Ada syntax for a Module Instance to seek within persistent data (PINFO) is:

package #module_impl_name#_Container is

 procedure Seek_#PINFOname#

 (Context : in out Context_Type;

 Offset : in ECOA.PINFO_Offset_Type;

 Whence : in ECOA.Seek_Whence_Type;

 New_Position : out ECOA.PINFO_Position_Type;

 Status : out ECOA.Return_Status_Type);

end #module_impl_name#_Container;

11.5.3 Example of Defining Private PINFO

Not applicable to the Ada Binding.

11.5.4 Example of Defining Public PINFO

Not applicable to the Ada Binding.

11.6 Recovery Action

This section contains the Ada syntax for the recovery action service provided to Fault Handlers by the
Container.

package #fault_handler_impl_name#_Container is

 procedure Recovery_Action

 (Context : in out Context_Type;

 Recovery_Action : in ECOA.Recovery_Action_Type;

 Asset_Id : in ECOA.Asset_Id_Type;

 Asset_Type : in ECOA.Asset_Type;

 Status : out ECOA.Return_Status_Type);

end #fault_handler_impl_name#_Container;

11.7 Save Warm Start Context

The Ada syntax for a Module Instance to save its warm start (non-volatile) context is:

package #module_impl_name#_Container is

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 39

 procedure Save_Warm_Start_Context

 (Context : in Context_Type);

end #module_impl_name#_Container;

12 Container Types

This section contains details of the data types that comprise the Container API i.e. the data types that can
be used by a Module.

12.1.1 Versioned Data Handles

This section contains the Ada syntax in order to define data handles for versioned data operations defined
in the Container Interface.

package #module_impl_name#_Container_Types is

 #operation_name#_Handle_Platform_Hook_Size : constant := 32;

 type #operation_name#_Handle_Platform_Hook_Type is array

 (0..#operation_name#_Handle_Platform_Hook_Size-1) of ECOA.Byte_Type;

 --

 -- The following is the data handle structure associated to the data

 -- operation called #operation_name# of data-type #type_name#

 --

 type #operation_name#_Data_Access_Type is access all #type_name#;

 type #operation_name#_Handle_Type is

 record

 Data_Access : #operation_name#_Data_Access_Type;

 Stamp : ECOA.Unsigned_32_Type;

 Platform_Hook : #operation_name#_Handle_Platform_Hook_Type;

 end record;

end #module_impl_name#_Container_Types;

13 External Interface

This section contains the Ada syntax for the ECOA external interface provided to non-ECOA software by
the Container.

Note: the choice of the language for generating external APIs is made separately from the choice of the language for generating
ECOA Modules APIs. The choice of supported languages is made depending on needs that are to be taken into account in platform
procurement requirements.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 40

-- @file “#component_impl_name#_External_Interface.ads”

-- External Interface specification for Component

-- Implementation #component_impl_name#

-- Generated automatically from specification; do not modify here

package #component_impl_name#_External_Interface is

 procedure #external_operation_name#(#event_parameters#);

end #component_impl_name#_External_Interface;

14 Default Values

Not applicable to the Ada Binding.

15 Trigger Instances

Not applicable to the Ada Binding.

16 Dynamic Trigger Instances

Not applicable to the Ada Binding.

17 Reference Ada Specification

package ECOA is

 type Boolean_8_Type is new Boolean;

 for Boolean_8_Type'Size use 8;

 type Character_8_Type is new Character;

 for Character_8_Type'Size use 8;

 type Signed_8_Type is range -127 .. 127;

 for Signed_8_Type'Size use 8;

 type Signed_16_Type is range -32767 .. 32767;

 for Signed_16_Type'Size use 16;

 type Signed_32_Type is range -2147483647 .. 2147483647;

 for Signed_32_Type'Size use 32;

 type Signed_64_Type is range -9223372036854775807 .. 9223372036854775807;

 for Signed_64_Type'Size use 64;

 type Unsigned_8_Type is mod 2 ** 8;

 for Unsigned_8_Type'Size use 8;

 type Unsigned_16_Type is mod 2 ** 16;

 for Unsigned_16_Type'Size use 16;

 type Unsigned_32_Type is mod 2 ** 32;

 for Unsigned_32_Type'Size use 32;

 type Unsigned_64_Type is mod 2 ** 64;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 41

 for Unsigned_64_Type'Size use 64;

 type Float_32_Type is digits 6 range -3.402823466e+38 .. 3.402823466e+38;

 for Float_32_Type'Size use 32;

 type Float_64_Type is digits 15 range -1.7976931348623157e+308 ..

1.7976931348623157e+308;

 for Float_64_Type'Size use 64;

 type Byte_Type is mod 2 ** 8;

 for Byte_Type'Size use 8;

 type Return_Status_Type is new Unsigned_32_Type;

 Return_Status_Type_OK : constant Return_Status_Type

 := 0;

 Return_Status_Type_INVALID_HANDLE : constant Return_Status_Type

 := 1;

 Return_Status_Type_DATA_NOT_INITIALIZED : constant Return_Status_Type

 := 2;

 Return_Status_Type_NO_DATA : constant Return_Status_Type

 := 3;

 Return_Status_Type_INVALID_IDENTIFIER : constant Return_Status_Type

 := 4;

 Return_Status_Type_NO_RESPONSE : constant Return_Status_Type

 := 5;

 Return_Status_Type_OPERATION_ALREADY_PENDING : constant Return_Status_Type

 := 6;

 Return_Status_Type_CLOCK_UNSYNCHRONIZED : constant Return_Status_Type

 := 7;

 Return_Status_Type_RESOURCE_NOT_AVAILABLE : constant Return_Status_Type

 := 8;

 Return_Status_Type_OPERATION_NOT_AVAILABLE : constant Return_Status_Type

 := 9;

 Return_Status_Type_INVALID_PARAMETER : constant Return_Status_Type

 := 10;

 type Seconds_Type is mod 2 ** 32;

 for Seconds_Type'Size use 32;

 for Seconds_Type'Alignment use 4;

 type Nanoseconds_Type is range 0 .. 999999999;

 for Nanoseconds_Type'Size use 32;

 for Nanoseconds_Type'Alignment use 4;

 type HR_Time_Type is record

 Seconds : Seconds_Type := 0;

 Nanoseconds : Nanoseconds_Type := 0;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 42

 end record;

 for HR_Time_Type'size use 64;

 for HR_Time_Type'Alignment use 4;

 type Global_Time_Type is record

 Seconds : Seconds_Type := 0;

 Nanoseconds : Nanoseconds_Type := 0;

 end record;

 for Global_Time_Type'size use 64;

 for Global_Time_Type'Alignment use 4;

 type Duration_Type is record

 Seconds : Seconds_Type := 0;

 Nanoseconds : Nanoseconds_Type := 0;

 end record;

 for Duration_Type'size use 64;

 for Duration_Type'Alignment use 4;

 type Log_Elements_Size_Type is range 0..256;

 for Log_Elements_Size'size use 32;

 for Log_Elements_Size'Alignment use 4;

 subtype Log_Elements_Index_Type is Log_Elements_Size_Type range 0..255;

 type Log_Elements_Type is array (Log_Elements_Index_Type) of

 ECOA.Character_8_Type;

 for Log_Elements_Type'size use 2048;

 for Log_Elements_Type'Alignment use 4;

 type Log_Type is

 record

 Current_Size : Log_Elements_Size_Type;

 Data : Log_Elements_Type;

 end record;

 for Log_Type'size use 2080;

 for Log_Type'Alignment use 4;

 type Error_Id_Type is new Unsigned_32_Type;

 type Asset_Id_Type is new Unsigned_32_Type;

 type Asset_Type is new Unsigned_32_Type;

 Asset_Type_COMPONENT : constant Asset_Type := 0;

 Asset_Type_PROTECTION_DOMAIN : constant Asset_Type := 1;

 Asset_Type_NODE : constant Asset_Type := 2;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 43

 Asset_Type_PLATFORM : constant Asset_Type := 3;

 Asset_Type_SERVICE : constant Asset_Type := 4;

 Asset_Type_DEPLOYMENT : constant Asset_Type := 5;

 type Error_Type is new Unsigned_32_Type;

 Error_Type_RESOURCE_NOT_AVAILABLE : constant Error_Type := 0;

 Error_Type_UNAVAILABLE : constant Error_Type := 1;

 Error_Type_MEMORY_VIOLATION : constant Error_Type := 2;

 Error_Type_NUMERICAL_ERROR : constant Error_Type := 3;

 Error_Type_ILLEGAL_INSTRUCTION : constant Error_Type := 4;

 Error_Type_STACK_OVERFLOW : constant Error_Type := 5;

 Error_Type_DEADLINE_VIOLATION : constant Error_Type := 6;

 Error_Type_OVERFLOW : constant Error_Type := 7;

 Error_Type_UNDERFLOW : constant Error_Type := 8;

 Error_Type_ILLEGAL_INPUT_ARGS : constant Error_Type := 9;

 Error_Type_ILLEGAL_OUTPUT_ARGS : constant Error_Type := 10;

 Error_Type_ERROR : constant Error_Type := 11;

 Error_Type_FATAL_ERROR : constant Error_Type := 12;

 Error_Type_HARDWARE_FAULT : constant Error_Type := 13;

 Error_Type_POWER_FAIL : constant Error_Type := 14;

 Error_Type_COMMUNICATION_ERROR : constant Error_Type := 15;

 Error_Type_INVALID_CONFIG : constant Error_Type := 16;

 Error_Type_INITIALISATION_PROBLEM : constant Error_Type := 17;

 Error_Type_CLOCK_UNSYNCHRONIZED : constant Error_Type := 18;

 Error_Type_UNKNOWN_OPERATION : constant Error_Type := 19;

 Error_Type_OPERATION_OVERRATED : constant Error_Type := 20;

 Error_Type_OPERATION_UNDERRATED : constant Error_Type := 21;

 type Recovery_Action_Type is new Unsigned_32_Type;

 Recovery_Action_Type_SHUTDOWN : constant Recovery_Action_Type

 := 0;

 Recovery_Action_Type_COLD_RESTART : constant Recovery_Action_Type

 := 1;

 Recovery_Action_Type_WARM_RESTART : constant Recovery_Action_Type

 := 2;

 Recovery_Action_Type_CHANGE_DEPLOYMENT : constant Recovery_Action_Type

 := 3;

 type Pinfo_Filename_Elements_Size_Type is range 0..256;

 for Pinfo_Filename_Elements_Size_Type'size use 32;

 for Pinfo_Filename_Elements_Size_Type'Alignment use 4;

 subtype Pinfo_Filename_Elements_Index_Type is

Pinfo_Filename_Elements_Size_Type range 0..255;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144476-F/IAWG-ECOA-TR-003 Issue 6 44

 type Pinfo_Filename_Elements_Type is array

 (Pinfo_Filename_Elements_Index_Type) of ECOA.Character_8_Type;

 for Pinfo_Filename_Elements_Type'size use 2048;

 for Pinfo_Filename_Elements_Type'Alignment use 4;

 type Pinfo_Filename_Type is

 record

 Current_Size : Pinfo_Filename_Elements_Size_Type;

 Data : Pinfo_Filename_Elements_Type;

 end record;

 for Pinfo_Filename_Type'size use 2080;

 for Pinfo_Filename_Type'Alignment use 4;

 type Seek_Whence_Type is new Unsigned_32_Type;

 Seek_Whence_Type_SEEK_SET : constant Seek_Whence_Type := 0;

 Seek_Whence_Type_SEEK_CUR : constant Seek_Whence_Type := 1;

 Seek_Whence_Type_SEEK_END : constant Seek_Whence_Type := 2;

 type Request_Response_ID_Type is new Unsigned_32_Type;

 type PINFO_Size_Type is new Unsigned_32_Type;

 type PINFO_Offset_Type is new Signed_32_Type;

 type PINFO_Position_Type is new Unsigned_32_Type;

end ECOA;

