European Component Oriented Architecture (ECOA®)
Collaboration Programme:
Architecture Specification
Part 8: C Language Binding

BAE Ref No: IAWG-ECOA-TR-004
Dassault Ref No: DGT 144477-F

Issue: 6

Prepared by
BAE Systems (Operations) Limited and Dassault Aviation

This specification is developed by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd and the copyright is owned by BAE SYSTEMS, Dassault Aviation, Bull SAS, Thales Systemes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW
Ltd. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

Note: This specification represents the output of a research programme. Compliance with this specification shall not in
itself relieve any person from any legal obligations imposed upon them. Product development should rely on the
DefStan or BNAE publications of the ECOA standard.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 i

Contents

0 Introduction %
1 Scope 1
2 Warning 1
3 Normative References 1
4 Definitions 2
5 Abbreviations 2
6 Module to Language Mapping 3
6.1 Module Interface Template 5
6.2 Container Interface Template 7
6.3 Container Types Template 10
6.4 User Module Context Template 10
6.5 Guards 11
7 Parameters 12
8 Module Context 13
8.1 User Module Context 14
9 Types 16
9.1 Filenames and Namespace 16
9.2 Basic Types 16
9.3 Derived Types 17
9.3.1 Simple Types 17
9.3.2 Constants 18
9.3.3 Enumerations 18
9.34 Records 18
9.35 Variant Records 19
9.3.6 Fixed Arrays 20
9.3.7 Variable Arrays 20
9.4 Predefined Types 20
9.4.1 ECOA:return_status 20
9.4.2 ECOA:hr_time 21
9.4.3 ECOA:global_time 21
9.4.4 ECOA:duration 21
9.4.5 ECOA:log 21
9.4.6 ECOA:error_id 22
9.4.7 ECOA:error_code 22
9.4.8 ECOA:asset_id 22

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 ii

9.4.9 ECOA:asset_type 23

9.4.10 ECOA:error_type 23
9.4.11 ECOA:recovery_action_type 24
9.4.12 ECOA:pinfo_filename 24
9.4.13 ECOA:seek_whence_type 24
10 Module Interface 24
10.1 Operations 24
10.1.1 Request-Response 24
10.1.2 Versioned Data Updated 25
10.1.3 Event Received 26
10.2 Module Lifecycle 26
10.2.1 Initialize_Received 26
10.2.2 Start_Received 26
10.2.3 Stop_Received 27
10.2.4 Shutdown_Received 27
10.3 Error_notification at Fault Handler level 27
11 Container Interface 28
11.1 Operations 28
11.1.1 Request Response 28
11.1.2 Versioned Data 29
11.1.3 Events 31
11.2 Properties 31
11.2.1 Get Value 31
11.2.2 Expressing Property Values 32
11.2.3 Example of Defining and Using Properties 32
11.3 Logging and Fault Management 32
11.3.1 Log_Trace 32
11.3.2 Log_Debug 32
11.3.3 Log_Info 32
11.3.4 Log_Warning 33
11.3.5 Raise_Error 33
11.3.6 Raise_Fatal_Error 33
11.4 Time Services 34
11.4.1 Get_Relative_Local_Time 34
1142 Get_UTC_Time 34
11.4.3 Get_Absolute_System_Time 34
11.4.4 Get_Relative_Local_Time_Resolution 34

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 iii

1145 Get UTC_Time_Resolution 35

11.4.6 Get_Absolute_System_Time_Resolution 35
115 Persistent Information management (PINFO) 35
11.5.1 PINFO read 35
11.5.2 PINFO seek 36
11.5.3 Example of Defining Private PINFO 36
11.5.4 Example of Defining Public PINFO 36
11.6 Recovery Action 36
11.7 Save Warm Start Context 36
12 Container Types 37
12.1.1 Versioned Data Handles 37
13 External Interface 37
14 Default Values 38
15 Trigger Instances 38
16 Dynamic Trigger Instances 38
17 Reference C Header 38
Figures

Figure 1 C Files Organization 4
Tables

Table1l Filename Mapping 4
Table 2 Method of Passing Parameters 12
Table 3 C Basic Type Mapping 16
Table4 C Predefined Constants 17

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 iv

0 Introduction

This Architecture Specification provides the specification for creating ECOA®-based systems. It describes
the standardised programming interfaces and data-model that allow a developer to construct an ECOA®-
based system. It uses terms defined in the Definitions (Architecture Specification Part 2). The details of the
other documents comprising the rest of this Architecture Specification can be found in Section 3.

This document is Part 8 of the Architecture Specification, and describes the C (ref ISO/IEC 9899:1999(E))
language binding for the module and container APIs that facilitate communication between the module
instances and their container in an ECOA® system.

This document is structured as follows:

e Section 6 describes the Module to Language Mapping;
e Section 7 describes the method of passing parameters;
e Section 8 describes the Module Context;

e Section 9 describes the basic types that are provided and the types that can be derived from them;
e Section 10 describes the Module Interface;

e Section 11 describes the Container Interface;

e Section 12 describes the Container Types;

e Section 13 describes the External Interface;

e Section 14 describes the Default Values;

e Section 15 describes Trigger Instances;

e Section 16 describes Dynamic Trigger Instances;

e Section 17 provides a reference C header for the ECOA® namespace, usable in any C binding
implementation;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 v

1 Scope

This Architecture Specification specifies a uniform method for design, development and integration of

software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme. Compliance with this specification shall
not in itself relieve any person from any legal obligations imposed upon them. Product development should

rely on the DefStan or BNAE publications of the ECOA standard.

3 Normative References

Architecture Specification
Part 1

Architecture Specification
Part 2

Architecture Specification
Part 3

Architecture Specification
Part 4

Architecture Specification
Part 5

Architecture Specification
Part 6

Architecture Specification
Part 7

Architecture Specification
Part 8

Architecture Specification
Part 9

Architecture Specification
Part 10

IAWG-ECOA-TR-001 / DGT 144474

Issue 6

Architecture Specification Part 1 — Concepts
IAWG-ECOA-TR-012 / DGT 144487

Issue 6

Architecture Specification Part 2 — Definitions
IAWG-ECOA-TR-007 / DGT 144482

Issue 6

Architecture Specification Part 3 — Mechanisms
IAWG-ECOA-TR-010 / DGT 144485

Issue 6

Architecture Specification Part 4 — Software Interface
IAWG-ECOA-TR-008 / DGT 144483

Issue 6

Architecture Specification Part 5 — High Level Platform
Requirements

IAWG-ECOA-TR-006 / DGT 144481

Issue 6

Architecture Specification Part 6 —- ECOA® Logical Interface
IAWG-ECOA-TR-011 / DGT 144486

Issue 6

Architecture Specification Part 7 — Metamodel
IAWG-ECOA-TR-004 / DGT 144477

Issue 6

Architecture Specification Part 8 — C Language Binding
IAWG-ECOA-TR-005 / DGT 144478

Issue 6

Architecture Specification Part 9 — C++ Language Binding
IAWG-ECOA-TR-003 / DGT 144476

Issue 6

Architecture Specification Part 10 — Ada Language Binding

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 1

Architecture Specification
Part 11

ISO/IEC 8652:1995(E)
with COR.1:2000

ISO/IEC 9899:1999(E)
ISO/IEC 14882:2003(E)
SPARK_LRM

4 Definitions

IAWG-ECOA-TR-031 / DGT 154934
Issue 6

Architecture Specification Part 11 — High Integrity Ada Language
Binding

Ada95 Reference Manual
Issue 1

Programming Languages — C
Programming Languages C++
The SPADE Ada Kernel (including RavenSPARK) Issue 7.3

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

5 Abbreviations

API Application Programming Interface

ECOA European Component Oriented Architecture. ECOA®is a registered trademark.
PINFO Persistent Information

uTtC Coordinated Universal Time

XML eXtensible Markup Language

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,

accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6

6 Module to Language Mapping

This section gives an overview of the Module Interface and Container Interface APIs, in terms of the
filenames and the overall structure of the files.

With structured languages such as C, the Module Interface will be composed of a set of functions
corresponding to each entry-point of the Module Implementation. The declaration of these functions will be
accessible in a header file called #module_impl_name#.h. The names of these functions shall begin with

the prefix “#module_impl_name#__".

The Container Interface will be composed of a set of functions corresponding to the required operations.
The declaration of these functions will be accessible in a header file called
#module_impl_name# _container.h. The names of these functions shall begin with the prefix

“#module_impl_name#_container__".

The Container Types will be composed of the types which the Module Implementation needs in order to
declare, use and store various handles. The declaration of these types will be accessible in a header file
called #module_impl_name#_container_types.h. The names of these types shall begin with the prefix

“#module_impl_name#_container__".

It is important to ensure that the names of these functions and types do not clash within a single protection
domain. One way to achieve this is for each component supplier to define the module implementation name
prefixed by a unique identifier. In this way they can manage the uniqueness of their own components, and
the mixing of different supplier components within a protection domain is possible.

A dedicated structure named #module_impl_name#__context, and called Module Context structure in the
rest of the document will be generated by the ECOA toolchain in the Module Container header
(#module_impl_name#_container.h) and shall be extended by the Module implementer to contain all the
user variables of the Module. This structure will be allocated by the container before Module Instance start-
up and passed to the Module Instance in each activation entry-point (i.e. received events, received
requests or received asynchronous responses).

Figure 1 shows the relationship between the C files mentioned above, whilst Table 1 shows the filename
mappings.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 3

Module Implementer .

Autogenerated .

Platform Specific .

“Header A is included by Header/Source B” A m—p B

#module_impl_name#_container .c

A

Figure 1 C Files Organization

Table 1 Filename Mapping

Filename

Use

#module impl name#.h

Module Interface declaration (entry points
provided by the module and callable by the
container)

#module impl name#.c

Module Implementation (implements the
module interface)

#module impl name# container.h

Container Interface declaration (functions
provided by the container and callable by the
module)

Module Context type declaration

#module impl name# container.c

Container Implementation:

This source (.c) implements the Container
Interface. It is out of scope of this document,
as it is platform dependent. The Container
may actually be a collection of source files
depending upon the platform
implementation.

#module impl name# container types.h

Container Types declaration (container-level
data types usable by the module) These
types are related to the Container for a
Module Implementation and are declared in
the #module impl name# container
namespace.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systéemes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,

accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6

Filename Use

#module_impl name# user context.h User extensions to Module Context. These
types are related to the Module
Implementation and are declared within the
#module impl name# namespace.

Templates for the files in Table 1are provided in the following sections:

6.1 Module Interface Template

/*
* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

#if !defined (#MODULE IMPL NAME# H)
#define #MODULE IMPL NAME# H

#if defined(cplusplus)
extern “C” {

#endif /* cplusplus */

/* Standard Types */

#include <ECOA.h>

/* Additionally created types */

#include #additionally created types#

/* Include container header */

#include “#module impl name# container.h”
/* Include container types */

A\ H

#include module impl name# container types.h”

void #module impl name# INITIALIZE received

(#module impl name# context* context);

void #module impl name# START received

(#fmodule impl namef context* context);

void #module impl name# STOP received

(#fmodule impl namef context* context);

void #module impl name# SHUTDOWN received

(#fmodule impl name# context* context);

/* Event operation handlers specifications */

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 5

#list of event operations specifications#

/* Request-Response operation handlers specifications */

#list of request response operations_ specifications#

/* Versioned Data Notifying operation handlers specifications */

#list of versioned data notifying operations specifications#

/* Error notification handler specification if this module is a */
/* Fault Handler */

#error notification operation specification#
#if defined(cplusplus)
}

#endif /* cplusplus */

#endif /* #MODULE IMPL NAME# H */

/*

* @file #module impl name#.c

* Module Interface for Module #module impl name#

* This file can be considered a template with the operation stubs
* auto generated by the ECOA toolset and filled in by the module
* developer.

*/

/* Include module interface header */

#include “#module impl name#.h”

/* Event operation handlers */

#list of event operations#

/* Request-Response operation handlers */

#list of request response operations#

/* Versioned Data Notifying operation handlers */

#list of versioned data notifying operations#

/* Lifecycle operation handlers */

#list of lifecycle operations#

/* Error notification handler if this module is a Fault Handler */

#error notification operation#

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 6

6.2 Container Interface Template

/* @file #module impl name# container.h
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

#if !defined (#MODULE IMPL NAME# CONTAINER H)
#define #MODULE IMPL NAME# CONTAINER H

#if defined(cplusplus)
extern “C” {

#endif /* cplusplus */

/* Standard Types */

#include <ECOA.h>

/* Additionally created types */

#include #additionally created types#

/* Container Types */

#include “#module impl name# container types.h”

/* Optional User Context: the “#module impl name# user context.h” header
* inclusion is optional (depends if user and/or warm start context
* are being used

*/

#include “#module impl name# user context.h”

/* Incomplete definition of the technical (platform-dependent) part of the */
/* context (it will be defined privately by the container) */

struct #module impl name# platform hook;

/* Module Context structure declaration */
typedef struct
{
/*
* Other container technical data will be accessible through the pointer
* defined here
*/

struct #module impl name# platform hook *platform hook;

/* When the optional user context is used, the type

* #module impl name# user context shall be defined by the user

* in the #module impl name# user context.h file to carry the module
* implementation private data

*/

#fmodule impl name# user context user;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 7

/* When the optional warm start context is used, the type

* #module impl name# warm start context shall be defined by the user
* in the #module impl name# user context.h file to carry the module
* implementation private data

*/

fmodule impl name# warm start context warm start;

} #module impl name# context;

void fmodule impl name# container log trace
(#module impl name# context* context,
const ECOA_log log);

void #module impl name# container log debug
(#module impl name# context* context,
const ECOA log log);

void #module impl name# container 1log info
(#module impl name# context* context,
const ECOA log log);

void #module impl name# container log warning
(#module impl name# context* context,
const ECOA log log);

void #module impl name# container raise error
(#module impl name# context* context,
const ECOA log log);

void #module impl name# container raise fatal error
(#module impl name# context* context,
const ECOA log log);

void #module impl name# container get relative local time
(#module impl name# context* context,

ECOA hr time *relative local time);

ECOA return status #module impl name# container get UTC time
(#module impl name# context* context,
ECOA global time *utc time);

ECOA return status fmodule impl namef container get absolute system time

(#module impl name# context* context,

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 8

ECOA global time *absolute system time);

void #module impl name# container get relative local time resolution
(fmodule impl name# context* context,

ECOA duration *relative local time resolution);

void #module impl name# container get UTC time resolution
(fmodule impl name# context* context,

ECOA duration *utc time resolution);

void #module impl name# container get absolute system time resolution
(#module impl name# context* context,

ECOA duration *absolute system time resolution);

/* Event operation call specifications */

#event operation call specifications#

/* Request-response call specifications */

#request response call specifications#

/* Versioned data call specifications */

#versioned data call specifications#

/* Functional parameters call specifications */

#properties call specifications#

/* Recovery action service API call specification if this is a */
/* Fault Handler module */
#frecovery action call specification#

/* Persistent Information management operations */
#PINFO read call specifications#
#PINFO seek call specifications#

/* Optional API for saving the warm start context */
/* Context management operation */

#save warm start context operation#
#if defined(cplusplus)
}

#endif /* cplusplus */

#endif /* #MODULE IMPL NAME# CONTAINER H */

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 9

6.3 Container Types Template

/* @file #module impl name# container types.h
* Container Types header for Module #module impl name#
* Generated automatically from specification; do not modify here
*/

#if !defined (#MODULE IMPI, NAME# CONTAINER TYPES H)

#define #MODULE TMPI, NAME# CONTAINER TYPES H

#if defined(cplusplus)
extern “C” {

#endif /* cplusplus */
#include <ECOA.h>

/* The following describes the data types generated with regard to APIs:
* For any Versioned Data Read Access: data handle

* For any Versioned Data Write Access: data handle

*/

#if defined(cplusplus)

}

#endif /* cplusplus */

#endif /* #MODULE IMPL NAME# CONTAINER TYPES H */

6.4 User Module Context Template

/* @file #module impl name# user context.h
* This is an example of a user defined User Module context
*/

#if !defined (#MODULE IMPL NAME# USER_CONTEXT H)

#define #MODULE IMPL NAME# USER CONTEXT H

#if defined(cplusplus)
extern “C” {

#endif /* cplusplus */

/* Standard Types */

#include <ECOA.h>

/* Additionally created types */
#include #additionally created types#
/* Container Types */

#include “#module impl name# container types.h”

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 10

/* User Module Context structure example */
typedef struct
{

/* declare the User Module Context “local” data here */

} #module impl name# user context;

/* Warm Start Module Context structure example */
typedef struct
{

/* declare the Warm Start Module Context data here */
} #module impl name# warm start context;
#if defined(cplusplus)
}

#endif /* cplusplus */

#endif /* #MODULE IMPI, NAME# USER CONTEXT H */

6.5 Guards

In C, all of the declarations within header files shall be surrounded within the following block to make the
code compatible with C++, and to avoid multiple inclusions:

#if !defined(#macro protection name# H)

#define #macro protection name# H

#if defined(cplusplus)

extern “C” {

#endif /* cplusplus */

/* all the declarations shall come here */
#if defined(cplusplus)

}

#endif /* cplusplus */

#endif /* #macro protection name# H */

Where #macro_protection_name# is the name of the header file in capital letters and without the .h
extension.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 11

7 Parameters

This section describes the manner in which parameters are passed in C:

¢ Input parameters defined with a simple type (i.e. basic, enum or actual simple type) will be passed by

value, output parameters defined with a simple type will be passed as pointers

e Input parameters defined with a complex type will be passed as pointers to a const; output parameters
defined with a complex type will be passed as pointers.

Table 2

Method of Passing Parameters

Input parameter

Output parameter

Simple type

By value

Pointer

Complex type

Pointer to const

Pointer

Within the API bindings, parameters will be passed as constant if the behaviour of the specific APl warrants
it. This will override the normal conventions defined above.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,

accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6

8 Module Context

In the C language, the Module Context is a structure which holds both the user local data (called “User
Module Context” and “Warm Start Context”) and infrastructure-level technical data (which is implementation
dependant). User context and warm start context features may be optionally selected in Module Type
declarations using metamodel attributes. The presence or absence of declarations of corresponding fields
in Module code must be in accordance with selections made in the Module Type declaration. The structure
is defined in the Container Interface.

Any language type can be used within the contexts (including ECOA ones).

The following shows the C syntax for the Module Context:

/* @file “#module impl name# container.h”

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here
*/

/* Container Types */

#include “#module impl name# container types.h”

/* Optional User Context: the “#module impl name# user context.h” header
inclusion is optional (depends if user and/or warm start context are being used

*/

#include “#module impl name# user context.h”

/* Incomplete definition of the technical (platform-dependent) part of the */
/* context (it will be defined privately by the container) */

struct #module impl name# platform hook;

/* Module Context structure declaration */
typedef struct
{
/*
* Other container technical data will accessible through the pointer */
* defined here
*/

struct #module impl name# platform hook *platform hook;

/* When the optional user context is used, the type

* #module impl name# user context shall be defined by the user

* in the #module impl name# user context.h file to carry the module
* implementation private data and the attribute

* #module impl name# user context user shall be declared as follows:
*/

#fmodule impl name# user context user;

/*

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 13

* When the optional warm start context is used, the type

* #module impl name# warm start context shall be defined by the

* user in the #module impl name# user context.h file to carry the module

* implementation warm start private data and the attribute

* #module impl name# warm start context user shall be declared as follows:
*/

fmodule impl name# warm start context warm start;

} #module impl name# context;

8.1 User Module Context

The following shows the C syntax for the optional Module User Context (including an example data item;
myCounter) and the Module Warm Start Context (including an example data item myData and validity flag
warm_start_valid). The Module User Context header file is needed only if the user context and/or warm
start context are used:

/* @file #module impl name# user context.h
* This is an example of a user defined User Module context

*/

/* Container Types */

#include “#module impl name# container types.h”

/* User Module Context structure example */

typedef struct

{
/* declare the User Module Context “local” data here */
int myCounter;

} #module impl name# user context;

/* Warm Start context structure example */

typedef struct {
/* declare the warm start data here */
ECOA boolean8 warm start valid; /* example of wvalidity flag */

unsigned long my data;

} f#fmodule impl namef warm start context;

Data declared within the Module User Context and the Module Warm Start Context can be of any type.

The following example illustrates the usage of the Module context in the entry-point corresponding to an
event-received:

/* @file “f#module impl name#.c”

* Generic operation implementation example

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 14

*/

void #module impl name# f#operation name# received

(#module impl name# context* context)
/* To be implemented by the module */

/*

*

* increments a local user defined counter:
*/
context->user.myCounter++;

}

The optional user extensions to Module Context need to be known by the container in order to allocate the
required memory area. This means that the component supplier is required to provide the associated
header file. If the supplier does not want to divulge the original contents of the header file, then:

e It may be replaced by an array with a size equivalent to the original data; or
¢ Memory management may be dealt with internally to the code, using memory allocation functions®

e The size of the Module User Context and Warm Start Context may be declared in the bin-desc file
related to the Component.

To extend the Module Context structure, the module implementer shall define the User Module Context
structure, named #module_impl_name#_user_context, in a header file called
#module_impl_name#_user_context.h. All the private data of the Module Implementation shall be added as
members of this structure, and will be accessible within the “user” field of the Module Context.

The Module Context structure will be passed by the Container to the Module as the first parameter for each
operation (i.e. received events, received requests or received asynchronous responses). The Module
Context defines the instance of the Module being invoked by the operation. This structure shall be passed
by the Module to all Container Interface API functions it can call.

1 The current ECOA Error! Reference source not found. does not specify any memory allocation function. So, this
case may lead to non-portable code.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 15

9 Types

This section describes the convention for creating namespaces, and how the ECOA basic types and
derived types are represented in C

9.1 Filenames and Namespace

The type definitions are contained within one or more namespaces: all types for specific namespace
defined in #namespacel[#namespacen#].types.xml shall be placed in a file called
#namespacel [#namespacen#].h

The complete name of the declaration of a variable name and type name will be computed by prefixing
these names with the names of all the namespaces from the first level to the last level, separated with
underscores as illustrated below. In the C language, this naming rule will be used for each variable or type
declaration to create the complete variable name, reflecting the namespaces onto which it is defined.

Below is an example of a simple type being defined within a nested namespace in C.

/*

* @file #namespacel#[#namespacen#].h

* Data-type declaration file

* Generated automatically from specification; do not modify here

*/

typedef #basic type name#

#namespacel#[#namespacen#] #simple type name#;

9.2 Basic Types

The basic types, shown in Table 3, shall be located in the “ECOA” namespace and hence in ECOA.h which
shall also contain definitions of the pre-defined constants, e.g. that define constants to represent the true
and false values of the basic Boolean type, that are shown in Table 4.

Table 3 C Basic Type Mapping

ECOA Basic Type C type
ECOA:boolean8 ECOA__boolean8
ECOA:int8 ECOA__ int8
ECOA:char8 ECOA__ char8
ECOA:byte ECOA__ byte
ECOA:intlé6 ECOA__intlé
ECOA:int32 ECOA__ int32
ECOA:int64 ECOA__inté64
ECOA:uint8 ECOA__ uint8
ECOA:uintlé ECOA__uintlé
ECOA:uint32 ECOA__uint32
ECOA:uinté64 ECOA__uinté64

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 16

ECOA Basic Type C type
ECOA:float32 ECOA_ float32

ECOA:double64 ECOA___double64

The data-types in Table 3 are fully defined using the predefined constants shown in Table 4:

Table 4 C Predefined Constants

C Type C constant

ECOA_boolean8 ECOA__TRUE
ECOA__FALSE

ECOA__int8 ECOA__INT8 MIN
ECOA__INT8 MAX

ECOA__chars8 ECOA__CHAR8 MIN
ECOA__CHARS_MAX

ECOA_ byte ECOA__BYTE MIN
ECOA__BYTE MAX

ECOA__intl6 ECOA__INT16_MIN
ECOA__INT16_MAX

ECOA _int32 ECOA__INT32_MIN
ECOA__INT32_ MAX

ECOA__int64 ECOA__INT64_MIN
ECOA__INT64_MAX

ECOA__uint8 ECOA__UINT8_ MIN
ECOA__UINT8_ MAX

ECOA__uintlé ECOA__UINT16_MIN
ECOA__UINT16_MAX

ECOA__uint32 ECOA__UINT32_MIN
ECOA__UINT32_ MAX

ECOA__uint64 ECOA__UINT64_MIN
ECOA__UINT64_MAX

ECOA__ float32 ECOA__FLOAT32_MIN
ECOA__FLOAT32_MAX

ECOA__double64 ECOA__DOUBLE64_MIN
ECOA__DOUBLE64_MAX

The data types described in the following sections are also defined in the ECOA namespace.

9.3 Derived Types

9.3.1 Simple Types

The syntax for defining a Simple Type #simple_type name# refined from a Basic Type #basic_type name#
in C is defined below. Note that as hamespaces are not supported in the C language, the actual name of

the type (known as the complete type (see para. 9.1) and referred to here by prefixing complete) will be
computed by prefixing the namespaces in which it is included as described previously.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 17

typedef #basic type name# #complete simple type name#;

If the optional #minRange# or #maxRange# fields are set, the previous type definition must be followed by
the minRange or maxRange constant declarations as follows:

#define fcomplete simple type name# minRange (#minrange value#)

#define #complete simple type name# maxRange (#maxrange value#)

9.3.2 Constants

The syntax for the declaration of a Constant called “#contant name#” in C is shown below. Note that the
#type name# is notused in the C binding. In addition, namespaces are not supported in the C language,
so the name of the constant (known as the complete name (see para. 9.1) and referred to here by prefixing
complete) will be computed by prefixing the namespaces in which it is included as described previously.

#define f#complete constant name# (#constant value#)

where #constant_value# is either an integer or floating point value described by the XML description.
9.3.3 Enumerations

The C syntax for defining an enumerated type named #enum_type name#, with a set of labels named from
#enum_type_name#_#enum_value_name_1# to #enum_type_name# #enum_value_name_n# and a set
of optional values of the labels named #enum_value_value 1# ... #enum_value _value_n# is defined below.
Note that as hamespaces are not supported in the C language, the actual name of the type (known as the
complete type (see para. 9.1) and referred to here by prefixing complete) will be computed by prefixing
the namespaces in which it is included as described previously.

typedef #basic type name# #complete enum type name#;

#define #complete enum type name# #enum value name 1# (#enum value value 1#)
#define #complete enum type name# #enum value name 24 (#enum_value value 2#)
#define #complete enum type name# #enum value name 3# (#enum value value 3#)
/*x
#define #complete enum type name# #enum value name n# (#enum value value n#)
Where:

#basic_type name# is either ECOA boolean8, ECOA int8, ECOA char8, ECOA Dbyte,
ECOA__ int16,ECOA__int32, ECOA__ int64, ECOA__ uint8, ECOA uintl16, ECOA__uint32 or
ECOA uint64.

#complete enum type name# is computed by prefixing the name of the type with the namespaces and
using * _’ as separator (see para. 9.1)

#enum value value X# is the optional value of the label. If not set, this value is computed from the
previous label value, by adding 1 (or set to O if it is the first label of the enumeration).

9.3.4 Records

For a record type named #record_type_name# with a set of fields named #field_namel# to #field_namen#
of given types #data_type_1# to #data_type_n#, the syntax is given below. Note that as nhamespaces are
not supported in the C language, the actual name of the type (known as the complete type (see para. 9.1)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 18

and referred to here by prefixing complete) will be computed by prefixing the namespaces in which it is
included as described previously. The order of fields in the struct shall follow the order of fields used in the
XML definition.

typedef struct

{
#data type 1# #field namel#;
#data type 2# #field name2#;
/xx/
#data type n# #field namen#;

} #complete record type name#;

9.3.5 Variant Records

For a Variant Record named #variant_record_type_name# containing a set of fields (named #field_namel#
to #field_namen#) of given types #data_type 1# to #data type n# and other optional fields (named
#optional_field_namel# to #optional_field_namen#) of type (#optional type namel# to
#optional_type_namen#) with selector #selector_name#, the syntax is given below.

Note that as hamespaces are not supported in the C language, the actual name of the type (known as the
complete type (see para. 9.1) and referred to here by prefixing complete) will be computed by prefixing
the namespaces in which it is included as described previously.

The order of fields in the struct shall follow the order of fields used in the XML definition.

/*
* #complete selector type name# can be of any simple basic type, or an */
* enumeration

*/
typedef struct{

#fcomplete selector type name# f#selector name#;

fdata type 1# #field namel#; /* for each <field> element */
tdata type 2# #field namel#;

/LK

fdata type n# #field namen#;

union {
#optional type namel# #optional field namel#; /* for each <union>
element */
#optional type name2# #optional field name2#;
/x5
#optional type namen# #optional field namen#;

} u #selector name#;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 19

} #complete variant record type name#;

9.3.6 Fixed Arrays

The C syntax for a fixed array named #array_type_name# of maximum size #max_number# and element
type of #data_type _name# is given below. Note that as namespaces are not supported in the C language,
the actual name of the type (known as the complete type (see para. 9.1) and referred to here by prefixing
complete) will be computed by prefixing the namespaces in which it is included as described previously.

A macro called #complete_array type name# MAXSIZE will be defined to specify the size of the array.

#define #complete array type name# MAXSIZE #max number#

typedef #complete data type name#
#complete array type name#[#complete array type name# MAXSIZE];

9.3.7 Variable Arrays

The C syntax for a variable array (named #var_array_type_name#) with maximum size #max_number#,
elements with type #data_type_name# and a current size of current_size is given below. Note that as
namespaces are not supported in the C language, the actual name of the type (known as the complete type
(see para. 9.1) and referred to here by prefixing complete) will be computed by prefixing the
namespaces in which it is included as described previously.

#define #complete var array type name# MAXSIZE #max number#
typedef struct {

ECOA uint32 current size;

#data type name# data[#complete var array type name# MAXSIZE];

} #complete var array type name#;

9.4 Predefined Types
9.4.1 ECOA:return_status

In C ECOA:return status translates to ECOA return status, with the enumerated values shown
below:

typedef ECOA uint32 ECOA return status;

#define ECOA return status OK (0)
#define ECOA return status INVALID HANDLE (1)
#define ECOA return status DATA NOT INITIALIZED (2)
#define ECOA_return status NO DATA (3)
#define ECOA return status INVALID IDENTIFIER (4)
#define ECOA return status NO RESPONSE (5)
#define ECOA return status OPERATION ALREADY PENDING (6)
#define ECOA_return status CLOCK UNSYNCHRONIZED (7)
#define ECOA return status RESOURCE NOT AVAILABLE (8)
#define ECOA_return status OPERATION NOT AVAILABLE (9)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 20

#define ECOA _return status INVALID PARAMETER

9.4.2 ECOA:hr_time

The binding for time is:

typedef struct
{
ECOA uint32 seconds; /*
ECOA uint32 nanoseconds; /*
} ECOA_ hr time;

Seconds */

Nanoseconds*/

9.4.3 ECOA:global_time

Global time is represented as:

typedef struct
{
ECOA uint32 seconds; /*
ECOA uint32 nanoseconds; /*
} ECOA global time;

Seconds */

Nanoseconds*/

9.4.4 ECOA:duration

Duration is represented as:

typedef struct

{
ECOA uint32 seconds; /*
ECOA uint32 nanoseconds; /*

} ECOA duration;

Seconds */

Nanoseconds*/

9.4.5 ECOA:log

The syntax for a log in C is:

#define ECOA__LOG _MAXSIZE 256

typedef struct {

ECOA uint32 current size;

ECOA char8 datal[ECOA LOG MAXSIZE];

} ECOA log;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,

accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6

9.4.6 ECOA:error_id

In C the syntax for an ECOA:error idis:

typedef ECOA uint32 ECOA error_ id;

9.4.7 ECOA:error_code

In C the syntax for an ECOA:error code is:

typedef ECOA uint32 ECOA error code;

9.4.8 ECOA:asset _id

In C the syntax for a ECOA:asset_idis:

typedef ECOA uint32 ECOA asset id;

In C the ECOA:asset id definitions will be generated as constants declared in a file named
ECOA_Assets.h using the following syntax:

/* File ECOA Assets.h */
#include <ECOA.h>

#if !defined (ECOA ASSETS H)
#define ECOA ASSETS H

#define ECOA Assets CMP_#component instance namel# (#CMP IDI1#)
#define ECOA Assets CMP fcomponent instance namelZ# (#CMP ID2#)

#define ECOA Assets CMP_#component instance nameN# (#CMP IDN#)

#define ECOA Assets PD #protection domain namel# (#PD IDI1#)
#define ECOA Assets PD #protection domain name2# (#PD ID2#)
#define ECOA Assets PD #protection domain nameN# (#PD IDN#)

#define ECOA Assets NOD #computing node namel# (#NOD IDI1#)
#define ECOA Assets NOD #computing node name2#f (#NOD ID2#)
#define ECOA Assets NOD #computing node nameN# (#NOD IDN#)

#define ECOA Assets PF #computing platform namel# (#PEF IDI1#)
#define ECOA Assets PF #computing platform name2# (#PEF ID2#)
#define ECOA Assets PF #computing platform nameN# (#PF IDN#)

#define ECOA Assets SOP_#service operation namel# (#ELI UID#)
#define ECOA Assets SOP_#service operation namel2# (#ELI UID#)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 22

#define ECOA Assets SOP_#service operation nameN# (#ELI UID#)
#define ECOA Assets #deployment namel# (#DEP ID1#)
#define ECOA Assets #deployment name2# (#DEP_ID2#)

#define ECOA Assets #deployment nameN# (#DEP_IDN#)

#endif

9.4.9 ECOA:asset_type

In C ECOA:asset type translates to ECOA asset type, with the enumerated values shown below:

typedef ECOA uint32 ECOA asset type;
#define ECOA asset type COMPONENT

#define ECOA asset type PROTECTION DOMAIN
#define ECOA asset type NODE

#define ECOA asset type PLATFORM

#define ECOA_asset type SERVICE

#define ECOA_asset type DEPLOYMENT

~ o~~~ o~~~

a b w NP O

9.4.10 ECOA:error_type

InCECOA:error type translates to ECOA error type, with the enumerated values shown below:

typedef ECOA uint32 ECOA error_ type;

#define ECOA error type RESOURCE NOT AVAILABLE (0)
#define ECOA error type UNAVAILABLE (1)
#define ECOA error type MEMORY VIOLATION (2)
#define ECOA error type NUMERICAL ERROR (3)
#define ECOA error type ILLEGAL INSTRUCTION (4)
#define ECOA error type STACK OVERFLOW (5)
#define ECOA error type DEADLINE VIOLATION (6)
#define ECOA_error type OVERFLOW (7)
#define ECOA error type UNDERFLOW (8)
#define ECOA error type ILLEGAL INPUT ARGS (9)
#define ECOA error type ILLEGAL OUTPUT_ ARGS (10)
#define ECOA error type ERROR (11)
#define ECOA error type FATAL ERROR (12)
#define ECOA error type HARDWARE FAULT (13)
#define ECOA error type POWER FAIL (14)
#define ECOA error type COMMUNICATION ERROR (15)
#define ECOA error type INVALID CONFIG (16)
#define ECOA error type INITIALISATION PROBLEM (17)
#define ECOA error type CLOCK UNSYNCHRONIZED (18)
#define ECOA__error type UNKNOWN OPERATION (19)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 23

#define ECOA__error type OPERATION OVERRATED (20)
#define ECOA error type OPERATION UNDERRATED (21)

9.4.11 ECOA:recovery_action_type

In C ECOA:recovery action type translates to ECOA recovery action type, with the
enumerated values shown below:

typedef ECOA uint32 ECOA recovery action type;

#define ECOA recovery action type SHUTDOWN (
#define ECOA recovery action type COLD RESTART (
#define ECOA recovery action type WARM RESTART (
#define ECOA recovery action type CHANGE DEPLOYMENT (

9.4.12 ECOA:pinfo_filename

The syntax for a pinfo_filename in C is:

#define ECOA__PINFO FILENAME MAXSIZE 256

typedef struct {

ECOA uint32 current size;

ECOA char8 data[ECOA PINFO FILENAME MAXSIZE];
} ECOA_pinfo filename;

9.4.13 ECOA:seek_whence_type

In C ECOA:seek whence type franslates to ECOA seek whence type, with the enumerated values
shown below:

typedef ECOA uint32 ECOA seek whence type;
#define ECOA seek whence type SEEK SET (0)
#define ECOA seek whence type SEEK CUR (1)
#define ECOA seek whence type SEEK END (2)

10 Module Interface
10.1 Operations

This section contains details of the operations that comprise the module API i.e. the operations that can
invoked by the container on a module.

10.1.1 Request-Response
10.1.1.1 Request Received

The following is the C syntax for invoking a request received by a module instance when a response is
required, where #module_impl_name# is the name of the module implementation providing the service and

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 24

#operation_name# is the operation name. The same syntax is applicable for both synchronous and
asynchronous request-response operations.

/*

* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# #operation name# request received
(#module impl name# context* context,
const ECOA uint32 1ID,

const #request parameters#);

10.1.1.2 Response Received

The following is the C syntax for an operation used by the container to send the response to an
asynchronous request response operation to the module instance that originally issued the request, where
#module_impl_name# is the name of the module implementation providing the service and
#operation_name# is the operation name. (The reply to a synchronous request response is provided by the
return of the original request).

/*
* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# #operation name# response received
(#moduloiimplinamo#__context* context,
const ECOA uint32 1ID,
const ECOA return status status,

const #response parameters#);

The “#response parameters#” are the “out” parameters of the request-response operation, but are
treated as inputs to the function and passed as “const” parameters, so they are not modified by the module.

10.1.2 Versioned Data Updated

The following is the C syntax that is used by the container to inform a module instance that reads an item of
versioned data that new data has been written.

/*

* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# #operation name# updated

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 25

(#module impl name# context* context);

10.1.3 Event Received

The following is the C syntax for an event received by a module instance.

/*
* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name#_ f#operation name# received
(#module impl name# context* context,

const #event parameters#);

10.2 Module Lifecycle
The following operations are applicable to application, trigger and dynamic-trigger module instances.
10.2.1 Initialize_Received

The C syntax for an operation to initialise a module instance is:

/*

* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# INITIALIZE received

(#module impl name# context* context);

10.2.2 Start_Received

The C syntax for an operation to start a module instance is:

/*
* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# START received

(#module impl name# context* context);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 26

10.2.3 Stop_Received

The C syntax for an operation to stop a module instance is:

/*

* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# STOP received

(#module impl name# context* context);
1mpl _

10.2.4 Shutdown_Received

The C syntax for an operation to shutdown a module instance is:

/*

* @file #module impl name#.h

* Module Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# SHUTDOWN received

(#module impl name# context* context);

10.3 Error_notification at Fault Handler level

The C syntax for the container to report an error to a Fault Handler is:

/*

* @file #fault handler module impl name#.h

* Module Interface header for the Fault Handler Module

* #fault handler module impl name#

* Generated automatically from specification; do not modify here

*/

void #fault handler impl name# error notification
(#fault handler impl name# context* context,
ECOA error id error id,
const ECOA global time * timestamp,
ECOA asset id asset id,
ECOA asset type asset type,
ECOA_ error type error type,

ECOA error code error code);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 27

11 Container Interface
11.1 Operations

11.1.1 Request Response
11.1.1.1 Response Send

The C syntax, applicable to both synchronous and asynchronous request response operations, for sending
areplyis:

/*

* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

ECOA return status
#module impl name# container #operation name# response send
(#modulciimplinamc#__context* context,
const ECOA uint32 1ID,

const #response parameters#);

The “#response parameters#” are the “out” parameters of the request-response operation, but are
treated as inputs to the function and passed as “const” parameters, so they are not modified by the
container. The ID parameter is that which is passed in during the invocation of the request received
operation.

11.1.1.2 Synchronous Request

The C syntax for a module instance to perform a synchronous request response operation is:

/*

* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

ECOA return status
fmodule impl name# container #operation name# request sync
(#fmodule impl name# context* context,
const #request parameters#,

#response parameters#);

11.1.1.3 Asynchronous Request

The C syntax for a module instance to perform an asynchronous request response operation is:

/*

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 28

* @file #module impl name# container.h
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

ECOA return status
fmodule impl name# container #operation name# request async
(fmodule impl name# context* context,
ECOA uint32* 1ID,

const #request parameters#);

11.1.2 Versioned Data

This section contains the C syntax for versioned data operations, which allow a module instance to

e Get (request) Read Access

e Release Read Access

e Get (request) Write Access

e Cancel Write Access (without writing new data)

e Publish (write) new data (automatically releases write access)

¢ Note: the definition of versioned data handles involved in all #operation_name# is done in the
Container Types header file, as specified in Section 12.1.1.

11.1.2.1 Get Read Access

/*

* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/
#include “#module impl name# container types.h”

ECOA return status
ffmodule impl namef container f#operation name# get read access
(#module impl name# context* context,

ffmodule impl namef container f#operation namef# handle* data handle);

11.1.2.2 Release Read Access

/*
* @file #module impl name# container.h
* Container Interface header for Module f#module impl name#

* Generated automatically from specification; do not modify here

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 29

*/
#include “#module impl name# container types.h”

ECOA return status
#module impl name# container #operation name# release read access
(#module impl name# context* context,

#module impl name# container #operation name# handle* data handle);

11.1.2.3 Get Write Access

/*
* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/
#include “#module impl name# container types.h”

ECOA_ return status
#module impl name# container #operation name# get write access
(#module impl name# context* context,

#module impl name# container #operation name# handle* data handle);

11.1.2.4 Cancel Write Access

/*
* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/
#include “#module impl name# container types.h”

ECOA return status
fmodule impl namef container foperation name# cancel write access
(#module impl name# context* context,

fmodule impl name# container #operation name# handle* data handle);

11.1.2.5 Publish Write Access

/%
* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 30

* Generated automatically from specification; do not modify here

*/
#include “module impl name# container types.h”

ECOA return status
#module impl name# container #operation name# publish write access
(#module impl name# context* context,

fmodule impl name# container #operation name# handle* data handle);

11.1.3 Events
11.1.3.1 Send

The C syntax for a module instance to perform an event send operation is:

* @file #module impl name# container.h
* Container Interface header for Module f#module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container f#operation name# send
(#module impl name# context* context,

const #event parameters#);

11.2 Properties

This section describes the syntax for the Get Value operation to request the module properties whose
values are fulfilled by the Infrastructure based on elements described in the component implementation
XML file.

11.2.1 Get Value

The syntax for Get_Value is shown below, where

e dproperty name# is the name of the property used in the component definition,
. #property type name# iS the name of the data-type of the property.

/*
* @file #module impl name# container.h

* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

void #module impl name# container get #property name# value
(#module impl name# context* context,

#fproperty type name#* value);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 31

11.2.2 Expressing Property Values

Not applicable to the C Binding.

11.2.3 Example of Defining and Using Properties
Not applicable to the C Binding.

11.3 Logging and Fault Management

This section describes the C syntax for the logging and fault management operations provided by the
container. There are six operations:

e Trace: a detailed runtime trace to assist with debugging

e Debug: debug information

e Info: to log runtime events that are of interest e.g. changes of module state

e Warning: to report and log warnings

e Raise_Error: to report an error from which the application may be able to recover

o Raise_Fatal_Error: to raise a severe error from which the application cannot recover

11.3.1 Log_Trace

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container log trace
(#module impl name# context* context,
const ECOA_ log log);

11.3.2 Log_Debug

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container log debug
(#module impl name# context* context,
const ECOA log log);

11.3.3 Log_Info

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#

* Generated automatically from specification; do not modify here

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 32

*/

void #module impl name# container 1log info
(#module impl name# context* context,

const ECOA log log);

11.3.4 Log_Warning

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container log warning
(#module impl name# context* context,
const ECOA_ log log);

11.3.5 Raise_Error

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container raise error
(#module impl name# context* context,
const ECOA log log,

const ECOA error code error code);

11.3.6 Raise_Fatal_Error

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container raise fatal error
(#module impl name# context* context,
const ECOA log log,

const ECOA error code error code);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 33

11.4 Time Services

11.4.1 Get_Relative_Local Time

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void fmodule impl name# container get relative local time
(fmodule impl name# context* context,

ECOA hr time *relative local time);

11.4.2 Get_UTC_Time

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

ECOA return status #module impl name# container get UTC time
(#module impl name# context* context,
ECOA global time *utc time);

11.4.3 Get_Absolute_System_Time

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

ECOA return status fmodule impl name# container get absolute system time
(#module impl name# context* context,

ECOA global time *absolute system time);

11.4.4 Get_Relative_Local_Time_Resolution

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container get relative local time resolution

(#module impl name# context* context,

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 34

ECOA duration *relative local time resolution);

11.45 Get_UTC_Time_Resolution

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container get UTC time resolution
(#module impl name# context* context,

ECOA duration *utc time resolution);

11.4.6 Get_Absolute_System_Time_Resolution

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

void #module impl name# container get absolute system time resolution
(#module impl name# context* context,

ECOA duration *absolute system time resolution);

11.5 Persistent Information management (PINFO)
11.5.1 PINFO read

The C syntax for a module instance to read persistent data (PINFO) is:

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

ECOA return status #module impl name# container read #PINFOname#
(#module impl name# context* context,
ECOA byte *memory address,
ECOA uint32 in size,
ECOA uint32 *out size);

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIIAWG-ECOA-TR-004 Issue 6 35

11.5.2 PINFO seek

The C syntax for a module instance to seek within persistent data (PINFO) is:

/* @file “#module impl name# container.h”
* Container Interface header for Module #module impl name#
* Generated automatically from specification; do not modify here

*/

ECOA return status #module impl name# container seek #PINFOname#
(#module impl name# context* context,
ECOA int32 offset, ECOA seek whence type whence,
ECOA uint32 *new position);

11.5.3 Example of Defining Private PINFO
Not applicable to the C Binding.

11.5.4 Example of Defining Public PINFO
Not applicable to the C Binding.

11.6 Recovery Action

This section contains the C syntax for the recovery action service provided to Fault Handlers by the
container.

/* @file “#fault handler impl name# container.h”

* Container Interface header for Fault Handler Module

* #fault handler impl name#

* Generated automatically from specification; do not modify here

*/

ECOA return status #fault handler impl name# container recovery action
(#fault handler impl name# context* context,
ECOA recovery action type recovery action,
ECOA asset id asset id,
ECOA asset type asset type);

11.7 Save Warm Start Context

The C syntax for a module instance to save its warm start (non-volatile) context is:

/* @file “module impl name# container.h”
* Container Interface header for Module
* #module impl name#

* Generated automatically from specification; do not modify here

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 36

*/

void #module impl name# container save warm start context

(#module impl name# context* context);

12 Container Types

This section contains details of the data types that comprise the container API i.e. the data types that can
be used by a module.

12.1.1 Versioned Data Handles

This section contains the C syntax in order to define data handles for versioned data operations defined in
the Container Interface.

/*

* @file #module impl name# container types.h

* Container Types header for Module #module impl name#

* Generated automatically from specification; do not modify here

*/

#define ECOA VERSIONED DATA HANDLE PRIVATE SIZE 32

/*
* The following is the data handle structure associated to the data operation
* called #operation name# of data-type #type name#
*/
typedef struct {
/* pointer to the local copy of the data */
#type name#* data;
/* stamp updated each time the data value is updated locally for that */
/* reader */
ECOA uint32 stamp;
/* technical info associated with the data (opaque for the user, reserved */
/* for the infrastructure) */
ECOA_byte platform hook [ECOA VERSIONED DATA HANDLE PRIVATE SIZE];

} #module impl name# container f#operation name# handle;

13 External Interface

This section contains the C syntax for the ECOA external interface provided to non-ECOA software by the
container.

Note: the choice of the language for generating external APIs is made separately from the choice of the language for generating
ECOA modules APIs. The choice of supported languages is made depending on needs that are to be taken into account in platform
procurement requirements.

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 37

/* @file “#component impl name# External Interface.h”
* External Interface header for Component Implementation
* #component impl name#
* Generated automatically from specification; do not modify here
*/
void #component impl name# #external operation name#

(const f#event parameters#);

14 Default Values

Not applicable to the C Binding.

15 Trigger Instances

Not applicable to the C Binding.

16 Dynamic Trigger Instances
Not applicable to the C Binding.

17 Reference C Header

/*
* @file ECOA.h
*/

/* This is a compilable ISO C99 specification of the generic ECOA types, */

/* derived from the C binding specification. */
/* The declarations of the types given below are taken from the */
/* standard, as are the enum types and the names of the others types. */
/* Unless specified as implementation dependent, the values specified in */
/* this appendix should be implemented as defined. */

#ifndef ECOA H
#define ECOA H

#if defined(cplusplus)
extern "C" {

#endif /* cplusplus */

/* ECOA:boolean8 */

typedef unsigned char ECOA boolean8;
#define ECOA TRUE (1)

#define ECOA_FALSE (0)

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 38

/* ECOA:int8 */

typedef char ECOA int8;
#define ECOA_INT8 MIN (-127)
#define ECOA_INT8 MAX (127)

/* ECOA:char8 */

typedef char ECOA char8;
#define ECOA CHAR8 MIN (0)
#define ECOA CHAR8 MAX (127)

/* ECOA:byte */

typedef unsigned char ECOA byte;
#define ECOA__BYTE MIN (0)
#define ECOA__BYTE MAX (255)

/* ECOA:intle */

typedef short int ECOA intlé6;
#define ECOA INT16 MIN (-32767)
#define ECOA INT16 MAX (32767)

/* ECOA:int32 */

typedef int ECOA int32;

#define ECOA INT32 MIN (-2147483647L)
#define ECOA INT32 MAX (2147483647L)

/* ECOA:uint8 */

typedef unsigned char ECOA uint8;
#define ECOA UINT8 MIN (0)
#define ECOA UINT8 MAX (255)

/* ECOA:uintle */

typedef unsigned short int ECOA uintlé6;
#define ECOA__UINT16 MIN (0)

#define ECOA UINT16 MAX (65535)

/* ECOA:uint32 */

typedef unsigned int ECOA uint32;
#define ECOA UINT32 MIN (0LU)

#define ECOA UINT32 MAX (4294967295LU)

/* ECOA:float32 */
typedef float ECOA float32;

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 39

#define ECOA_ FLOAT32 MIN (-3.402823466e+38F)
#define ECOA FLOAT32 MAX (3.402823466e+38F)

/* ECOA:doubletcd */

typedef double ECOA doublet4;

#define ECOA DOUBLE64 MIN (-1.7976931348623157e+308)
#define ECOA_DOUBLE64 MAX (1.7976931348623157e+308)

#if defined(ECOA 64BIT SUPPORT)

/* ECOA:int64d */

typedef long long int ECOA int64;

#define ECOA INT64 MIN (-9223372036854775807LL)
#define ECOA_INT64 MAX (9223372036854775807LL)

/* ECOA:uint64 */

typedef unsigned long long int ECOA uint64;
#define ECOA__UINT64 MIN (0LLU)

#define ECOA UINT64 MAX (18446744073709551615LLU)

#endif /* ECOA_64BIT SUPPORT */

/* ECOA:return status */
typedef ECOA uint32 ECOA return status;

#define ECOA return status OK (0)
#define ECOA return status INVALID HANDLE (1)
#define ECOA return status DATA NOT INITIALIZED (2)
#define ECOA return status NO DATA (3)
#define ECOA return status INVALID IDENTIFIER (4)
#define ECOA return status NO RESPONSE (5)
#define ECOA return status OPERATION ALREADY PENDING (6)
#define ECOA return status CLOCK UNSYNCHRONIZED (7)
#define ECOA return status RESOURCE NOT AVAILABLE (8)
#define ECOA return status OPERATION NOT AVAILABLE (9)
#define ECOA return status INVALID PARAMETER (10)

/* ECOA:hr time */
typedef struct {
ECOA uint32 seconds; /* Seconds */
ECOA uint32 nanoseconds; /* Nanoseconds*/
} ECOA_ hr time;

/* ECOA:global time */

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 40

typedef

struct {

ECOA uint32 seconds; /* Seconds */

ECOA_uint32 nanoseconds; /* Nanoseconds*/

} ECOA

/* ECOA:

typedef

global time;

duration */

struct {

ECOA uint32 seconds; /* Seconds */

ECOA_ uint32 nanoseconds; /* Nanoseconds*/

} ECOA

/* ECOA:

#define
typedef

duration;

log */
ECOA__LOG_MAXSIZE (256)

struct {

ECOA uint32 current size;
ECOA char8 data[ECOA LOG MAXSIZE];

} ECOA

/* ECOA:

typedef

/* ECOA:

typedef

/* ECOA:

typedef
#define
#define
#define
#define
#define
#define

/* ECOA:

typedef
#define
#define
#define
#define
#define
#define
#define
#define
#define

log;

error id */
ECOA uint32 ECOA error_ id;

asset id */
ECOA uint32 ECOA asset id;

asset type */

ECOA uint32 ECOA asset type;
ECOA asset type COMPONENT

ECOA asset type PROTECTION DOMAIN
ECOA_asset type NODE

ECOA_ asset type PLATFORM

ECOA asset type SERVICE
ECOA_asset type DEPLOYMENT

~ o~~~ o~ o~

g w N PO

error type */

ECOA uint32 ECOA error type;

ECOA error type RESOURCE NOT AVAILABLE
ECOA error type UNAVAILABLE

ECOA error type MEMORY VIOLATION
ECOA error type NUMERICAL ERROR
ECOA error type ILLEGAL INSTRUCTION
ECOA error type STACK OVERFLOW
ECOA_ error type DEADLINE VIOLATION
ECOA_ error type OVERFLOW

ECOA_ error type UNDERFLOW

0 J o oo W N e O

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,

accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6

#define ECOA_error type ILLEGAL INPUT ARGS (9)
#define ECOA error type ILLEGAL OUTPUT ARGS (10)
#define ECOA error type ERROR (11)
#define ECOA error type FATAL ERROR (12)
#define ECOA error type HARDWARE FAULT (13)
#define ECOA error type POWER FAIL (14)
#define ECOA error type COMMUNICATION ERROR (15)
#define ECOA error type INVALID CONFIG (16)
#define ECOA error type INITIALISATION PROBLEM (17)
#define ECOA error type CLOCK UNSYNCHRONIZED (18)
#define ECOA error type UNKNOWN OPERATION (19)
#define ECOA error type OPERATION OVERRATED (20)
#define ECOA error type OPERATION UNDERRATED (21)

/* ECOA:recovery action type */

typedef ECOA uint32 ECOA recovery action type;
#define ECOA recovery action type SHUTDOWN (
#define ECOA recovery action type COLD RESTART (
#define ECOA recovery action type WARM RESTART (
#define ECOA recovery action type CHANGE DEPLOYMENT (

#define ECOA__PINFO FILENAME MAXSIZE 256

typedef struct {

ECOA uint32 current size;

ECOA char8 data[ECOA PINFO FILENAME MAXSIZE];
} ECOA_ pinfo filename;

/* ECOA:seek whence type */

typedef ECOA uint32 ECOA seek whence type;
#define ECOA seek whence type SEEK SET (0)
#define ECOA_seek whence type SEEK CUR (1)
#define ECOA_seek whence type SEEK END (2)

#if defined(cplusplus)
}

#endif /* cplusplus */

#endif /* ECOA H */

This specification is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systemes Aéroportés, GE
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’
basis and co-developers of this specification make no warranties expressed or implied, including no warranties as to completeness,
accuracy or fitness for purpose, with respect to any of the information.

DGT 144477-FIAWG-ECOA-TR-004 Issue 6 42

