

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 i

European Component Oriented Architecture (ECOA

®
)

Collaboration Programme:
Architecture Specification
Part 4: Software Interface

BAE Ref No: IAWG-ECOA-TR-010
Dassault Ref No: DGT 144485-F

Issue: 6

Prepared by

BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information..

Note: This specification represents the output of a research programme. Compliance with this specification shall not in

itself relieve any person from any legal obligations imposed upon them. Product development should rely on the
DefStan or BNAE publications of the ECOA standard.. .

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 ii

Contents

0 Introduction v

1 Scope 1

2 Warning 1

3 Normative References 1

4 Definitions 2

5 Abbreviations 2

6 Module to Language Mapping 3

7 Parameters 7

8 Module Context 8

9 Types 9

9.1 Namespaces 9

9.2 Basic Types 10

9.3 Derived Types 11

9.3.1 Simple Types 11

9.3.2 Constants 12

9.3.3 Enumerations 13

9.3.4 Records 13

9.3.5 Variant Records 13

9.3.6 Fixed Arrays 14

9.3.7 Variable Arrays 14

9.4 Predefined Types 15

9.4.1 ECOA:return_status 15

9.4.2 ECOA:hr_time 16

9.4.3 ECOA:global_time 16

9.4.4 ECOA:duration 16

9.4.5 ECOA:log 17

9.4.6 ECOA:error_id 17

9.4.7 ECOA:error_code 17

9.4.8 ECOA:asset_id 17

9.4.9 ECOA:asset_type 19

9.4.10 ECOA:error_type 20

9.4.11 ECOA:recovery_action_type 22

9.4.12 ECOA:pinfo_filename 23

9.4.13 ECOA:seek_whence_type 23

10 Module Interface 23

10.1 Operations 23

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 iii

10.1.1 Request-Response 23

10.1.1.1 Request Received 24

10.1.1.2 Response Received 24

10.1.2 Versioned Data Updated 24

10.1.3 Event Received 25

10.2 Module Lifecycle 25

10.3 Error notification at fault handler level 26

11 Container Interface 26

11.1 Operations 26

11.1.1 Request Response 26

11.1.1.1 Response Send 27

11.1.1.2 Synchronous Request 27

11.1.1.3 Asynchronous Request 28

11.1.2 Versioned Data 28

11.1.2.1 Get_Read_Access 29

11.1.2.2 Release_Read_Access 30

11.1.2.3 Get_Write_Access 30

11.1.2.4 Cancel_Write_Access 31

11.1.2.5 Publish_Write_Access 32

11.1.3 Event Send 32

11.2 Properties 32

11.2.1 Get_Value 33

11.2.2 Expressing Property Values 33

11.2.3 Example of Defining and Using Properties 34

11.3 Logging and Fault Management 36

11.3.1 Log_Trace 38

11.3.2 Log_Debug 38

11.3.3 Log_Info 38

11.3.4 Log_Warning 38

11.3.5 Raise_Error 38

11.3.6 Raise_Fatal_Error 39

11.4 Time Services 39

11.4.1 Get_Relative_Local_Time 39

11.4.2 Get_UTC_Time 40

11.4.3 Get_Absolute_System_Time 40

11.4.4 Get_Relative_Local_Time_Resolution 40

11.4.5 Get_UTC_Time_Resolution 40

11.4.6 Get_Absolute_System_Time_Resolution 40

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 iv

11.5 Persistent Information Management (PINFO) 40

11.5.1 PINFO read 41

11.5.2 PINFO seek 41

11.5.3 Example of defining Private PINFO 42

11.5.4 Example of defining Public PINFO 44

11.6 Recovery Action 47

11.7 Save Warm Start Context 49

12 Container Types 49

12.1.1 Versioned Data Handles 49

13 External Interface 49

14 Default Values 50

15 Trigger Instances 51

15.1 XML definitions of Trigger Instance and associated links 51

16 Dynamic Trigger Instances 51

16.1 XML definitions of Dynamic Trigger Instance and associated links 52

17 Reference Language Header 54

Figures

Figure 1 Module and Container Interface v

Figure 2 Namespaces 9

Tables

Table 1 Module and Container Interfaces 5

Table 2 ECOA Basic Types 10

Table 3 ECOA Predefined Constants 10

Table 4 Table of Errors 21

Table 5 Logging Error Level 36

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 v

0 Introduction

This Architecture Specification provides the specification for creating ECOA
®
-based systems. It describes

the standardised programming interfaces and data-model that allow a developer to construct an ECOA
®
-

based system. It uses terms defined in the Definitions (Architecture Specification Part 2). The details of the
other documents comprising the rest of this Architecture Specification can be found in Section 3.

This document is Part 4 of the Architecture Specification, and describes the software interfaces used.

In an ECOA
®
 system, all interactions between Modules that implement Application Software Components

rely on three mechanisms: event, versioned data, and request-response. In addition calls and handlers
exist for infrastructure services to allow the management of the runtime lifecycle, logging, faults, time,
persistent information and context management.

This document describes the APIs between modules and the containers that host them. The APIs, shown in
Figure 1, are the Module Interface and the Container Interface:

 The Module Interface specifies the interface to a module, which is used by the container to call module
operations.

 The Container Interface specifies the operations that the container provides for a module.

Figure 1 Module and Container Interface

Different bindings provide mappings for particular programming languages. Currently four language
bindings are available: for C [Architecture Specification Part 8], C++ [Architecture Specification Part 9], Ada
[Architecture Specification Part 10] and High Integrity Ada [Architecture Specification Part 11].

This document also describes the Parameters for the operations in the API and the types that the API relies
on.

The information in this document is based on v2.0.0 of the ECOA
®
 meta-model.

This document is structured as follows:

 Section 6 describes the Module to Language Mapping

 Section 7 describes the Parameters for operations

 Section 8 describes the Module Context

 Section 9 describes the Type libraries

 Section 10 describes the Module Interface

 Section 11 describes the Container Interface

 Section 12 describes the Container Types

 Section 13 describes the External Interface

 Section 14 describes the Default Values

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 vi

 Section 15 describes Trigger Instances

 Section 16 describes Dynamic Trigger Instances

 Section 17 describes Reference Language Headers

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 1

1 Scope

This Architecture Specification specifies a uniform method for design, development and integration of
software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme. Compliance with this specification shall
not in itself relieve any person from any legal obligations imposed upon them. Product development should
rely on the DefStan or BNAE publications of the ECOA standard.

3 Normative References

Architecture Specification
Part 1

 IAWG-ECOA-TR-001 / DGT 144474

Issue 6

Architecture Specification Part 1 – Concepts

Architecture Specification
Part 2

 IAWG-ECOA-TR-012 / DGT 144487

Issue 6

Architecture Specification Part 2 – Definitions

Architecture Specification
Part 3

 IAWG-ECOA-TR-007 / DGT 144482

Issue 6

Architecture Specification Part 3 – Mechanisms

Architecture Specification
Part 4

 IAWG-ECOA-TR-010 / DGT 144485

Issue 6

Architecture Specification Part 4 – Software Interface

Architecture Specification
Part 5

 IAWG-ECOA-TR-008 / DGT 144483

Issue 6

Architecture Specification Part 5 – High Level Platform
Requirements

Architecture Specification
Part 6

 IAWG-ECOA-TR-006 / DGT 144481

Issue 6

Architecture Specification Part 6 – ECOA
®
 Logical Interface

Architecture Specification
Part 7

 IAWG-ECOA-TR-011 / DGT 144486

Issue 6

Architecture Specification Part 7 – Metamodel

Architecture Specification
Part 8

 IAWG-ECOA-TR-004 / DGT 144477

Issue 6

Architecture Specification Part 8 – C Language Binding

Architecture Specification
Part 9

 IAWG-ECOA-TR-005 / DGT 144478

Issue 6

Architecture Specification Part 9 – C++ Language Binding

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 2

Architecture Specification
Part 10

 IAWG-ECOA-TR-003 / DGT 144476

Issue 6

Architecture Specification Part 10 – Ada Language Binding

Architecture Specification
Part 11

 IAWG-ECOA-TR-031 / DGT 154934

Issue 6

Architecture Specification Part 11 – High Integrity Ada Language
Binding

ISO/IEC 8652:1995(E)
with COR.1:2000

 Ada95 Reference Manual

Issue 1

ISO/IEC 9899:1999(E) Programming Languages – C

ISO/IEC 14882:2003(E) Programming Languages C++

SPARK_LRM The SPADE Ada Kernel (including RavenSPARK) Issue 7.3

4 Definitions

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

5 Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

ECOA European Component Oriented Architecture. ECOA
®
 is a registered trademark.

ELI ECOA
®
 Logical Interface

HR High Resolution

ID Identifier

OO Object Oriented

PINFO Persistent Information

POSIX Portable Operating System Interface

QoS Quality of Service

UTC Coordinated Universal Time

XML eXtensible Markup Language

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 3

6 Module to Language Mapping

This section gives an overview of the Module Interface and Container Interface APIs, in terms of the
filenames and overall structure of the files. Refer to this section in the required language binding for details
relevant to that specific language

Sections 10 and 11 contain prototype definitions of the Application Framework operations using C like
syntax: the correct syntax is given by the appropriate language binding.

The name of each operation shall include the Module Implementation name for those languages that do not
support namespacing. The following symbolic names are used in the prototypes:

 #component_impl_name# is the name of the component implementation – the name is used for API

generation.

 #module_impl_name# is the name of the module implementation – the name is used for API

generation.

 #module_instance_name# is the name of a Module Instance – this name is used for deployment

purposes,

 #operation_name# is the name of the module operation (event, request-response or versioned

data),

 #external_operation_name# is the name of the external event operation (used when generating

the External Interface API for a Driver Component),

 #request_parameters# correspond to the ordered list of input parameters specified for a

Request_Received, Request_Sync or a Request_Async operation,

 #response_parameters# correspond to the ordered list of output parameters specified for a

Response_Received, Request_Sync or a Response_Send operation,

 #event_parameters# corresponds to the ordered list of input parameters specified for an event

Send or event Received operation,

 #type_name# is the name of a data-type1,

 #context# will be used to represent the reference to the context associated with a Module Instance.

 #list_of_event_operations_specifications# correspond to operations defined in section

10.1.3

 #list_of_request_response_operations_specifications# correspond to operations

defined in section 10.1.1

 #list_of_versioned_data_notifying_operations_specifications# correspond to

operations defined in section 10.1.2

 #error_notification_operation_specification# correspond to operations defined in

section 10.3

 #list_of_event_operations# correspond to operations defined in section 10.1.3

 #list_of_request_response_operations# correspond to operations defined in section 10.1.1

 #list_of_versioned_data_notifying_operations# correspond to operations defined in

section 10.1.2

 #list_of_lifecycle_operations# correspond to operations defined in section 10.2

1 #type_name# may be extended by the addition of a qualifying prefix where a specific kind of type is indicated, as in

#record_type_name#.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 4

 #event_operation_call_specifications# correspond to operations defined in section 11.1.3

 #request_response_call_specifications# correspond to operations defined in section 11.1.1

 #versioned_data_call_specifications# correspond to operations defined in section 11.1.2

 #properties_call_specifications# correspond to operations defined in section 11.2

 #recovery_action_call_specification# correspond to operations defined in section 11.6

 #PINFO_read_call_specifications# correspond to operations defined in section 11.5.1

 #PINFO_seek_call_specifications# correspond to operations defined in section 11.5.2

 #Save_Warm_Start_Context_operation# correspond to operations defined in section 11.7

Table 1 details the Module and Container Interface APIs. The actual API will include the name of the
operation and module. How this is done is specified in the language independent section referenced in the
table. The reader must refer to the appropriate language binding document to determine the actual syntax
for a specific language.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 5

Table 1 Module and Container Interfaces

Category Abstract API Name
Container
Operation

Module
Operation

Section

Events API Event_Send Yes No 11.1.3

Event_Received No Yes 10.1.3

Request Response API Request_Sync Yes No 11.1.1.2

Request_Async Yes No 11.1.1.3

Request_Received No Yes 10.1.1.1

Response_Received No Yes 10.1.1.2

Response_Send Yes No 11.1.1.1

Versioned Data API Get_Read_Access Yes No 11.1.2.1

Release_Read_Access Yes No 11.1.2.2

Updated No Yes 10.1.2

Get_Write_Access Yes No 11.1.2.3

Cancel_Write_Access Yes No 11.1.2.4

Publish_Write_Access Yes No 11.1.2.5

Properties API Get_Value Yes No 11.2.1

Runtime Lifecycle API Initialize_Received No Yes

10.2
Start_Received No Yes

Stop_Received No Yes

Shutdown_Received No Yes

Logging and Fault
Management Services API

Log_Debug Yes No

11.3

Log_Trace Yes No

Log_Info Yes No

Log_Warning Yes No

Raise_Error Yes No

Raise_Fatal_Error Yes No

Time Services API Get_Relative_Local_Time Yes No

11.4 Get_UTC_Time Yes No

Get_Absolute_System_Time Yes No

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 6

Category Abstract API Name
Container
Operation

Module
Operation

Section

Fault Handling API
(Fault Handlers Only)

Error_Notification No Yes 10.3

Recovery_Action Yes No 11.6

Persistent Information
(PINFO) Management

Read Yes No 11.5.1

Seek Yes No 11.5.2

Context Management Save_Warm_Start_Context Yes No 11.7

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 7

7 Parameters

Request-response and event operations may have parameters associated with them:

 Request-response operations: may have inputs and outputs.

 Events: may have inputs.

All parameters must be ECOA pre-defined types or be defined in a type library.

The order of parameters of an operation is described in the Service Definitions, Component Definition and
Component Implementation, and must be the same in all cases.

The manner in which parameters are passed is language dependent and is described in the individual
language bindings.

For a request-response operation, any output parameters are treated as inputs when passed to the
Response_Send (11.1.1.1) and Response_Received (10.1.1.2) functions.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 8

8 Module Context

It is required that the same implementation of a module can be instantiated several times, possibly within
the same protection domain, without causing any symbol collision. To achieve this requirement, it is
expected, for example, that the implementer of a C or C++ Module would not use any static (either global or
local) variables within the module (except for constants). To this end, modules are coded with instance
specific data blocks referred to as the “Module Context".

The purpose of this “Module Context” is to hold all the private data that will be used by:

 the Container and the ECOA infrastructure to handle the Module Instance (infrastructure-level
technical data),

 the Module Instance itself to support its functions (user-defined local private data).

 the Module Instance itself to support warm start functionality (user-defined local private data)

The use and the declaration of the “Module Context” structure may be adapted for each language binding.

The part of the Module Context related to user-defined local private data is optional. It will be made
available for a given Module Type depending on Metamodel attributes declared by the ASC supplier. The
purpose is to allow ASC suppliers to have a simple stateless component if required. State is only generated
and managed where it is required.

The part of the Module Context which holds the infrastructure-level technical and specific data is not
optional.

For non-OO languages, the “Module Context” will be represented as a structure that shall hold both the
user local data (called “User Module Context” and “Warm Start Context”) and all the infrastructure-level
technical and specific part of “Module Context” (such technical data won’t be specified in this document as
they are implementation dependant). For this reason, the Module Context may be generated by the ECOA
infrastructure within the Container Interface Header, and be extended by a user defined "User Module
Context" structure and a user defined “Warm Start Context” structure.

With OO languages, the Module Instance will be instantiated as an object of a Module Implementation class
declared by the user; its associated Container will be associated to an instance of an ECOA-generated
Module Container class. All the "User Module Context" and “Warm Start Context”, where being used, shall
be declared within the user Module Implementation class as public attributes. The infrastructure-level
technical data shall be declared by the ECOA-infrastructure within the corresponding (generated) Module
Container class. In addition, the entry-points declared in the Container Interface are represented as
methods of the Container object, so the Module Instance object must have access to its corresponding
Container object to enable it to call these methods. This is achieved by the Module Implementation having
a pointer to the Container object as a public attribute of the Module Implementation class. The Container
would have access to enable it to set it to the appropriate Container object, whilst the Module Instance
object will be able to access it for use within the Module Implementation.

The language bindings specify the exact syntax required for the Module User Context and Warm Start
Context, as well as the syntax for declaring any infrastructure-level technical and specific data in the
Module Context for non-OO languages.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 9

9 Types

The API relies on a set of pre-defined types, which can be used to construct user defined complex types.
These types are used by operations on the Module and Container Interfaces. Namespaces are used to
organise the types into separate libraries.

9.1 Namespaces

Namespaces are used to organise the types used by an ECOA system into disjoint sets, or libraries. The
namespaces are organised in a hierarchical manner, and all of the ECOA namespaces are subordinate to
the ECOA base namespace as shown in Figure 2. Application based namespaces that are not subordinate
to the ECOA namespace are also allowed.

Figure 2 Namespaces

Type names within the same namespace shall be unique. All types declared in the same namespace are
located in the same header file. This file will usually be automatically generated by the ECOA toolset from
the XML descriptions contained within files of the form:

#namespace1#[__#namespacen#].types.xml

When applied to the examples of Figure 2, it would be:

 ECOA__Namespace1__Namespace3.types.xml

 ECOA__Namespace2.types.xml

 Example__Namespace2.types.xml

The header file name generated and file extension is language specific.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 10

9.2 Basic Types

A number of portable basic types are provided within the ECOA namespace that should be used to write
portable code. They are used for all data interchange between modules in an implementation. These
portable types do not preclude the use of pre-existing language types, error handling or exception
mechanisms. Mappings for specific languages are described by the bindings.

All of the ECOA basic types, which are listed in Table 2, may be used directly in the XML descriptions
without using the ECOA namespace.

Table 2 ECOA Basic Types

ECOA Basic Type Description XML Representation

ECOA:boolean8 8-bit boolean boolean8 or ECOA:boolean8

ECOA:int8 8-bit signed integer int8 or ECOA:int8

ECOA:char8 8-bit ASCII character char8 or ECOA:char8

ECOA:byte byte byte or ECOA:byte

ECOA:int16 16 bits signed integer int16 or ECOA:int16

ECOA:int32 32-bits signed integer int32 or ECOA:int32

ECOA:int64 64 bits signed integer int64 or ECOA:int64

ECOA:uint8 8 bit unsigned integer uint8 or ECOA:uint8

ECOA:uint16 16-bit unsigned integer uint16 or ECOA:uint16

ECOA:uint32 32-bit unsigned integer uint32 or ECOA:uint32

ECOA:uint64 64-bit unsigned integer uint64 or ECOA:uint64

ECOA:float32 Single precision IEEE 754 floating-
point

float32 or ECOA:float32

ECOA:double64 Double precision IEEE 754 floating-
point

double64 or ECOA:double64

ECOA:int64 and ECOA:uint64 are only available on platforms which support 64bit integer arithmetic. A

dedicated flag ECOA_64BIT_SUPPORT can be used to select their use – see reference headers in the

various bindings.

Table 3 ECOA Predefined Constants

ECOA Basic Type Constant Name Constant Value

ECOA:boolean8 TRUE

FALSE

1

0

ECOA:int8 INT8_MIN

INT8_MAX

-127

127

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 11

ECOA Basic Type Constant Name Constant Value

ECOA:char8 CHAR8_MIN

CHAR8_MAX

0 (NUL)

1272 (DEL)

ECOA:byte BYTE_MIN

BYTE_MAX

0

255

ECOA:int16 INT16_MIN

INT16_MAX

-32767

32767

ECOA:int32 INT32_MIN

INT32_MAX

-2147483647

2147483647

ECOA:int64 INT64_MIN

INT64_MAX

-9223372036854775807

9223372036854775807

ECOA:uint8 UINT8_MIN

UINT8_MAX

0

255

ECOA:uint16 UINT16_MIN

UINT16_MAX

0

65535

ECOA:uint32 UINT32_MIN

UINT32_MAX

0

4294967295

ECOA:uint64 UINT64_MIN

UINT64_MAX

0

18446744073709551615

ECOA:float32 FLOAT32_MIN

FLOAT32_MAX

-3.402823466e+38

3.402823466e+38

ECOA:double64 DOUBLE64_MIN

DOUBLE64_MAX

-1.7976931348623157e+308

1.7976931348623157e+308

For all the basic types it shall be possible to determine the minimum and maximum values. In C/C++, for
example these will be implemented as macros. These are also defined in the base namespace.

9.3 Derived Types

9.3.1 Simple Types

A simple type is a refinement of a basic type with a new name and optional additional restrictions (e.g. a
more restrictive range). These restrictions can be expressed directly in strongly typed languages such as
Ada, however in less strongly typed languages such a C/C++ they are expressed indirectly using min and
max constants. A simple type can also be defined based upon another user defined simple type.

EXAMPLE 1 defining a simple type based on a basic ECOA basic type:

<simple type="uint32" name="#simple_type_name#" />

2 ECOA:char8 is an ASCII character, and as such its range is 0 to 127, however the 7 bit ASCII code uses 8 bits of
storage, with the upper bit set to zero, because of this values in the range 128 to 255 are invalid.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 12

EXAMPLE 2 defining a simple type based on a basic ECOA basic type with a restricted range:

<simple type="uint32" name="#simple_type_name#" minRange="4" maxRange="10" />

EXAMPLE 3 defining a type based upon a previously defined simple type:

<simple type="#simple_type_name#" name="#simple_type_name#" />

9.3.2 Constants

A constant is a defined constant value of a given, previously defined, type. A constant may be an integer,
floating point, character or hexadecimal. Constants can be referenced when defining other types; allowing a
type to be sized or constrained.

<constant name="#constant_name#" type="#type_name#" value="#constant_value#" />

The #constant_value# may be an integer, floating-point, character or hexadecimal value.

EXAMPLE 1 defining a constant of type ECOA:uint32:

<constant name="my_message_max_size" type="ECOA:uint32" value="1024" />

EXAMPLE 2 defining a constant of type ECOA:double64:

<constant name="Pi" type="ECOA:double64" value="3.141592654" />

EXAMPLE 3 defining a constant of type ECOA:char8:

<constant name="my_char_constant" type="ECOA:char8" value="e" />

EXAMPLE 4 defining a constant of type ECOA:char8 (hexadecimal):

<constant name="my_hexadecimal_constant" type="ECOA:char8" value="0x4B" />

Constants can be used with the XML notation by using the following syntax:

%constant_name%.

EXAMPLE 3 using a constant to bound an array:

<array name="my_message" itemType="ECOA:char8"

maxNumber="%my_message_max_size%" />

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 13

9.3.3 Enumerations

An enumeration type is the definition of a set of labels, derived from a pre-defined type, with optional values
or integer-based constant definitions. If the optional value of the label is not set, this value is computed from
the previous label value, by adding 1 (or set to 0 if it is the first label of the enumeration). Value entries in
the type definition shall be ordered in the numerical order of the associated values (from the lowest value to
the highest one).

All labels used in an enum shall be unique within the enum scope. The enum type shall be a pre-defined
integer type, or a simple type derived from a pre-defined integer type.

EXAMPLE defining an enumeration type:

<enum name="#enum_type_name#" type="#type_name#">

 <value name="#enumeration_constant_name1#"

valnum="#optional_enum_value_value1#"/>

 <value name="#enumeration_constant_name2#"

valnum="#optional_enum_value_value2#"/>

 <value name="#enumeration_constant_name3#"

valnum="%#optional_enum_constant_name#%"/>

</enum>;

Where: #optional_enum_value_valueX# is of type #type_name#.

9.3.4 Records

Record types are types containing a fixed set of fields of given types. All types used in a record shall be
previously defined or ECOA pre-defined types.

All fields used in a record shall be unique within the record scope.

EXAMPLE defining a record type:

<record name="#record_type_name#">

 <field type="#type_name#" name="#record_field_name#" />

 <!-- a record may consist of multiple <fields... /> -->

 [<field type="#type_name#" name="#record_field_name#" />]

</record>

9.3.5 Variant Records

Variant Record types

 may contain a fixed set of fields of given type

 shall contain a set of optional fields and a selector. The selector chooses the format of the record by
controlling which optional fields are actually included in the record at runtime.

Variant records allow the definition of flexible data types: at runtime an instance of the variant record will
contain any specified fixed fields plus a subset of the optional fields specified.

It is forbidden to declare multiple 'when' entries with the same selector value.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 14

EXAMPLE defining a variant record:

<variantrecord name="#record_type_name#" selectName="#selector_name#"

selectType="#type_name#">

 <field type="#type_name#" name="#record_field_name#" />

 <union type="#type_name#" name="#union_name#"

when="#selector_value_constant#" />

 <!-- a variantrecord may consist of multiple {<field... /><union... />}

pairs... -->

 [<field type="#type_name#" name="#record_field_name#" />

 <union type="#type_name#" name="#union_name#"

when="#selector_value_constant#" />]

</variantrecord>

9.3.6 Fixed Arrays

A fixed array is an ordered collection of a defined maximum number of elements of the same type. The
value of maximum number shall be a positive constant of an integer type, and the array shall always
contain this number of elements.

EXAMPLE defining a fixed array:

<fixedarray name="#array_type_name#" itemType="#type_name#"

maxNumber="#uint32_constant#" />

9.3.7 Variable Arrays

A variable array is an ordered collection of elements of the same type. The variable array has a “current
size” and a “maximum size”. The “current size” enables the amount of data that needs to be copied to be
minimised. The "maximum size" bounds the memory and data transfer requirements. Variable arrays of
char8 shall be used to store character strings.

The values of “maximum size” and “current size” shall be positive and “current size” shall be less than or
equal to “maximum size”.

EXAMPLE defining a variable array:

<array name="#array_type_name#" itemType="#type_name#"

maxNumber="#uint32_constant#" />

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 15

9.4 Predefined Types

9.4.1 ECOA:return_status

The data type ECOA:return_status is an enumeration (using ECOA:uint32 as its base type) declared

in the ECOA namespace, which is used to specify the return status of applicable API operations. The
enumeration values are:

ECOA:OK = 0 No error has occurred

ECOA:INVALID_HANDLE = 1 An invalid handle has been used

ECOA:DATA_NOT_INITIALIZED = 2 The data has never been written

ECOA:NO_DATA = 3 The call is not able to provide any data

ECOA:INVALID_IDENTIFIER = 4 An invalid ID has been used.

ECOA:NO_RESPONSE = 5 No response was received for a request

ECOA:OPERATION_ALREADY_PENDING = 6 The requested operation is already being processed

ECOA:CLOCK_UNSYNCHRONIZED = 7 The clock is not synchronised

ECOA:RESOURCE_NOT_AVAILABLE = 8 Insufficient resource is available to perform the operation.

ECOA:OPERATION_NOT_AVAILABLE = 9 The requested operation is not available.

ECOA:INVALID_PARAMETER = 10 An invalid parameter has been used

The ECOA:return_status is an enumeration (see section 9.3.3) defined in the ECOA namespace as

follows:

<enum name="return_status" type="uint32">

 <value name="OK" valnum="0"/>

 <value name="INVALID_HANDLE" valnum="1" />

 <value name="DATA_NOT_INITIALIZED" valnum="2" />

 <value name="NO_DATA" valnum="3" />

 <value name="INVALID_IDENTIFIER" valnum="4" />

 <value name="NO_RESPONSE" valnum="5" />

 <value name="OPERATION_ALREADY_PENDING" valnum="6" />

 <value name="CLOCK_UNSYNCHRONIZED" valnum="7" />

 <value name="RESOURCE_NOT_AVAILABLE" valnum="8" />

 <value name="OPERATION_NOT_AVAILABLE" valnum="9" />

 <value name="INVALID_PARAMETER" valnum="10" />

</enum>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 16

9.4.2 ECOA:hr_time

A type used as a local (high-resolution) time source. The ECOA:hr_time data-type is a record composed

of the following fields:

 ECOA:uint32 seconds. Seconds elapsed since some reference point in time. The value shall be

positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

The ECOA:hr_time is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="hr_time">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

9.4.3 ECOA:global_time

A type used for global time source (e.g. UTC time). ECOA:global_time is a record composed of the

following fields:

 ECOA:uint32 seconds. Seconds elapsed since the POSIX Epoch (1
st
 of January, 1970). The value

shall be positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

The ECOA:global_time is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="global_time">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

9.4.4 ECOA:duration

A type used for operations that result in communications of delay or duration from one module to another.

ECOA:duration is a record composed of the following fields:

 ECOA:uint32 seconds. The value shall be positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

The ECOA:duration is a record (see section 9.3.4) defined in the ECOA namespace as follows:

<record name="duration">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 17

9.4.5 ECOA:log

ECOA:log is a variable array of 256 ECOA:char8 elements, that defines how a fault or information report

is stored. The type is constrained to enable portability, because some implementations may not be able to
support unconstrained logging. See Section 11.3 for information about logging and fault management.

Using a variable array potentially improves performance, because the size of the log can be efficiently
managed.

The ECOA:log is a variable array (see section9.3.7) defined in the ECOA namespace as follows:

<array name="log" itemType="char8" maxNumber="256" />

9.4.6 ECOA:error_id

The ECOA:error_id is a simple type (see section 9.3.1) defined in the ECOA namespace as follows:

<simple type="uint32" name="error_id" />

Error IDs uniquely identify error occurrences. They are generated by the Infrastructure.

9.4.7 ECOA:error_code

The ECOA:error_code is a simple type (see section 9.3.1) defined in the ECOA namespace as follows:

<simple type="uint32" name="error_code" />

Error codes may be provided to the ECOA Fault Handler by Module Instances when they raise errors or
fatal errors, as well as by the ECOA Infrastructure when it detects an error, in order to provide contextual
information about errors to the ECOA Fault Handler.

The functional meaning of error code values is not standardised by ECOA. Each ASC supplier is
responsible for specifying the meaning of error codes raised by their Module Instances. Each ECOA
Platform supplier is responsible for specifying the meaning of error codes raised by their ECOA Platform.

9.4.8 ECOA:asset_id

The ECOA:asset_id is a simple type (see section 9.3.1) defined in the ECOA namespace as follows:

<simple type="uint32" name="asset_id" />

Asset IDs uniquely identify entities involved in the fault management, i.e.:

 Entities for which it is possible to detect an error: component instance, protection domain, computing
node, computing platform and service operation.

 Entities on which it is possible to require a recovery action: component instance, protection domain,
computing node, computing platform or deployment.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 18

The Fault Handler and the Infrastructure need to share the same IDs since they are used to describe at
Fault Handler level errors raised by the Infrastructure and to carry on by the Infrastructure recovery actions
decided by the Fault Handler.

The platform tooling will generate a header file for target language bindings. This header file maps assets
described above with Ids according to the deployment. This header file may then be used by the developer
of the Fault Handler to implement recovery actions as a result of errors raised by specific asset IDs and/or
to target specific asset IDs.

Note: if the header file is included “as is” in the ECOA Fault Handler source code, the ECOA Fault Handler will need to be recompiled
when the deployment changes. Another possible design choice is for the user to convert the header file into a user-defined
configuration file (such as a binary PINFO) which would be read by the ECOA Fault Handler.

This header file contains declaration of constants defined in the ECOA_Assets namespace as follows:

 <constant name="CMP_#component_instance_name1#" type="ECOA:asset_id"

value="#CMP_ID1#" />

 <constant name="CMP_#component_instance_name2#" type="ECOA:asset_id"

value="#CMP_ID2#" />

 <!-- ... -->

 <constant name="CMP_#component_instance_nameN#" type="ECOA:asset_id"

value="#CMP_IDN#" />

 <constant name="PD_#protection_domain_name1#" type="ECOA:asset_id"

value="#PD_ID1#" />

 <constant name="PD_#protection_domain_name2#" type="ECOA:asset_id"

value="#PD_ID2#" />

 <!-- ... -->

 <constant name="PD_#protection_domain_nameN#" type="ECOA:asset_id"

value="#PD_IDN#" />

 <constant name="NOD_#computing_node_name1#" type="ECOA:asset_id"

value="#NOD_ID1#" />

 <constant name="NOD_#computing_node_name2#" type="ECOA:asset_id"

value="#NOD_ID2#" />

 <!-- ... -->

 <constant name="NOD_#computing_node_nameN#" type="ECOA:asset_id"

value="#NOD_IDN#" />

 <constant name="PF_#computing_platform_name1#" type="ECOA:asset_id"

value="#PF_ID1#" />

 <constant name="PF_#computing_platform_name2#" type="ECOA:asset_id"

value="#PF_ID2#" />

 <!-- ... -->

 <constant name="PF_#computing_platform_nameN#" type="ECOA:asset_id"

value="#PF_IDN#" />

 <constant name="SOP_#service_operation_name1#" type="ECOA:asset_id"

value="#SOP ID1#" />

 <constant name="SOP_#service_operation_name2#" type="ECOA:asset_id"

value="#SOP ID2#" />

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 19

 <!-- ... -->

 <constant name="SOP_#service_operation_nameN#" type="ECOA:asset_id"

value="#SOP IDN#" />

 <constant name="DEP_#deployment_name1#" type="ECOA:asset_id"

value="#DEP_ID1#" />

 <constant name="DEP_#deployment_name2#" type="ECOA:asset_id"

value="#DEP_ID2#" />

 <!-- ... -->

 <constant name="DEP_#deployment_nameN#" type="ECOA:asset_id"

value="#DEP_IDN#" />

NOTE “deployment_name” is the filename of the deployment XML file.

Names used in the constants are names used in the deployment and in the assembly.

Names for service operations are generated by concatenation as follows:

 [ComponentInstanceName]_[ServiceOrReferenceInstanceName]_[ServiceOperationName]

9.4.9 ECOA:asset_type

The data type ECOA:asset_type is an enumeration declared in the ECOA namespace, which is used to

identify the type of asset either linked to an error or targeted by a recovery action. The enumeration values
are:

COMPONENT 0 Component instance
PROTECTION_DOMAIN 1 Protection Domain
NODE 2 Computing Node
PLATFORM 3 Computing Platform
SERVICE 4 Service – used for service operation errors
DEPLOYMENT 5 Deployment – used for reloading the platform

The ECOA:asset_type is an enumeration (see section 9.3.3) defined in the ECOA namespace as follows:

<enum name="asset_type" type="uint32">

 <value name="COMPONENT" valnum="0" />

 <value name="PROTECTION_DOMAIN" valnum="1" />

 <value name="NODE" valnum="2" />

 <value name="PLATFORM" valnum="3" />

 <value name="SERVICE" valnum="4" />

 <value name="DEPLOYMENT" valnum="5" />

</enum>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 20

9.4.10 ECOA:error_type

The data type ECOA:error_type is an enumeration declared in the ECOA namespace, which is used to

specify the type of the error. The enumeration values are given by the table below. For each error, a short
description is given as well as the potential origin of the error, i.e. the asset linked to the error.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited
and Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics
United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this specification make no warranties expressed or
implied, including no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 21

Table 4 Table of Errors

 ECOA asset linked to the error

Error Value Description Component
Protection

Domain
Computing

Node
Computing

Platform
Service

Operation

RESOURCE_NOT_AVAILABLE 0 No more resources to carry on the element activities X X X X

UNAVAILABLE 1
The element (potentially a remote platform) has
disappeared for an unknown reason

X X X X

MEMORY_VIOLATION 2 Memory violation X X

NUMERICAL_ERROR 3 Divide by zero or floating-point error X X

ILLEGAL_INSTRUCTION 4 Illegal instruction in the binary code X X

STACK_OVERFLOW 5 Module or protection domain stack corruption X X

DEADLINE_VIOLATION 6 Module deadline violation X

OVERFLOW 7
The module queue is full or if the container has not enough
resources to track concurrent requests.

X

UNDERFLOW 8 The module queue is not enough fulfilled X

ILLEGAL_INPUT_ARGS 9 Illegal input arguments X

ILLEGAL_OUTPUT_ARGS 10 Illegal output arguments X

ERROR 11 Raise_error called by a Module X

FATAL_ERROR 12 Raise_fatal_error called by a Module X

HARDWARE_FAULT 13 Hardware fault X X

POWER_FAIL 14 Power failure X X

COMMUNICATION_ERROR 15 Communication error X X

INVALID_CONFIG 16
Invalid configuration. The node is not able to load the
configuration

 X X

INITIALISATION_PROBLEM 17
Initialisation problem. The node is not able to allocate
resources or to start components

 X X

CLOCK_UNSYNCHRONIZED 18
The node clock is not synchronized with the other parts of
the system.

 X X

UNKNOWN_OPERATION 19
The client receives the ELI UNKNOWN_OPERATION
return code when invoking a remote service operation

 X

OPERATION_OVERRATED 20 The operation is called more than expected by the QoS. X

OPERATION_UNDERRATED 21 The operation is called less than expected by the QoS. X

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 22

The ECOA:error_type is an enumeration (see section 9.3.3) defined in the ECOA namespace as follows:

<enum name="error_type" type="uint32">

 <value name="RESOURCE_NOT_AVAILABLE" valnum="0" />

 <value name="UNAVAILABLE" valnum="1" />

 <value name="MEMORY_VIOLATION" valnum="2" />

 <value name="NUMERICAL_ERROR" valnum="3" />

 <value name="ILLEGAL_INSTRUCTION" valnum="4" />

 <value name="STACK_OVERFLOW" valnum="5" />

 <value name="DEADLINE_VIOLATION" valnum="6" />

 <value name="OVERFLOW" valnum="7" />

 <value name="UNDERFLOW" valnum="8" />

 <value name="ILLEGAL_INPUT_ARGS" valnum="9" />

 <value name="ILLEGAL_OUTPUT_ARGS" valnum="10" />

 <value name="ERROR" valnum="11" />

 <value name="FATAL_ERROR" valnum="12" />

 <value name="HARDWARE_FAULT" valnum="13" />

 <value name="POWER_FAIL" valnum="14" />

 <value name="COMMUNICATION_ERROR" valnum="15" />

 <value name="INVALID_CONFIG" valnum="16" />

 <value name="INITIALISATION_PROBLEM" valnum="17" />

 <value name="CLOCK_UNSYNCHRONIZED" valnum="18" />

 <value name="UNKNOWN_OPERATION" valnum="19" />

 <value name="OPERATION_OVERRATED" valnum="20" />

 <value name="OPERATION_UNDERRATED" valnum="21" />

</enum>

9.4.11 ECOA:recovery_action_type

The data type ECOA:recovery_action_type is an enumeration declared in the ECOA namespace,

which is used to specify the type of action recovery the Infrastructure will carry on the target asset (i.e. on
the target component, protection domain, node or platform). The enumeration values are:

SHUTDOWN 0 Shutdown the target asset
COLD_RESTART 1 Restart the target asset in cold mode
WARM_RESTART 2 Restart the target asset in warm mode
CHANGE_DEPLOYMENT 3 Reload the platform with a new deployment

The ECOA:recovery_action_type is an enumeration (see section 9.3.3) defined in the ECOA

namespace as follows:

<enum name="recovery_action_type" type="uint32">

 <value name="SHUTDOWN" valnum="0" />

 <value name="COLD_RESTART" valnum="1" />

 <value name="WARM_RESTART" valnum="2" />

 <value name="CHANGE_DEPLOYMENT" valnum="3" />

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 23

</enum>

9.4.12 ECOA:pinfo_filename

The data type ECOA:pinfo_filename is a variable array declared in the ECOA namespace. This type is

used to specify where the file containing public PINFO data is stored before the actual deployment on the
target ECOA Platform.

<array name="pinfo_filename" itemType="char8" maxNumber="256" />

9.4.13 ECOA:seek_whence_type

The data type ECOA:seek_whence_type is an enumeration declared in the ECOA namespace, which is

used to define the position to consider in a PINFO, when invoking the Seek operation. The enumeration
values are:

SEEK_SET 0 Position is the beginning of the PINFO
SEEK_CUR 1 Position is the current PINFO’index
SEEK_END 2 Position is the end of the PINFO

The ECOA:seek_whence_type is an enumeration (see section 9.3.3) defined in the ECOA namespace as

follows:

<enum name="seek_whence_type" type="uint32">

 <value name="SEEK_SET" valnum="0" />

 <value name="SEEK_CUR" valnum="1" />

 <value name="SEEK_END" valnum="2" />

</enum>

10 Module Interface

The Module Interface specifies the interface to a module, which is used by the container to call module
operations.

10.1 Operations

The Module Interface provides a number of entry points that allow the Container to invoke Module
Operations that cause a Module Instance to execute a block of functionality. The block of functionality may
call any container operation API allowed by its type (see section 11).

10.1.1 Request-Response

For modules which are declared as a server of a request response operation, Request_Received is
provided to initiate the entry point associated to that request.

For modules which are declared as a client of an asynchronous request response operation,
Response_Received is provided to return the result of an asynchronous request.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 24

10.1.1.1 Request Received

For a Module declared as server of a request-response operation, a function is implemented by the Module

to handle the request generated by the client Module. The ID parameter is provided by the infrastructure to

allow the Module Instance to associate the response with the request (see 11.1.1.1). The

#request_parameters# correspond to the “in” parameters of the request-response. The name of the

function shall be generated to include the name of the operation.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#module_impl_name#:]#operation_name#__Request_Received([#context#,] ECOA:uint32 ID,

#request_parameters#);

10.1.1.2 Response Received

For a Module declared as client of an asynchronous request-response operation, a function is implemented

by the Module to handle the response generated by the server Module. The ID parameter is provided by

the infrastructure to allow the Module Instance to associate the response with the request (see 11.1.1.3).
This is required because the module could initiate multiple requests prior to receiving any responses. The

#response_parameters# correspond to the “out” parameters of the request-response, however they are

treated as inputs to the function in line with section 7. The name of the function shall be generated to
include the name of the operation.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#module_impl_name#:]#operation_name#__Response_Received([#context#,] ECOA:uint32 ID,

ECOA:return_status status, #response_parameters#);

Response Received operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:NO_RESPONSE]

o No response received within the expected time

o The server module queue is full

o Server module is IDLE/STOPPED

o Server has called raise_fatal_error()

o The operation is not connected to a RequestLink

The NO_RESPONSE status code hides several kinds of problem; depending on the problem, the
infrastructure may implement several mechanisms to quicken the call of this function.

10.1.2 Versioned Data Updated

The Updated module operation is a callback used by the Container to notify a module when a new value of
Versioned data is available. Once notified, the Module has to explicitly call Get_Read_Access and
Release_Read_Access to access to the updated data. This entry point is used to avoid the use of polling to
identify when new values are available.

NOTE The default behaviour of versioned data read operations is no notification callback.

The following is a prototype definition for the operation:

void [#module_impl_name#:]#operation_name#__Updated([#context#]);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 25

10.1.3 Event Received

For a Module declared as a handler of an event, a function, method or procedure shall be implemented by

the Module to handle the reception of the event from all possible senders. The #event_parameters#

correspond to the “input” parameters of the event. The name of the function shall be generated to include
the name of the operation.

The appropriate language binding will define the correct syntax for this module operation, but the abstract
format is given below:

void [#module_impl_name#:]#operation_name#__Received([#context#,]#event_parameters#);

10.2 Module Lifecycle

The Module Interface provides functionality to allow the container to command changes to the lifecycle
state of the Module/Trigger/Dynamic Trigger Instances it hosts under the direction of the ECOA
Infrastructure. Any Module is initialised and started automatically by the container.

The module lifecycle is discussed more fully in Architecture Specification Part 3.

Operations are provided by the Module Interface to support the following Module Lifecycle functionality.
These operations are applicable to all a Module Instances (“normal” modules, trigger and dynamic trigger).

 INITIALIZE_Received: this is the initialisation entry-point of the module used to perform its local
initialisation; the Initialise entry-point of a Module is the function in which the Module is supposed to
initialise all its local variables (user context).

 START_Received: this is the entry point which is used for starting a Module Instance from a technical
point of view. Once this entry point has been completed, the Module Instance is ready to process
incoming Operations. The ECOA Infrastructure calls this entry point after the INITIALIZE_Received
entry point has returned.

 STOP_Received: this event may be sent to the Module as part of a graceful shutdown procedure in
order to change the Module state from RUNNING to READY

 SHUTDOWN_Received: this event may be sent to the Module as part of a graceful shutdown
procedure in order to change the Module state from READY or RUNNING to IDLE

At API level, the following abstract operations will be invoked by the container and shall be implemented by
the Module.

void [#module_impl_name#:]INTIALIZE__Received([#context#]);

void [#module_impl_name#:]START__Received([#context#]);

void [#module_impl_name#:]STOP__Received([#context#]);

void [#module_impl_name#:]SHUTDOWN__Received([#context#]);

Within these four operations the module is restricted such that it may not call any Request Response
container operation API (i.e. Request_Sync, Request_Async or Response_Send). This is to prevent race
conditions and deadlock due to the start-up order of modules. The module may still call any other container
operation API allowed by its type (see section 11).

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 26

10.3 Error notification at fault handler level

The Fault Handler Module Interface provides error handling functionality that may be used by the platform
to provide information to a Fault Handler when an error occurs.

The following is an abstract description of the operation:

void [#error_handler_implementation_name#:]error_notification([#context#], ECOA:error_id error_id,

ECOA:global_time timestamp, ECOA:asset_id asset_id, ECOA:asset_type asset_type, ECOA:error_type

error_type, ECOA:error_code error_code);

This error notification API can be called when an asynchronous error occurs at container level (e.g. the
container internal buffers are full) or at hardware level (e.g. a divide by zero error), or when errors are
raised by Module Instances.

The parameter #context# represents a reference to the context associated with a Module Instance where

the Fault Handler is implemented as an ECOA Component. Where the Fault Handler is implemented as
part of the Platform Infrastructure it represents a reference to a structure which follows the same template
as that used for a Module Instance context.

The parameter error_id identifies uniquely the error in the scope of the notified Fault Handler.

The parameter timestamp is the time at which the error has been initially detected.

The parameter asset_id identifies the asset linked to the error. The ID is unique for a given asset type.

The parameter asset_type identifies the type of asset linked to the error: component instance, protection

domain, computing node, computing platform or service operation.

The parameter error_type provides the type of error raised.

The parameter error_code is information provided by the asset that raised the error. This may be used to

pass more detailed information to the Fault Handler.

The Infrastructure will not provide incompatible asset ID and error types (e.g. a module cannot be
associated to an OVERRATED error)

Within the handler, the Fault Handler may at least call any recovery action (11.6) or any log function (11.3).

11 Container Interface

11.1 Operations

The Container Interface provides a number of operations that allow a module to invoke Container
Operations to request Services from other Modules in the system.

11.1.1 Request Response

Two operations are provided to allow Modules to issue requests to other modules:

 Synchronous Request

 Asynchronous Request

A further operation, Response Send is provided to return the result to the requesting module.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 27

11.1.1.1 Response Send

An operation provided by the Container, used by the Module to send a Response. The ID parameter is was

provided by the infrastructure in the associated Request Received operation and enables the Module

Instance to associate the response with the request (see 10.1.1.1). The #response_parameters#

correspond to the “out” parameters of the request-response, however they are treated as inputs to the
function in line with section 7.

An error indication is returned if an infrastructure problem prevents the API from succeeding, and the fault
is handled via the fault management infrastructure.

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]#operation_name#__Response_Send([#context#,]

ECOA:uint32 ID, #response_parameters#);

Response operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:INVALID_IDENTIFIER]

o API called with an invalid request-response identifier

11.1.1.2 Synchronous Request

An operation provided by the Container, used by a Module to invoke an operation provided by a server

Module. The #request_parameters# correspond to the “in” parameters of the request-response. The

#response_parameters# correspond to the “out” parameters of the request-response. The calling

Module is blocked until the response is received.

An error indication is returned to caller if the call fails and the fault is then handled via the fault management
infrastructure.

The following is a prototype definition for the operation:

ECOA:return_status

[#module_impl_name#_container:]#operation_name#__Request_Sync([#context#,]#request_parameters#,

#response_parameters#);

Synchronous Request operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:NO_RESPONSE]

o No response received within the expected time

o The server module queue is full

o Server module is IDLE/STOPPED

o Server has called raise_fatal_error()

o Container unable to send request (including if the operation is not connected to a RequestLink)

The NO_RESPONSE status code covers several issues; and, depending on the problem, the infrastructure
may implement several mechanisms to accelerate the response of this function.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 28

11.1.1.3 Asynchronous Request

An operation provided by the Container, used by a Module to invoke an operation provided by a server

Module. The ID parameter is provided by the infrastructure to allow the Module Instance to associate the

response with the request (see 10.1.1.2). This ID is unique for each Module Instance and for each call of

the operation (because the module could initiate multiple requests prior to receiving any responses). The

#request_parameters# correspond to the “in” parameters of the request-response.

The operation returns immediately so the calling Module is not blocked. If an infrastructure problem
prevents the call from succeeding, the fault is handled via the fault management infrastructure.

Furthermore, if the maximum number of concurrent asynchronous requests that the module is authorized to
perform has been reached and the module invokes another asynchronous request, the container shall not
proceed the request and return RESOURCE_NOT_AVAILABLE to the module.

Asynchronous Request operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

o maxConcurrentRequests has been exceeded

The following is a prototype definition for the operation:

ECOA:return_status

[#module_impl_name#_container:]#operation_name#__Request_Async([#context#,],ECOA:uint32* ID,

#request_parameters#);

11.1.2 Versioned Data

The container provides operations that allow Modules to read from or write to Versioned Data. The
operations provided allow a Module Instance to:

 Get (request) Read Access

 Release Read Access

 Get (request) Write Access

 Cancel Write Access (without writing new data)

 Publish (write) new data (automatically releases write access)

A Data Handle is provided by the container for each instance of Versioned data to allow Module Instances
to access that Versioned Data.

A Data Handle structure contains the following fields:

 An attribute used to provide access to a local copy of the data

 An attribute called “stamp”, which reflects if a writer has performed a publish action on the data
(without access control), or if the data has been locally updated (with access control)

 A platform hook, which is opaque to the user, and used by the ECOA infrastructure to handle that data

The platform hook is typed as an array of bytes, to enable portability, to allow the infrastructure to allocate
memory areas in order to store data handles. It is assumed that a size of 32 bytes is sufficient to cover any
platform implementation.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 29

The following is a prototype definition for a Data Handle

typedef struct {

 #type_name#* data;

 ECOA:uint32 stamp;

 ECOA:byte platform_hook[32];

} [#module_impl_name#_container:]#operation_name#_handle;

11.1.2.1 Get_Read_Access

For a Module declared as a reader of a Versioned Data, the container shall provide a function to get read
access to the Versioned Data. This operation shall output the Data Handle parameter that allows the
subsequent code to access the data space:

 With access control this data space contains a local, read-only copy of the data.

o NOTE: Although this is a read-only operation, it is possible for a Module to locally change the data. Any local
changes made will be lost after a release operation however.

 Without access control this data space is the actual version data repository space as there are no
local copies.

o NOTE: Although this is a read-only operation, any change to the data made by a Reader Module will affect the
repository. The ECOA Infrastructure cannot prevent a Reader from writing in the repository when access control is
disabled.

The name of the function shall be generated to include the name of the operation.

The operation does not block and returns immediately with the latest available copy of data (with access
control), or with the handle to the actual data in the repository (without access control). The stamp attribute
in the data handle enables the caller to determine whether the data has been locally updated (with access
control) or if a writer has performed a publish action on the data (without access control). It does not reflect
a global information shareable between all readers. The status code ECOA:NO_DATA is returned if the
provider has never published an initial value. In this case the Data Handle will contain a null pointer and the
stamp will be equal to zero.

If there is an infrastructure problem that prevents the API from succeeding, an error indication is returned to
the caller and the fault is handled via the fault management infrastructure. If an error is returned from
Get_Read_Access, the call to Release_Read_Access should not be used. In an error condition, the stamp
shall be set to the default for the type.

Architecture Specification Part 3 specifies how the ECOA Infrastructure shall manage the stamp value.

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]#operation_name#__Get_Read_Access([#context#,]

[#module_impl_name#_container:]#operation_name#_handle* data_handle);

Get Read Access operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:NO_DATA]

o The data has never been written (including if the operation is not connected to a DataLink)

 [ECOA:return_status:INVALID_HANDLE]

o API called with an invalid versioned data handle

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 30

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

o Maximum number of versioned data reached

o Container unable to provide a versioned data

11.1.2.2 Release_Read_Access

With access control, this operation signals to the container that the calling module has finished working with
the local copy of the Versioned Data, and that the data handle is no longer required. The module should not
access the local copy of the data after calling this operation as it cannot be guaranteed to be consistent.

Without access control, this operation signals to the Infrastructure that the data handle is no longer
required. There is no local copy to be released.

The following is a prototype definition for the operation:

ECOA:return_status

[#module_impl_name#_container:]#operation_name#__Release_Read_Access([#context#,]

[#module_impl_name#_container:]#operation_name#_handle* data_handle);

Release Read Access operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:INVALID_HANDLE]

o API called with an invalid versioned data handle

11.1.2.3 Get_Write_Access

For a Module declared as a writer of a Versioned Data, the container shall provide a function to get write
access to the versioned data. This operation shall output the Data Handle parameter that allows the
subsequent code to access the data space:

 With access control:
o In “Read+Write” mode, this data space contains a local, read-write copy of the data

initialized with the latest value available locally.
o In “Write only” mode, this data space contains a local uninitialized copy of the data.

 Without access control this data space is the actual version data repository space as there are no
local copies.

The operation does not block and returns immediately with a handle as previously described. The stamp
attribute in the data handle enables the caller to determine whether the data has been locally updated (with
access control) or if a writer has performed a publish action on the data (without access control). With
access control, each call to Get_Write_Access will use a new dedicated platform resource represented by
the returned data handle and pointing to a new memory area with either the most updated value (in
“Read+Write” mode) or an uninitialized value (in “Write only” mode). With access control, each call to
Get_Write_Access will require a call to either Cancel_Write_Access or Publish_Write_Access to free that
corresponding platform resources, and commit (publish) the modified data is required. Without access
control, each call to Get_Write_Access will require a call to either Cancel_Write_Access or
Publish_Write_Access to release the data handle and avoid reaching the maxVersion attribute value.

If data has never been written, Get_Write_Access returns the status code ECOA:DATA_NOT_INITIALIZED
but returns a valid data handle towards a valid memory area.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 31

If there is an infrastructure problem that prevents the API from succeeding, another error indication
(RESOURCE_NOT_AVAILABLE, etc) is returned to the caller and the infrastructure handles the fault via
the fault management infrastructure.

If there is an infrastructure problem that prevents the API from succeeding, an error indication is returned to
caller and the fault is handled via the fault management infrastructure. If an error is returned from
Get_Write_Access, the call to Cancel_Write_Access is not required. In an error condition, the stamp shall
be set to the default for the type.

NOTE: if the operation is not connected to a DataLink, the Writer will still be able to write in a local repository not accessible by any
other module

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]#operation_name#__Get_Write_Access([#context#,]

[#module_impl_name#_container:]#operation_name#_handle* data_handle);

Get Write Access operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:DATA_NOT_INITIALIZED]

o No error – the data has never been written

 [ECOA:return_status:INVALID_HANDLE]

o API called with an invalid versioned data handle

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

o Maximum number of versioned data reached

o Container unable to provide versioned data

11.1.2.4 Cancel_Write_Access

With access control, this operation signals to the container that the calling module has finished working with
the local copy of the Versioned Data, that no updates are required, and that the data handle is no longer
required. Any local updates which may have been made should not be published to any readers of that
versioned data. The module should not access the local copy of the data after calling this operation as it
cannot be guaranteed to be consistent.

Without access control, although there is no local copy to be released, this operation signals to the
Infrastructure that the data handle is no longer required.

The following is a prototype definition for the operation:

ECOA:return_status

[#module_impl_name#_container:]#operation_name#__Cancel_Write_Access([#context#,]

[#module_impl_name#_container:]#operation_name#_handle* data_handle);

Cancel Write Access operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:INVALID_HANDLE]

o API called with an invalid versioned data handle

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 32

11.1.2.5 Publish_Write_Access

With access control, this operation signals to the container that the calling module has finished working with
the local copy of the Versioned Data and that the container is authorised to broadcast the revised data to all
readers of the Versioned Data. The module should not access the local copy of the data after calling this
operation as it cannot be guaranteed to be consistent.

Without access control, this operation signals to the Infrastructure that the data handle is no longer
required. There is no local copy to be released as all changes made to the data are directly written in the
repository by the module without going through a commit phase.

The operation does not block. An error message is returned to the caller if the handle is invalid (e.g. the
module is reusing a handle already released). Any other fault is handled by the infrastructure.

The following is an abstract definition of the operation:

ECOA:return_status

[#module_impl_name#_container:]#operation_name#__Publish_Write_Access([#context#,]

[#module_impl_name#_container:]#operation_name#_handle* data_handle);

Publish Write Access operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:INVALID_HANDLE]

o API called with an invalid versioned data handle

11.1.3 Event Send

For a Module declared as a sender of an event, a function, method or procedure shall be implemented by

the Container to send that event with typed parameters to all receivers. The #event_parameters#

correspond to the “input” parameters of the event. The name of the function shall be generated to include
the name of the operation.

The operation returns immediately so the calling Module is not blocked. If an infrastructure problem
prevents the call from succeeding (e.g. if erroneous parameters are given), the fault is handled via the fault
management infrastructure.

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]#operation_name#__Send([#context#,]#event_parameters#);

11.2 Properties

The Container Interface may include operations which allow a Module to access properties at runtime.
Module properties are defined for a Module Type; the value is assigned for each Module Instance. The
Module Instance Property Value can be either:

 A literal value;

 A reference to a Component Property

A Component Property is defined within the Component Definition, whose value is assigned for each
Component Instance within the Assembly. In addition it is also possible to define Assembly Property Values
which may be referenced by a Component Instance Property Value. Note that it is not possible to directly
reference an Assembly Property Value from a Module Instance Property Value as detailed in section
11.2.2.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 33

This mechanism allows different instances of Modules to have access to property values specified at the
Module Instance, Component Instance or Assembly level.

A property may be a Basic Type, a Simple Type, an Enumeration, or a Fixed or Variable Array of these
types.

11.2.1 Get_Value

Used by Module Instances to get read only access to the properties. The abstract format of the interface is:

void [#module_impl_name#_container:]get_#property_name#_value([#context#,] #property_type_name#*

value);

Where:

 #property_name# is the name of the property used in the Module Type,

 #property_type_name# is the name of the data-type of the property.

11.2.2 Expressing Property Values

Values given to properties are set in Component Implementations or in assembly schemas through the
writing of strings, as described below. It is a syntax that allows Basic, Simple, Enumerations and Fixed or
Variable Arrays of these types to be represented.

NOTE: the character strings used to assign property values do not need to be enclosed in double quotes except for the special case of
an array of char8 detailed below.

 « Basic », « Simple » : direct value

EXAMPLES 16, 0xFFFFFFFF, -10, 100.234

 « Enum » : symbol

o The case shall follow the one used in the XML type definition.

EXAMPLE: AIR, GROUND.

 « FixedArray » : list of « maxNumber » values of Basic, Simple or Enumerations, comma separated,
surrounded by square braces ‘[]’ or string syntax with ""

EXAMPLE (for maxNumber=5): [1,2,3,4,5]

 « Array » : list of N values (where 0≤N≤maxNumber) of Basic, Simple or Enumerations, comma
separated, surrounded by square braces ‘[]’ or string syntax with ""

EXAMPLE (for maxNumber=10, current_size = 3): [1, 2, 3]

 Character syntax for type char8

o The expression ‘ ’ is allowed in property values to represent a single character.

EXAMPLE ‘K’.

EXAMPLE for an array “KEY” can be written as [‘K’, ‘E’, ‘Y’].

o A single character can be represented by its ASCII code using integer or hexadecimal.

EXAMPLE ‘K’ can be written as 75.

EXAMPLE for an array “KEY” can be written as [75, 69, 89].

EXAMPLE ‘K’ can be written as 0x4B.

EXAMPLE for an array “KEY” can be written as [0x4B, 0x45, 0x59].

o It is possible to mix the different character syntaxes

EXAMPLE for an array “KEY” can be written as [0x4B, ‘E’, 89].

 String syntax for FixedArray or Array of type char8

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 34

o Character list surrounded with ""

o Equivalent to an array with values of char8

o For FixedArray, the number of initializer elements must be equal to maxNumber.

EXAMPLE (for maxNumber=5): “HELLO”

o For Array, the number of initializer elements must be less than or equal to maxNumber.

EXAMPLE (for Array with maxNumber=10, current_size = 2): “HI”

o Escape character for ‘"’ is ‘\’.

EXAMPLE (for a FixedArray with maxNumber=7): "\"ABCDE\""

 Support for constants - valid for integer and floating-point types only

o Suppose the following is defined in the library "mylib":

 <constant name="MY_CONST" type="int32" value="32"/>

o Then the expression %mylib:MY_CONSTANT% is allowed in property values:

 Syntax to refer to an Component Property from a Module Instance Property Value

o To reference a Component Property from a Module Instance Property Value, the ‘$’ sign shall be
used to prefix the name of the Component Property as follows:

 $#component_property_name#

 Syntax to refer to an Assembly Property from an Component Instance Property Value

o To reference an Assembly Property from a Component Instance Property value, the ‘$’ sign shall
be used to prefix the name of the Assembly Property in the SCA source attribute as follows:

 <csa:property name="#component_property_name#"
source="$#assembly_property_name#" />

o Reminder: by definition, artefacts within the Component Implementation scope, such as Module
Instance Property Values cannot reference Assembly Properties since these are not visible from
the scope of Component Implementation.

11.2.3 Example of Defining and Using Properties

The following XML defines a component with a simple property “Update_Rate” (example.componentType):

<componentType>

 <service .../>

 <reference .../>

 <property name="Update_Rate" ecoa-sca:type="float32"/>

 <property name="Component_Property1" ecoa-sca:type="float32"/>

</componentType>

The following XML shows how a property is defined for a Module Type and how a value is assigned to a
Module Instance. Two properties are defined for the Module Type "example_mod_type". One property is
assigned a literal value, the other references a Component Property.

<moduleType name="example_mod_type">

 <properties>

 <property name="Update_Rate" type="float32"/>

 <property name="Module_Inst_Prop" type="uint32"/>

 </properties>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 35

</moduleType>

...

<moduleInstance name="example_mod_inst1"

 implementationName="example_mod_impl">

 <propertyValues>

 <propertyValue name="Update_Rate">$Update_Rate</propertyValue>

 <propertyValue name="Module_Inst_Prop"> 20 </propertyValue>

 </propertyValues>

</moduleInstance>

<moduleInstance name="example_mod_inst2"

 implementationName="example_mod_impl">

 <propertyValues>

 <propertyValue name="Update_Rate">$Update_Rate</propertyValue>

 <propertyValue name="Module_Inst_Prop"> 2 </propertyValue>

 </propertyValues>

</moduleInstance>

Values are assigned to component properties in the system assembly schema (.impl.composite):

<csa:component name="example">

 <ecoa-sca:instance componentType="example_instance">

 <ecoa-sca:implementation name="example_component"/>

 </ecoa-sca:instance>

 <csa:property name="Update_Rate"><csa:value>10.0</csa:value></csa:property>

 <csa:property name="Component_Property1" source="$Assembly_Property1"/>

</csa:component>

Assembly Property Values are defined in the system assembly schema (.impl.composite):

<csa:property name="Assembly_Property1" ecoa-sca:type="ECOA:uint32">

 <csa:value>10</csa:value>

</csa:property>

The above example would generate two Get_Value APIs:

void [example_mod_impl_container:]get_Update_Rate_value([#context#,] ECOA:float32* value);

void [example_mod_impl_container:]get_Module_Inst_Prop_value([#context#,] ECOA:uint32* value);

For the component instance “example_instance” the get_Update_Rate_value API would return 10.0 for
both the “example_mod_inst1” and “example_mod_inst2” Module Instances. However the

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 36

get_Module_Inst_Prop_value API would return 20 for the “example_mod_inst1” Module Instance, but 2 for
the “example_mod_inst2” Module Instance.

11.3 Logging and Fault Management

The Container Interface provides dedicated functionality for each Module Instance to provide information to
the infrastructure. This information may be logged and falls into two categories:

 Application Faults for which the infrastructure is able to provide run-time responses

 Execution Information that can aid offline analysis of problems for system development and
integration

Six categories of information can be recorded: two categories for faults and four categories relating to
execution information as shown in Table 5.

Table 5 Logging Error Level

Category Definition Infrastructure Response
Maskable Within the
Deployment Schema

FATAL

Used by the application to raise
severe errors from which it knows it
cannot recover. No filtering is useful or
desirable.

Module shall be shutdown by
the infrastructure and fault is
reported to the fault
management infrastructure.
Information is logged.

If a fatal error is reported by a
Module, the infrastructure will
shutdown all modules of the
component.

If a fatal error is reported by
the ECOA Fault Handler, then:

If there is only one ECOA
Fault Handler instance on the
platform (i.e. the one which
raised the fatal error), the
infrastructure will shutdown all
protection domains associated
with that Fault Handler.

Else, another ECOA Fault
Handler instance may handle
the error.

No

ERROR
Used by the application to raise errors
from which the application may be
able to recover, with assistance.

The fault management
infrastructure shall filter these
errors to determine whether
the Module is to be shutdown
or not. Information is logged.

No

WARNING

Used by the application to log runtime
issues which are undesirable or
unexpected, but not necessarily
"wrong". Useful for non-intrusive
analysis. The Module Instance
performing the log is not stopped (i.e.
continues execution).

Information is logged. Yes

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 37

Category Definition Infrastructure Response
Maskable Within the
Deployment Schema

INFO

Used by the application to log runtime
events (e.g. startup/shutdown). Useful
for non-intrusive analysis. The current
Module Instance is not stopped (i.e.
continues execution).

Information is logged. Yes

DEBUG
Detailed information on the flow
through the system.

Information is logged. Yes

TRACE More detailed information. Information is logged. Yes

An entry-point in the Container Interface is associated with each of the categories in Table 5. If necessary

the container shall truncate the data to the maximum size of ECOA::log.

The log levels are configured in the Deployment where certain categories may be masked, except for
ERROR and FATAL.

The following shows how the logPolicy is captured in the Deployment XML.

 <logPolicy>

 <componentLog instanceName="component_instance_name"

enabledLevels="enabled_levels_mask">

 <moduleLog instanceName="module_instance_name"

enabledLevels="enabled_levels_mask"/>

 </componentLog>

 </logPolicy>

Where enabled_levels_mask is a list of logging levels (either WARN, DEBUG, INFO or TRACE) separated
with “|”.

Log level configuration information defined at Component Instance level is applied for any Module
Instances where no configuration information is present in the Deployment. All log levels are enabled where
no configuration information is given at the Component Instance level.

The actual log output configuration is platform dependant, and may be assigned to text files; flash disk etc.
depending on the platform capabilities. However, the platform solution shall provide means to retrieve log
output of Module Instances in the following format:

 No header line

 Each log message shall have the following format :

<SYSTEM_TIME>:<IS_UTC>:<MESSAGE_LEVEL>:<COMPONENT_INSTANCE_NAME>:<MODULE_INSTANCE_NAME>:<MESSA

GE_TEXT><EOL>

 Where:

o <SYSTEM_TIME> is a string-typed field containing the log message writing date (t), according to
a common ECOA system time reference.

It is defined by a two values: the first value (s) is an integer expressing a number of seconds,
while the second value (n) corresponds to time residue expressed in nanoseconds, so that t=s +
(n/10E9) in seconds.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 38

<SYSTEM_TIME> values are separated by a comma; the two values are written in quotation
marks.

o <IS_UTC> is an integer representing a Boolean value :

 Value is 0 when the time is local time, but expressed relative to Unix Epoch

 Value is 1 if time is expressed using UTC timescale.

o <MESSAGE_LEVEL> is a string-typed field indicating the criticality level of the log message,
either FATAL, ERROR, WARNING, DEBUG, INFO or TRACE. This field is written in quotation
marks.

o <COMPONENT_INSTANCE_NAME> is a string-typed field containing the name of the
Component Instance which produced the log (in accordance with Component Instance names
defined in the final assembly and deployment XML files). This field is written in quotation marks.

o <MODULE_INSTANCE_NAME> is a string-typed field containing the name of the Module
Instance which produced the log (in accordance with Module Instance names defined in the
component implementation and deployment XML files). This field is written in quotation marks.

o <MESSAGE_TEXT> is a string-typed field containing the message defined by the user when
calling the Logging and Fault API. This field is written in quotation marks. The maximum size of

the user message is defined by the maximum size of ECOA::log.

o <EOL> is the UNIX end-of-line character.

EXAMPLE of a log message: "1336048735,618033988":0:"INFO":"node5":"Exe3":"My comments"<EOL>

The following sections detail the prototype definitions for the logging and fault operations.

11.3.1 Log_Trace

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]log_trace([#context#],const ECOA:log log);

11.3.2 Log_Debug

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]log_debug([#context#],const ECOA:log log);

11.3.3 Log_Info

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]log_info ([#context#],const ECOA:log log);

11.3.4 Log_Warning

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]log_warning([#context#],const ECOA:log log);

11.3.5 Raise_Error

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]raise_error([#context#],const ECOA:log log, ECOA:error_code

error_code);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 39

11.3.6 Raise_Fatal_Error

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]raise_fatal_error([#context#],const ECOA:log log,

ECOA:error_code error_code);

11.4 Time Services

The Container Interface API provides the Modules with a set of library functions used to access time
services. Three, possibly distinct, time sources shall be provided:

 Relative Local Time - The high-resolution real-time clock local to the current computing node,
representing the time elapsed since node start up.

 Absolute System Time – The synchronised time across an ECOA system, relative to a system clock
reference defined by the system integrator. Absolute System Time may or may not coincide with
UTC Time.

 UTC Time - The synchronised time across all systems (ECOA and non-ECOA). Defined in terms of
UTC, and offset such that zero corresponds to 00:00 1 Jan 1970. UTC Time may not be available in all
ECOA systems.

The first time source may generally be used to compute and express durations with a high resolution
required for real-time precision services. The ECOA infrastructure provides the modules with a high
resolution (HR) clock which may not be synchronized with other time sources.

As a consequence, the HR clock is considered as local to a Module, and should only be used to locally

compute real time durations. The HR clock (called type ECOA:hr_time) expressed in seconds and

nanoseconds and representing the time elapsed since system start up on that CPU. It is represented as
two 32 bit unsigned integers expressed in seconds and nanoseconds. It may only be considered as local to
the Module, as Modules may be deployed in different protection domains and hence on different computing
nodes, which would mean that the HR time cannot be guaranteed to be synchronised between them.

The ECOA infrastructure may provide the software modules with UTC time. The globally defined clock has
a less precise clock, and should be used to date events. The ECOA infrastructure provides the software
modules with a function to return the currently most precise UTC clock accessible on the current computing
node.

A non-UTC global time source is also useful because it may not be desirable to convert to UTC time (e.g.
for performance reasons).

The ECOA:global_time is used for both UTC and non-UTC system times comprising two 32 bits

unsigned integers , seconds and nanoseconds.

In addition, it is possible to retrieve the time resolution for each of the time sources. The output resolution
parameter contains the time resolution provided by the underlying software environment. The time
resolution is the shortest duration between two updates of the associated clock. The get time resolution
operations shall always return a valid value.

The following sections provide prototype definitions for the time service operations:

11.4.1 Get_Relative_Local_Time

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]get_relative_local_time([#context#], ECOA:hr_time
*relative_local_time);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 40

11.4.2 Get_UTC_Time

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]get_UTC_time([#context#], ECOA:global_time
*utc_time);

Get UTC Time operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:CLOCK_UNSYNCHRONIZED]

o No error – clock is unsynchronized; a valid value is still returned

 [ECOA:return_status:OPERATION_NOT_AVAILABLE]

o UTC is not available – zero is returned

11.4.3 Get_Absolute_System_Time

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]get_absolute_system_time([#context#],
ECOA:global_time *absolute_system_time);

Get Absolute System Time operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:CLOCK_UNSYNCHRONIZED]

o No error – clock is unsynchronized; a valid value is still returned

11.4.4 Get_Relative_Local_Time_Resolution

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]get_relative_local_time_resolution([#context#],const

ECOA:duration *relative_local_time_resolution);

11.4.5 Get_UTC_Time_Resolution

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]get_UTC_time_resolution ([#context#],const ECOA:duration

*utc_time_resolution);

If UTC Time is not available Get_UTC_Time_Resolution will return a zero utc_time_resolution.

11.4.6 Get_Absolute_System_Time_Resolution

The following is a prototype definition for the operation:

void [#module_impl_name#_container:]get_absolute_system_time_resolution ([#context#],const

ECOA:duration *absolute_system_time_resolution);

11.5 Persistent Information Management (PINFO)

Persistent Information can be in the form of private PINFO or public PINFO. PINFO is only available in

read-only mode and makes use of the read_#PINFOname# and seek_#PINFOname# APIs.

The following sections define the PINFO prototype definitions:

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 41

11.5.1 PINFO read

Read operation parameters are as follows:

 #PINFOname# is the PINFO name declared at Module Type level within PINFO usage attributes.

 ‘memory_address’ is a pointer to a memory area where read data is copied to.

 ‘in_size’ is the number of bytes to read from the current PINFO’index position.

 ‘out_size’ is the actual number of bytes read, equal to the minimum of ‘in_size’ and (PINFO’size –
PINFO’index).

The read operation will adjust PINFO’index position to the minimum of (PINFO’index position + out_size)
and PINFO’size.

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]read_#PINFOname#([#context#], ECOA:byte

*memory_address, ECOA:uint32 in_size, ECOA:uint32 *out_size);

Read operations may return the following status codes:

 [ECOA:return_status:OK]

o No error. ‘out_size’ bytes have been read

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

o An infrastructure error occurred. Example: Mass memory failure.

 [ECOA:return_status:INVALID_PARAMETER]

o ‘memory_address’ is a NULL pointer or inaccessible

11.5.2 PINFO seek

Seek operations parameters are as follows:

 #PINFOname# is the PINFO name declared at Module Type level within PINFO usage attributes

 ‘whence’ defines how the offset is applied (SEEK_SET is relative to the start of the PINFO,
SEEK_CUR is relative to PINFO’index position and SEEK_END is relative to the end of the PINFO)

 ‘offset’ is the number of bytes to be added to the selected position. “offset” is an int32 so as to allow to
seek backwards from the selected position in the persistent data.

 ‘new_position’ returns the value of the new PINFO’index position.

If the seek operation is successful, the PINFO’index position is adjusted to the minimum of (‘whence’
position + ‘offset’) and PINFO’size.

If the seek operation is unsuccessful, the PINFO’index position is not modified and the ‘new_position’
contains the value of the original PINFO’index position.

The following is a prototype definition for the operation:

ECOA:return_status [#module_impl_name#_container:]seek_#PINFOname#([#context#], ECOA:int32 offset,

ECOA:seek_whence_type whence, ECOA:uint32 *new_position);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 42

Seek operations may return the following status codes:

 [ECOA:return_status:OK]

o PINFO’index position has been set according to the parameters.

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

o An infrastructure error occurred. Example: Mass memory failure.

 [ECOA:return_status:INVALID_PARAMETER]

o When SEEK_SET is chosen, the offset is outside the range of 0..PINFO’size

o When SEEK_CUR is chosen, the current PINFO’index position + ‘offset’ is outside the range of
0..PINFO’size

o When SEEK_END is chosen, the PINFO'size + ‘offset’ is outside the range of 0..PINFO’size (i.e.
must be a negative offset)

11.5.3 Example of defining Private PINFO

Private PINFO attributes are implemented in the XML Metamodel as follows:

 The XML Metamodel provides a way for defining Private PINFO at Module Type level. The following
attributes can be configured:

 PINFO Name.

 The XML Metamodel provides a way for declaring PINFO Filename Association at Module Instance
level:

o This is done via an association between PINFO name and a filename. This file will provide the
Private PINFO data.

The following example XML declares Private PINFO at Module Type level. The example shows two Module
Type definitions, both of which can access a number of private PINFO (both read-only and read-write
PINFO):

<moduleType name="M1_t">

<pinfo>

 <privatePinfo name="myprivate_R_PinfoOne" />

 <privatePinfo name="myprivate_R_PinfoTwo" />

</pinfo>

 <operations>

 <!-- … -->

 </operations>

</moduleType>

<!-- … -->

<moduleType name="M2_t">

<pinfo>

 <privatePinfo name="myprivate_R_PinfoOne" />

 <privatePinfo name="myprivate_R_PinfoTwo" />

 <privatePinfo name="myprivate_R_PinfoThree" />

</pinfo>

 <operations>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 43

 <!-- … -->

 </operations>

</moduleType>

The following example XML declares Private PINFO at Module Instance level. The example shows three
Module Instances being defined and Private PINFO assignments being made:

<moduleImplementation name="M1_Im" language="C" moduleType="M1_t"/>

<moduleImplementation name="M2_Im" language="C" moduleType="M2_t"/>

<!-- … -->

<moduleInstance name="M11" implementationName="M1_Im">

<pinfo>

 <privatePinfo name="myprivate_R_PinfoOne">"example_private_R_PINFO_11.txt"

 </privatePinfo>

 <privatePinfo name="myprivate_R_PinfoTwo">"example_private_R_PINFO_1.txt"

 </privatePinfo>

</pinfo>

</moduleInstance>

<moduleInstance name="M21" implementationName="M1_Im">

<pinfo>

 <privatePinfo name="myprivate_R_PinfoOne">"example_private_R_PINFO_21.txt"

 </privatePinfo>

 <privatePinfo name="myprivate_R_PinfoTwo">"example_private_R_PINFO_1.txt"

 </privatePinfo>

</pinfo>

</moduleInstance>

<moduleInstance name="M12" implementationName="M2_Im">

<pinfo>

 <privatePinfo name="myprivate_R_PinfoOne">"example_private_R_PINFO_12.txt"

 </privatePinfo>

 <privatePinfo name="myprivate_R_PinfoTwo">"example_private_R_PINFO_1.txt"

 </privatePinfo>

 <privatePinfo name="myprivate_R_PinfoThree">"example_private_R_PINFO_2.txt"

 </privatePinfo>

</pinfo>

</moduleInstance>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 44

11.5.4 Example of defining Public PINFO

Public PINFO attributes are implemented in the XML Metamodel as follows:

 The XML Metamodel provides a way for defining Public PINFO at Module Type level:

o Public PINFO usage attributes, which contain the following fields:

 PINFO Name.

 The XML Metamodel provides a way for defining a Component Level Property for handling Public
PINFO:

o At Component Definition level, a Component Property is declared for handling Public PINFO.

 The XML Metamodel provides a way for referencing a Component Level Property at Module Instance
level:

o This is done via an association between PINFO name (defined in the Module Type) and a
Component level Property (defined in the Component Definition). NOTE: it is forbidden to declare
a Filename Association at this level for Public PINFO.

 The XML Metamodel provides a way for either:

o referencing an Assembly Level Property for handling Public PINFO:

 At Assembly Schema level, a PINFO Property and Filename Association is defined to
associate a Property value with a filename. This file will provide the Public PINFO data for
components which reference this Assembly level Property.

 At Component Instance level, the Component Property is assigned a reference to an
Assembly Schema property.

o Or for declaring PINFO Filename Association at Component Instance level:

 At Component Instance level a PINFO Filename Association is defined to associate a
Property value with a filename. This file will provide the Public PINFO data for the
Component Instance

The following example XML declares public PINFO, at assembly level (note that the “ecoa-sca:type” of the
property is “ECOA:pinfo_filename”):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:ecoa-sca="http://www.ecoa.technology/sca"

 name="demo" targetNamespace="http://www.ecoa.technology/sca">

<csa:property name="assembly_public_PINFO_1" ecoa-

sca:type="ECOA:pinfo_filename">

 <csa:value>"example_public_PINFO_1.txt"</csa:value> <!-- PINFO in "5-

Integration/Pinfo" folder -->

</csa:property>

<csa:property name="assembly_public_PINFO_2" ecoa-

sca:type="ECOA:pinfo_filename">

 <csa:value>"subfold/example_public_PINFO_2.txt"</csa:value> <!-- PINFO in

"5-Integration/Pinfo/subfold" folder -->

</csa:property>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 45

The following example XML declares properties for public PINFO filename association, at Component
Definition level:

<componentType>

 <!-- … -->

 <property name="component_public_PINFO_1"

 ecoa-sca:type="ECOA:pinfo_filename"/>

 <property name="component_public_PINFO_2"

 ecoa-sca:type="ECOA:pinfo_filename"/>

 <property name="component_public_PINFO_3"

 ecoa-sca:type="ECOA:pinfo_filename"/>

</componentType>

The following example XML declares Public PINFO at Module Type level. The example shows two Module
Type definitions, both of which can access public PINFO:

<moduleType name="M1_t">

<pinfo>

 <publicPinfo name="mypublicPinfoOne"/>

 <publicPinfo name="mypublicPinfoTwo"/>

 <publicPinfo name="mypublicPinfoThree"/>

</pinfo>

 <operations>

 <!-- … -->

 </operations>

</moduleType>

<!-- … -->

<moduleType name="M2_t">

<pinfo>

 <publicPinfo name="mypublicPinfoOne"/>

</pinfo>

 <operations>

 <!-- … -->

 </operations>

</moduleType>

The following example XML declares references to Public PINFO at Module Instance level. The example
shows three Module Instances being defined and Public PINFO assignments being made to reference
component level PINFO properties:

<moduleImplementation name="M1_Im" language="C" moduleType="M1_t"/>

<moduleImplementation name="M2_Im" language="C" moduleType="M2_t"/>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 46

<!-- … -->

<moduleInstance name="M11" implementationName="M1_Im">

<pinfo>

 <publicPinfo name="mypublicPinfoOne">$component_public_PINFO_1</publicPinfo>

 <publicPinfo name="mypublicPinfoTwo">$component_public_PINFO_2</publicPinfo>

 <publicPinfo

name="mypublicPinfoThree">$component_public_PINFO_3</publicPinfo>

</pinfo>

</moduleInstance>

<moduleInstance name="M21" implementationName="M1_Im">

<pinfo>

 <publicPinfo name="mypublicPinfoOne">$component_public_PINFO_1</publicPinfo>

 <publicPinfo name="mypublicPinfoTwo">$component_public_PINFO_2</publicPinfo>

 <publicPinfo

name="mypublicPinfoThree">$component_public_PINFO_3</publicPinfo>

</pinfo>

</moduleInstance>

<moduleInstance name="M12" implementationName="M2_Im">

<pinfo>

 <publicPinfo name="mypublicPinfoOne">$component_public_PINFO_1</publicPinfo>

</pinfo>

</moduleInstance>

The following example XML declares Public PINFO assignments, at Component Instance level. The first
two examples reference Public PINFO properties at assembly level; the third value is defined within the
Component Instance:

<csa:component name="ComponentOne">

 <!-- … -->

 <csa:property name="component_public_PINFO_1"

source="$assembly_public_PINFO_1" />

 <csa:property name="component_public_PINFO_2"

source="$assembly_public_PINFO_2" />

 <csa:property name="component_public_PINFO_3">

 <csa:value>example_ComponentOne_public_PINFO_1.txt</csa:value>

 </csa:property>

</csa:component>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 47

11.6 Recovery Action

After analysis of error notifications, the Fault Handler carries on recovery actions provided by the Container
Interface API.

Recovery actions cover actions on Components, Protection Domains, Computing Nodes and Computing
Platforms. For Components, Protection Domains and Computing Nodes there are two recovery actions –
Shutdown and Restart. For Computing Platforms there are three recovery actions – Shutdown, Restart and
Change Deployment. The following describes each recovery action for each asset.

Note: it is being assumed in the following that the ECOA Platform is able to maintain warm start context according to the Warm Restart
recovery actions being specified below

 Shutdown Component:

o The Infrastructure puts all Module Instances of the targeted Component Instance in idle state. The
Infrastructure frees associated resources, without calling the shutdown entry point of these
potentially faulty Module Instances.

 Restart Component in cold or warm mode:

o The Infrastructure performs the “Shutdown Component” recovery action (see above).

o In case of cold start, the Infrastructure zeroes the ‘saved’ value of the Warm Start Context for all
Module Instances within the component. In case of warm start, the Infrastructure restores the
‘saved’ value of the Warm Start Context without modifying it.

o The Infrastructure initializes all Module Instances within the Component (INITIALIZE entry-point).

o The Infrastructure starts all Module Instances within the Component (START entry-point).

 Shutdown the Protection Domain:

o The Infrastructure puts in idle state all Module Instances of all Component Instances of which at
least one Module Instance is deployed in the targeted Protection Domain. The Infrastructure frees
associated resources, without calling the shutdown entry point of these potentially faulty Module
Instances

o Depending on underlying capabilities, the infrastructure may unload the Protection Domain from
memory.

Note: : according to Architecture Specification Part 3, it is required to target Component Instances consistently (i.e. if one Module
Instance of a Component Instance goes to Idle state, all other Module Instances of that Component Instance must go to Idle
state too, regardless of whether they are being deployed into different Protection Domains or not).

 Restart the Protection Domain in cold or warm mode :

o The Infrastructure performs the “Shutdown Protection Domain” recovery action (see above).

o Depending on underlying capabilities, the Infrastructure may unload the protection domain from
memory and reload it to restart from a clean technical context.

o In case of cold start, the Infrastructure zeroes the ‘saved’ value of the Warm Start Context for all
Module Instances of all Component Instances of which at least one Module Instance is deployed
within the targeted Protection Domain. In case of warm start, the Infrastructure restores the
‘saved’ value of the Warm Start Context without modifying it.

o The Infrastructure initializes all Module Instances of all Component Instances of which at least
one Module Instance is deployed within the targeted Protection Domain (INITIALIZE entry-point).

o The Infrastructure starts all Module Instances of all Component Instances of which at least one
Module Instance is deployed within the targeted Protection Domain (START entry-point).

Note: according to Architecture Specification Part 3, it is required to target Component Instances consistently (i.e. if one Module
Instance of a Component Instance goes to Idle state, all other Module Instances of that Component Instance must go to Idle
state too, regardless of whether they are being deployed into different Protection Domains or not).

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 48

 Shutdown the Computing Node:

o The Infrastructure performs the “Shutdown Protection Domain” recovery action for all Protection
Domains of the computing node. See bullet above.

Note: Other operating environments may still continue to run on the Computing Node. The shutdown recovery action
at Computing Node level is only related to ECOA assets.

 Restart the Computing Node in cold or warm mode:

o The Infrastructure performs the “Restart Protection Domain in cold or warm mode” recovery action
for all Protection Domains of the computing node. See bullet above.

 Shutdown the Computing Platform:

o The Infrastructure performs the “Shutdown Computing Node” recovery action for all computing
nodes of the Platform. See bullet above.

NOTE Other operating environments may still continue to run on the Computing Platform. The shutdown recovery
action at Computing Platform level is only related to ECOA assets.

 Restart the Computing Platform in cold or warm mode

o The Infrastructure performs the “Restart Computing Node in cold or warm mode” recovery action
for all computing nodes of the Platform. See bullet above. The deployment is unchanged.

 Change the deployment on a Computing Platform:

o The Infrastructure performs the “Shutdown Protection Domain” recovery action for all Protection
Domains of all computing nodes of the Platform. See bullet above.

o The Infrastructure loads in memory Protection Domains associated to the new deployment.

o The Infrastructure zeroes the Warm Start Context for all Module Instances within all components
deployed on the Platform (i-e a cold start).

o For all components deployed on the Platform:

 The Infrastructure initializes all Module Instances (INITIALIZE entry-point).

 The Infrastructure starts all Module Instances (START entry-point).

NOTE Other operating environments may still continue to run on the Computing Platform. The reload recovery action at
Computing Platform level is only related to ECOA assets.

The availability of recovery actions depends on the capabilities offered by the underlying platform.

Recovery actions are implemented by a single container operation.

The following is the prototype definition for the container operation:

ECOA:return_status [#error_handler_impl_name#_container:]recovery_action([#context#],

ECOA:recovery_action_type recovery_action, ECOA:asset_id asset_id, ECOA:asset_type asset_type);

The parameter recovery_action defines the recovery action to apply.

The parameter asset_id defines the asset ID on which the recovery action is applied.

The parameter asset_type identifies the type of asset targeted by the recovery action: component instance,
protection domain, computing node or computing platform.

The operations may return the following status codes:

 [ECOA:return_status:OK]

o No error

 [ECOA:return_status:OPERATION_NOT_AVAILABLE]

o The recovery action is not implemented by the Infrastructure

o The recovery action is not permitted for the targeted asset type

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 49

 [ECOA:return_status:INVALID_IDENTIFIER]

o Operation called with an unknown asset ID

o Operation called with an asset ID not consistent with the asset type

 [ECOA:return_status:OPERATION_ALREADY_PENDING]

o Pending operation on the same asset already in progress

11.7 Save Warm Start Context

The Container Interface API allows a Module Instance to save its warm start (non-volatile) context such that
it will be restored by the ECOA Infrastructure upon a Warm Restart.

This API is optional and is made available or not for a given Module Type depending on Metamodel
attributes declared by the ASC supplier for the corresponding Module Type.

Only the latest saved version of the warm start context will be restored by the ECOA Infrastructure,
according to the Platform ability to do so with regard to supported Fault Handler recovery actions.

The following is the prototype definition for the save_warm_start_context operation:

void [#module_impl_name#_container:]save_warm_start_context([#context#]);

12 Container Types

This section contains details of the data types that comprise the container API i.e. the data types that can
be used by a module.

12.1.1 Versioned Data Handles

This section in the language binding will contain the language specific syntax in order to define data
handles for versioned data operations defined in the Container Interface.

13 External Interface

A Driver Component permits non-ECOA software to interact asynchronously with the ECOA System (see
Architecture Specification Part 3). The Container will provide interfaces which may be used by non-ECOA
software to post an event:

 To the Module Instance queue specified,

 Or to the Dynamic Trigger Instance queue specified.

The interface names and specifications shall adhere to the following prototype definitions:

void [#component_impl_name#__]#external_operation_name#(const #event_parameters#);

An external interface to a Component is specified by the use of the “external” sender notation within an
associated eventLink.

This eventLink can connect the external interface to an eventReceived operation defined within the
moduleType or a Dynamic Trigger Instance.

The example below shows an eventReceived “TheFeedback”, that may be used to asynchronously notify
the Module Instance of an event.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 50

<moduleType name="mod2Type">

 <operations>

 <eventReceived name="TheFeedback">

 <input name="param1" type="uint32"/>

 </eventReceived>

 </operations>

</moduleType>

<moduleImplementation name="mod2Impl" moduleType="mod2Type" language="C"/>

<moduleInstance name="module2" implementationName="mod2Impl"/>

An external interface may be linked to the eventReceived operation using the “external” sender, as shown
below, where the external interface operation is “FeedbackLegacy”.

<eventLink>

 <senders><external operationName="FeedbackLegacy" language="C"/></senders>

 <receivers><moduleInstance instanceName="module2"

operationName="TheFeedback"/></receivers>

</eventLink>

This will result in an external API being provided by the Container with the following prototype definition:

void [#component_impl_name#__]FeedbackLegacy(const ECOA:uint32 param1);

On the ECOA side, the external API permits all the normal ECOA connection flexibility for Module Event
Operations.

Note: the choice of the language for generating external APIs is made separately from the choice of the language for generating
ECOA modules APIs. The choice of supported languages is made depending on needs that are to be taken into account in platform
procurement requirements.

14 Default Values

Platforms shall initialize data to a deterministic, legal value regarding all languages when these values are
initially allocated and provided by the container to the module.

It is applicable to:

 Request Response callback arguments in case of “NO_RESPONSE”,

 Memory space pointed by a get_write_access for the initial access (“DATA_NOT_INITIALIZED”),

 The arguments of the notification of a notifying versioned data in case of
“RESOURCE_NOT_AVAILABLE”,

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 51

The initialisation mechanism shall rely on the following rules:

 The initial value of a data shall be set according to its simple type, using the minimum boundary of the
sub-range of that simple type.

 For an enumeration as well as for the select field of variant records, it shall correspond to the lowest
numerical value.

 The default values of the union in a variant record shall be set according to the default value of the
select field.

15 Trigger Instances

Trigger Instances do not require a moduleType to be specified; its definition is implicit and managed by the
infrastructure. The following XML shows what a Dynamic Trigger Module definition would look like:

<moduleType>

 <operations>

 <eventSent name="out" />

 </operations>

</moduleType>

15.1 XML definitions of Trigger Instance and associated links

The XML snippet below provides an example of a Trigger Instance connected to a Module Instance with a
period set to 2 seconds (i.e. an out event will be sent to the Module Instance every 2 seconds when the
Trigger Instance is running).

<triggerInstance name="aTriggerInstance"/>

...

 <eventLink>

 <senders>

 <trigger instanceName="aTriggerInstance" period="2" /> </senders>

 <receivers>

 <moduleInstance instanceName="consumerModule"

operationName="periodicOperation"/>

 </receivers>

 </eventLink>

 ...

16 Dynamic Trigger Instances

Dynamic Trigger Instances do not require a moduleType to be specified; its definition is implicit and
managed by the infrastructure. The parameters associated with a given Dynamic Trigger are implied from
the operations connected to it. The following XML shows what a Dynamic Trigger Module definition would
look like:

<moduleType>

 <operations>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 52

 <eventReceived name="in">

 <input name="expiryTime" type="ECOA:global_time"/>

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </eventReceived>

 <eventReceived name="reset"/>

 <eventSent name="out">

 <input name="param1" type="T1"/>

 <input name="param2" type="T2"/>

 ...

 </eventSent>

 </operations>

</moduleType>

16.1 XML definitions of Dynamic Trigger Instance and associated links

A Dynamic Trigger Instance is defined with the tag <dynamicTriggerInstance > within the Component
implementation model (component.impl.xml); it is then used as any other ordinary Module.

Parameters of a Dynamic Trigger Instance are:

 Maximum number, named size, of waiting Events (outside possible queuing at network level)

o By default: 1

o Any Events that cause the maximum number of pending Events to be exceeded are discarded; an
error is raised to the Fault Handler by the Infrastructure.

The XML snippet below provides an example of a Dynamic Trigger Instance with one integer parameter.

...

 <moduleType name="ProducerComputer">

 <operations>

 <eventSent name="set">

 <input name="expiryTime" type="ECOA:global_time"/>

 <input name="p1" type="int32"/>

 </eventSent>

 </operations>

 </moduleType>

 <moduleType name="ConsumerComputer">

 <operations>

 <eventReceived name="result">

 <input name="p1" type="int32"/>

 </eventReceived>

 </operations>

 </moduleType>

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 53

 <moduleType name="ManagerComputer">

 <operations>

 <eventSent name="reset"/>

 </operations>

 </moduleType>

 <moduleImplementation name="ProducerComputerImpl"

 language="C" moduleType="ProducerComputer"/>

 <moduleImplementation name="ConsumerComputerImpl"

 language="C" moduleType="ConsumerComputer"/>

 <moduleImplementation name="ManagerComputerImpl"

 language="C" moduleType="ManagerComputer"/>

 <moduleInstance name="producerComputer"

 implementationName="ProducerComputerImpl" relativePriority="3"/>

 <moduleInstance name="consumerComputer"

 implementationName="ProducerComputerImpl" relativePriority="3"/>

 <moduleInstance name="managerComputer"

 implementationName="ManagerComputerImpl" relativePriority="2"/>

 <dynamicTriggerInstance name="delayResult"

 size="10" relativePriority="1">

 <parameter name="p1" type="int32"/>

 </dynamicTriggerInstance>

 <eventLink>

 <senders>

 <moduleInstance instanceName="producerComputer"

 operationName="set"/>

 </senders>

 <receivers>

 <dynamicTrigger instanceName="delayResult"

 operationName="in"/>

 </receivers>

 </eventLink>

 <eventLink>

 <senders>

 <dynamicTrigger instanceName="delayResult"

 operationName="out"/>

 </senders>

 <receivers>

 <moduleInstance instanceName="consumerComputer"

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144485-F/IAWG-ECOA-TR-010 Issue 6 54

 operationName="result"/>

 </receivers>

 </eventLink>

 <eventLink>

 <senders>

 <moduleInstance instanceName="managerComputer"

 operationName="reset"/>

 </senders>

 <receivers>

 <dynamicTrigger instanceName="delayResult"

 operationName="reset"/>

 </receivers>

 </eventLink>

...

Module Instances interact with the Dynamic Trigger Instance through the usual Event API generated as
defined in 10.1.3 and in 11.1.1.1.

17 Reference Language Header

This section in the language binding contains a reference header for the specific language containing the
Basic and Predefined ECOA types defined within the ECOA namespace.

