

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 1

European Component Oriented Architecture (ECOA®)
Collaboration Programme:
Preliminary version of the

SOFTARC C Language Binding

Dassault Ref No: DGT 2059972-A
Thales DMS Ref No: 69629513-035 --

Issue: 7

Prepared by
Dassault Aviation and Thales DMS

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document
relating to the changes envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard
is the intellectual property of Dassault Aviation and Thales DMS France SAS. The information set out in this
document is provided solely on an ‘as is’ basis and co-developers of this specification make no warranties
expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with
respect to any of the information.

Note: This specification is preliminary and is subject to further adjustments. Consequently, users are advised to exercise
caution when relying on the information herein. No warranties are provided regarding the completeness or accuracy of
the information in this preliminary version. The final version of the document will be released to reflect further
improvements.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 2

This Page Intentionally Left Blank

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 3

Contents

Contents 3

0 Introduction 4

1 Scope 5

2 Warning 5

3 Normative References 5

4 Definitions 5

5 Abbreviations 6

6 Component to Language Mapping 7

7 Parameters 13

8 Component Context 14

9 Types 17

10 Component Interface 26

11 Container Interface 29

12 Container Types 38

13 Default Values 39

14 External Interface 39

15 PeriodicTriggerManager Components 39

16 External Components 39

17 Reference C Header 39

18 Compatibility with ECOA Options 43

Figures

Figure 1 C Files Organization 10

Tables

Table 1 Component and Container InterfacesCategory 7

Table 1 Filename Mapping 10

Table 2 Method of Passing Parameters 13

Table 3 C Basic Type Mapping 17

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 4

0 Introduction

This Architecture Specification provides the specification for creating ECOA®-based systems. It describes the
standardised programming interfaces and data-model that allow a developer to construct an ECOA®-based
system. It uses terms defined in the Definitions (Architecture Specification Part 2). The details of the other
documents comprising the rest of this Architecture Specification can be found in Section 3.

This document describes the C language binding for ECOA, that is similar to the reference binding ([ECOA
C Language Binding]), and compatible with the SOFTARC component framework. SOFTARC is a real-time
embedded component framework used by Thales since 2012. This language binding allows SOFTARC
components written in C language to be part of the ECOA ecosystem without source code modifications.

This language binding is compatible with the C language standard ANSI X3.159-1989.

This language binding is fully compliant with the generic software interfaces specified in [Architecture
Specification Part 4].

This document describes the API identified in ECOA Component Implementation models with the following
information:

 APIType = "SOFTARC_C"

 APIVersion = "7.1"

Warning: This document is not exhaustive regarding the Option-specific types and APIs.

This document is structured as follows:

 Section 6 describes the Component to Language Mapping;

 Section 7 describes the method of passing parameters;

 Section 8 describes the Component Context;

 Section 9 describes the basic types that are provided and the types that can be derived from them;

 Section 0 describes the Component Interface;

 Section 11 describes the Container Interface;

 Section 11.8 describes the Container Types;

 Section 14 describes the External Interface;

 Section 13 describes the Default Values;

 Section 14 describes Trigger Instances;

 Section 0 provides a reference C header for the ECOA® library, usable in any C binding
implementation;

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 5

1 Scope

This Architecture Specification specifies a uniform method for design, development and integration of
software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme. Compliance with this specification shall
not in itself relieve any person from any legal obligations imposed upon them. Product development should
rely on the BNAE publications of the ECOA standard.

3 Normative References

Architecture Specification Part 2 Dassault Ref No: DGT 2041081-A

Thales DMS Ref No: 69398916-035 --

Issue 7

Architecture Specification Part 2 – Definitions

Architecture Specification Part 4 Dassault Ref No: DGT 2041083-A

Thales DMS Ref No: 69398918-035 --

Issue 7

Architecture Specification Part 4 – Software Interface

Architecture Specification Part 5 Dassault Ref No: DGT 2041084-A

Thales DMS Ref No: 69398919-035 --

Issue 7

Architecture Specification Part 5 – High Level Platform
Requirements

Architecture Specification Part 7 Dassault Ref No: DGT 2041086-A

Thales DMS Ref No: 69398925-035 --

Issue 7

Architecture Specification Part 7 – Metamodel

ECOA C Language Binding Dassault Ref No: DGT 2041087-A

Thales DMS Ref No: 69398926-035 --

Issue 7

Preliminary version of the ECOA C Language Binding

ANSI X3.159-1989 Programming Languages – C

ANSI X3.159-1989

4 Definitions

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 6

5 Abbreviations

API Application Programming Interface

ECOA European Component Oriented Architecture. ECOA® is a registered trademark.

PINFO Persistent Information

UTC Coordinated Universal Time

XML eXtensible Markup Language

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 7

6 Component to Language Mapping

6.1 Overview of interfaces

Table 1 lists the Component and Container Interface APIs defined in the "generic" Software Interface
document ([Architecture Specification Part 4], Table 1).

The “level” column specifies whether the interface is mandatory (i.e. required in any language binding), or
optional.

The "implemented" column specifies whether the interface is implemented in the present language binding.

Table 1 Component
and Container

InterfacesCategory
Abstract API Name Level Implemented

Events API Event_Send MANDATORY YES

Event_Received MANDATORY YES

Request Response API Request_Sync MANDATORY YES

Request_Async MANDATORY YES

Request_Received MANDATORY YES

Response_Received MANDATORY* YES

Response_Actually_Received
Response_Not_Received

NO

Response_Send MANDATORY YES

Request_Cancel OPTIONAL YES

Versioned Data API Get_Read_Access MANDATORY YES

Release_Read_Access MANDATORY YES

Updated MANDATORY YES

Get_Write_Access
MANDATORY**

NO

Get_Selected_Write_Access YES

Cancel_Write_Access MANDATORY YES

Publish_Write_Access MANDATORY YES

Is_Initialized OPTIONAL YES

Release_All_Data_Handles OPTIONAL YES

Properties API Get_Value MANDATORY YES

Runtime Lifecycle API Initialize_Received MANDATORY YES

Start_Received MANDATORY YES

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 8

Table 1 Component
and Container

InterfacesCategory
Abstract API Name Level Implemented

Stop_Received MANDATORY YES

Shutdown_Received MANDATORY YES

Reset_Received MANDATORY YES

Supervisor Components On_State_Change OPTIONAL

YES
[OPTION

SUPERVISION]

Get_Executable_Status OPTIONAL

Executable_Command OPTIONAL

Component_State_Command OPTIONAL

Get_Component_Status OPTIONAL

Get_Variable OPTIONAL

Set_Variable OPTIONAL

Logging and Fault
Management Services API

Log_Debug
Log_Trace
Log_Info
Log_Warning
Raise_Error
Raise_Fatal_Error

MANDATORY**
NO

Flex_Log
Flex_Raise_Fatal_Error

YES

Error_Notification OPTIONAL NO

Time Services API Get_Relative_Local_Time MANDATORY YES

Get_UTC_Time OPTIONAL NO

Get_Absolute_System_Time MANDATORY YES

Get_Relative_Local_Time_
Resolution

OPTIONAL NO

Get_UTC_Time_Resolution OPTIONAL NO

Get_Absolute_System_
Time_Resolution

OPTIONAL NO

Triggers Trigger_Set MANDATORY YES

Trigger_Cancel MANDATORY YES

Persistent Information
(PINFO) Management

Read MANDATORY YES

Write OPTIONAL NO

Seek MANDATORY YES

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 9

Table 1 Component
and Container

InterfacesCategory
Abstract API Name Level Implemented

Context Management Save_Warm_Start_Context OPTIONAL NO

External Interface External_Event_Received OPTIONAL NO

External Components External_Routine MANDATORY YES

Start_External_Task MANDATORY YES

Stop_External_Task MANDATORY YES

* it is mandatory to define at least one of the API alternatives in a language binding.

** it is mandatory to define at least one of the API alternatives in a language binding.

In addtion, the present language binding defines the following Component and Container Interface APIs, that
are not defined in the "generic" Software Interface document ([Architecture Specification Part 4]):

 Initialization functions (cf. §9.7.1)

 Comparison functions (cf. §9.7.2)

 Display (cf. §11.3.2.3)

6.2 Overview of files

This section gives an overview of the Component Interface and Container Interface APIs, in terms of the
filenames and the overall structure of the files.

With structured languages such as C, the Component Interface will be composed of a set of functions
corresponding to each entry-point of the Component Implementation. The declaration of these functions will
be accessible in a header file called #component_impl_name#.h. The names of these functions shall begin
with the prefix “#component_impl_name#_”.

The Container Interface will be composed of a set of functions corresponding to the required operations. The
declaration of these functions will be accessible in a header file called #component_impl_name#_container.h.
The names of these functions shall begin with the prefix “#component_impl_name#_”.

The Container Types will be composed of the types which the Component Implementation needs in order to
declare, use and store various handles. The declaration of these types will be accessible in a header file
called #component_impl_name#_data.h. The names of these types shall begin with the prefix
“#component_impl_name#_”.

It is important to ensure that the names of these functions and types do not clash within a single executable.
One way to achieve this is for each component supplier to define the component implementation name
prefixed by a unique identifier. In this way they can manage the uniqueness of their own components, and
the mixing of different supplier components within an executable is possible.

A dedicated structure named #component_impl_name#_context, and called Component Context structure in
the rest of the document will be generated by the ECOA toolchain in the Component Container header
(#component_impl_name#.h) and shall be extended by the Component implementer to contain all the user
variables of the Component. This structure will be allocated by the container before Component Instance

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 10

start-up and passed to the Component Instance in each activation entry-point (i.e. received events, received
requests or received asynchronous responses).

Figure 1 shows the relationship between the C files mentioned above, whilst Table 2 shows the filename
mappings.

Figure 1 C Files Organization

Table 2 Filename Mapping

Filename Use

#component_impl_name#.h Component Interface declaration (entry
points provided by the component and
callable by the container)

#component_impl_name#.c Component Implementation (implements the
component interface)

#component_impl_name#_container.h Container Interface declaration (functions
provided by the container and callable by
the component)

Component Context type declaration

#component_impl_name#_container.c Container Implementation:

This source (.c) implements the Container
Interface. It is out of scope of this document,
as it is platform dependent. The Container
may actually be a collection of source files
depending upon the platform
implementation.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 11

Filename Use

#component_impl_name#_data.h Container Types declaration (container-level
data types usable by the component) These
types are related to the Container for a
Component Implementation and are
declared with the
#component_impl_name# prefix.

#component_impl_name#_user_context.h User extensions to Component Context.
These types are related to the Component
Implementation and are declared with the
#component_impl_name# prefix.

#library#.h Types defined from a data type library.

Comparison functions.

#library#_initialize.h Initialisation functions for types defined from
a data type library

All of these header files include a reference header file, whose content is given in section §0.

6.3 Component Interface Template

Unspecified by this document.

6.4 Container Interface Template

Unspecified by this document.

6.5 Container Types Template

Unspecified by this document.

6.6 User Component Context Template

Unspecified by this document.

6.7 Guards

In C, all of the declarations within header files (files with extension .h) shall be surrounded within the
following block to make the code compatible with C++, and to avoid multiple inclusions:

#if !defined(#macro_protection_name#_H)

#define #macro_protection_name#_H

#if defined(_cplusplus)

extern “C” {

#endif /* _cplusplus */

/* all the declarations shall come here */

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 12

#if defined(_cplusplus)

}

#endif /* _cplusplus */

#endif /* #macro_protection_name#_H */

Where #macro_protection_name# is the name of the header file in capital letters and without the .h extension.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 13

7 Parameters

This section describes the manner in which parameters are passed in C:

Input parameters will be passed as pointers to a const; output parameters defined with a complex type will
be passed as pointers.

Table 3 Method of Passing Parameters

 Input parameter Output parameter

Simple type Pointer to const Pointer

Complex type Pointer to const Pointer

Within the API bindings, parameters will be passed as constant if the behaviour of the specific API warrants
it. This will override the normal conventions defined above.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 14

8 Component Context

In the C language, the Component Context is a structure which holds both the user local data (called “User
Component Context”) and infrastructure-level technical data (which is implementation dependant). The warm
start context feature may be optionally selected in the Component Implementation model using option
'hasWarmStartContext'. The presence or absence of declarations of corresponding fields in Component code
must be in accordance with selections made in the Component Implementation model. The structure is
defined in the Container Interface.

Any language type can be used within the contexts (including ECOA ones).

The following shows the C syntax for the Component Context:

/* @file “#component_impl_name#_container.h”

 * Container Interface header for Component #component_impl_name#

 * Generated automatically from specification; do not modify here

 */

/* Container Types */

#include “#component_impl_name#_data.h”

/* User Context */

#include “#component_impl_name#_user_context.h”

/* Incomplete definition of the technical (platform-dependent) part of the */

/* context (it will be defined privately by the container) */

struct #component_impl_name#_platform_hook;

/* Component Context structure declaration */

typedef struct

{

 /* User context */

 #component_impl_name#_user_context user;

 /* Pointer to technical context */

 struct #component_impl_name#_tech_context *tech;

} #component_impl_name#_context;

8.1 User Component Context

The following shows the C syntax for the Component User Context (including an example data item;
myCounter):

/* @file #component_impl_name#_user_context.h

 * This is an example of a user defined User Component context

 */

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 15

/* Container Types */

#include “#component_impl_name#_data.h”

/* User Component Context structure example */

typedef struct

{

 /* declare the User Component Context “local” data here */

 int myCounter;

} #component_impl_name#_user_context;

Data declared within the Component User Context can be of any type.

The following example illustrates the usage of the Component context in the entry-point corresponding to an
event-received:

/* @file “#component_impl_name#.c”

 * Generic operation implementation example

 */

void #component_impl_name#_#operation_name#_received

 (#component_impl_name#_context* context)

{

 /* To be implemented by the component */

 /*

 * …

 * increments a local user defined counter:

 */

 context->user.myCounter++;

}

The user extensions to Component Context need to be known by the container in order to allocate the
required memory area. This means that the component supplier is required to provide the associated header
file. If the supplier does not want to divulge the original contents of the header file, then:

 It may be replaced by an array with a size equivalent to the original data; or

 Memory management may be dealt with internally to the code, using memory allocation functions1

 The size of the Component User Context may be declared in the bin-desc file related to the
Component.

To extend the Component Context structure, the component implementer shall define the User Component
Context structure, named #component_impl_name#_user_context, in a header file called

1 The current ECOA Erreur ! Source du renvoi introuvable. does not specify any memory allocation function. So, this c

ase may lead to non-portable code.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 16

#component_impl_name#_user_context.h. All the private data of the Component Implementation shall be
added as members of this structure, and will be accessible within the “user” field of the Component Context.

The Component Context structure will be passed by the Container to the Component as the first parameter
for each operation (i.e. received events, received requests or received asynchronous responses). The
Component Context defines the instance of the Component being invoked by the operation. This structure
shall be passed by the Component to all Container Interface API functions it can call.

8.2 Warm Start Component Context

The "warm start context" is not supported by the SOFTARC C language binding.

If a component implementation has a warm start component context and uses this language binding, a
generation error shall be raised.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 17

9 Types

This section describes the convention for creating type libraries, and how the ECOA basic types and derived
types are represented in C.

9.1 Libraries

The type definitions are contained within libraries: all types for specific library defined in

#library#.types.xml shall be placed in a file called #library#.h

The complete name of the declaration of a variable name and type name will be computed by prefixing these
names with the name of the library. In the C language, this naming rule will be used for each variable or type
declaration to create the complete variable name, reflecting the library from which it is defined.

Below is an example of a simple type being defined within a library in C.

/*

 * @file #library#.h

 * Data-type declaration file

 * Generated automatically from specification; do not modify here

 */

typedef #basic_type_name#

 #library#_#simple_type_name#;

9.2 Basic Types

The basic types, shown in Table 4, shall be located in the “ECOA” library and hence in ECOA.h which shall
also contain definitions of the pre-defined constants, e.g. that define constants to represent the true and false
values of the basic Boolean type, that are shown in Erreur ! Source du renvoi introuvable..

Table 4 C Basic Type Mapping

ECOA Basic Type C type C constants

ECOA.boolean8 SARC_boolean8 SARC_TRUE, SARC_FALSE

ECOA.int8 SARC_int8

ECOA.char8 SARC_char8

ECOA.byte SARC_Byte

ECOA.int16 SARC_int16

ECOA.int32 SARC_int32

ECOA.int64 SARC_int64

ECOA.uint8 SARC_uint8

ECOA.uint16 SARC_uint16

ECOA.uint32 SARC_uint32

ECOA.uint64 SARC_uint64

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 18

ECOA Basic Type C type C constants

ECOA.float32 SARC_float32

ECOA.double64 SARC_double64

Note: The macros defined in standard header files "stdint.h" and "float.h" indicate the limits of these types.

9.3 Derived Types

Note that as namespaces are not supported in the C language, the actual name of a type (known as the

complete type and referred to here by prefixing complete_) will be computed by adding as a prefix the name

of the library in which it is included.

9.3.1 Simple Types

The syntax for defining a Simple Type #simple_type_name# refined from a Basic Type #basic_type_name#
in C is defined below.

typedef #basic_type_name# #complete_simple_type_name#;

If the optional #minRange# or #maxRange# fields are set, the previous type definition must be followed by
the minRange or maxRange constant declarations as follows:

#define #complete_simple_type_name#_minRange (#minrange_value#)

#define #complete_simple_type_name#_maxRange (#maxrange_value#)

9.3.2 Enumerations

The C syntax for defining an enumerated type named #enum_type_name#, with a set of labels named from
#enum_type_name#_#enum_value_name_1# to #enum_type_name#_#enum_value_name_n# and a set of
optional values of the labels named #enum_value_value_1# … #enum_value_value_n# is defined below.

typedef #basic_type_name# #complete_enum_type_name#;

#define #complete_enum_type_name#_#enum_value_name_1# (#enum_value_value_1#)

#define #complete_enum_type_name#_#enum_value_name_2# (#enum_value_value_2#)

#define #complete_enum_type_name#_#enum_value_name_3# (#enum_value_value_3#)

/*…*/

#define #complete_enum_type_name#_#enum_value_name_n# (#enum_value_value_n#)

Where:

#basic_type_name# is the other type on which this enumeration is based.

#complete_enum_type_name# is computed by prefixing the name of the type with the namespaces and

using ‘_’ as separator.

#enum_value_value_X# is the optional value of the label. If not set, this value is computed from the

previous label value, by adding 1 (or set to 0 if it is the first label of the enumeration).

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 19

9.3.3 Records

For a record type named #record_type_name# with a set of fields named #field_name1# to #field_namen#
of given types #data_type_1# to #data_type_n#, the syntax is given below.

The order of fields in the struct shall follow the order of fields used in the XML definition.

typedef struct

{

 #data_type_1# #field_name1#;

 #data_type_2# #field_name2#;

 /*…*/

 #data_type_n# #field_namen#;

} #complete_record_type_name#;

9.3.4 Variant Records

For a Variant Record named #variant_record_type_name# containing a set of fields (named #field_name1#
to #field_namen#) of given types #data_type_1# to #data_type_n# and other optional fields (named
#optional_field_name1# to #optional_field_namen#) of type (#optional_type_name1# to
#optional_type_namen#) with selector #selector_name#, the syntax is given below.

The order of fields in the struct shall follow the order of fields used in the XML definition.

typedef struct{

 #complete_selector_type_name# #selector_name#;

 #data_type_1# #field_name1#; /* for each <field> element */

 #data_type_2# #field_name2#;

 /*…*/

 #data_type_n# #field_namen#;

 union {

 #optional_type_name1# #optional_field_name1#; /* for each <union>

 element */

 #optional_type_name2# #optional_field_name2#;

 /*…*/

 #optional_type_namen# #optional_field_namen#;

 } u_#selector_name#;

} #complete_variant_record_type_name#;

9.3.5 Fixed Arrays

The C syntax for a fixed array named #array_type_name# of maximum size #max_number# and element
type of #data_type_name# is given below.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 20

A macro called #complete_array_type_name#_MAXSIZE will be defined to specify the size of the array.

#define #complete_array_type_name#_MAXSIZE #max_number#

typedef struct {

 #data_type_name# values[#complete_array_type_name#_MAXSIZE];

} #complete_array_type_name#;

9.3.6 Variable Arrays

The C syntax for a variable array (named #var_array_type_name#) with maximum size #max_number#,
elements with type #data_type_name# and a current size of current_size is given below.

#define #complete_var_array_type_name#_MAXSIZE #max_number#

typedef struct {

 SARC_uint32 size;

 #data_type_name# values[#complete_var_array_type_name#_MAXSIZE];

} #complete_var_array_type_name#;

9.4 Predefined Types

9.4.1 Function execution return status

In C ECOA.return_status translates to SARC_Ecode, with the enumerated values shown below:

typedef enum

{

 /** Used when function behaved as expected */

 SARC_SUCCESS = 0,

 /** Most of the time, abnormal behaviour results in a FAILURE */

 SARC_FAILURE = 1,

 /** When a function returns because its execution time slot has expired */

 SARC_TIMEOUT = 7,

 /** Alias for SARC_SUCCESS - deprecated */

 SARC_OK = SARC_SUCCESS,

 /** Alias for SARC_FAILURE - deprecated */

 SARC_KO = SARC_FAILURE,

 SARC_INVALID_IN_PARAMETER = 2,

 SARC_INVALID_OUT_PARAMETER = 3,

 SARC_INVALID_DATA = 4

} SARC_Ecode;

The mapping of this type SARC_Ecode to the abstract type ECOA.return_status defined in [Architecture

Specification Part 4] is given by the following table:

Value in SARC_Ecode Value in ECOA.return_status Comment

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 21

SARC_SUCCESS

SARC_OK (1)

ECOA:OK No error has occurred

SARC_FAILURE

SARC_KO (2)

ECOA:FAILURE Generic default return status

code for non-nominal execution

SARC_TIMEOUT ECOA:NO_RESPONSE (3) No response was received for a

request (timeout reached)

SARC_INVALID_IN_PARAMETER ECOA:INVALID_IN_PARAMETER

(3)

An invalid IN parameter has

been used

SARC_INVALID_OUT_PARAMETE

R

ECOA:INVALID_OUT_PARAMETER

(3)

An invalid OUT parameter has

been used

SARC_INVALID_DATA ECOA:INVALID_PARAMETER (3) An invalid DATA operation value

has been used

The reverse mapping is given by the following table:

Value in ECOA.return_status Value in SARC_Ecode Comment

ECOA:OK SARC_OK No error has occurred

ECOA:FAILURE SARC_FAILURE Generic default return status code for

non-nominal execution

ECOA:INVALID_HANDLE SARC_FAILURE An invalid handle has been used

ECOA:DATA_NOT_INITIALIZED SARC_FAILURE The data has never been written

ECOA:NO_DATA SARC_FAILURE The call is not able to provide any

data

ECOA:INVALID_IDENTIFIER SARC_FAILURE An invalid ID has been used.

ECOA:NO_RESPONSE SARC_TIMEOUT (if timeout)

SARC_FAILURE (otherwise)

No response was received for a

request

ECOA:OPERATION_ALREADY_

PENDING

SARC_FAILURE The requested operation is already

being processed

ECOA:CLOCK_UNSYNCHRONIZ

ED

SARC_FAILURE The clock is not synchronised

ECOA:RESOURCE_NOT_AVAIL

ABLE

SARC_FAILURE Insufficient resource is available to

perform the operation.

ECOA:OPERATION_NOT_AVAIL

ABLE

SARC_FAILURE The requested operation is not

available.

ECOA:INVALID_PARAMETER

ECOA:INVALID_IN_PARAMETER

ECOA:INVALID_OUT_PARAMET

ER

SARC_INVALID_DATA

SARC_INVALID_IN_PARAMETER

SARC_INVALID_OUT_PARAMET

ER

An invalid parameter has been used

An invalid IN parameter has been

used

An invalid OUT parameter has been

used (2)

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 22

(1) SARC_OK and SARC_KO are aliases for SARC_SUCCESS and SARC_FAILURE, defined only for
compatibility reasons. The use of SARC_SUCCESS and SARC_FAILURE is encouraged.

(2) ECOA:INVALID_PARAMETER is equivalent to SARC_INVALID_DATA in the case of a "data"
operation only; else, SARC_INVALID_IN_PARAMETER (for "event" and "request-response"
operations) or SARC_INVALID_OUT_PARAMETER (for "request-response" operations) shall be
used.

(3) or ECOA:FAILURE if this code is not supported by the targeted binding.

Nota

 The default value to use in ECOA.return_status when nothing else is available is ECOA:FAILURE.

 The default value to use in SARC_Ecode when nothing else is available is SARC_FAILURE.

9.4.2 Component and executable identifiers

In this language binding, components and executables are not identified by a specific type but using the
SARC_int32 predefined type.

9.4.3 Write access mode

ECOA:write_access_mode translates to SARC_DataValue, with the enumerated values shown below:

/**

 * This enumerated type describes the possible ways a data

 * handle can be initialized.

 */

typedef enum

{

 /**

 * The memory area pointed by the handle has no specific value

 * Use this by default in order to have better performances.

 */

 SARC_DATA_NO_VALUE,

 /**

 * The memory area pointed by the handle is filled with the

 * current data value. This mode has lower performances, but

 * allows access the current data version before modifying it.

 */

 SARC_DATA_CURRENT_VERSION

} SARC_DataValue;

9.4.4 Time management

For time management interfaces, the present binding uses the abstract type ECOA.nano_time defined in

[Architecture Specification Part 4], defined as SARC_int64.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 23

Abstract type Type in binding

ECOA.hr_time (not defined)

ECOA.global_time (not defined)

ECOA.duration_time (not defined)

ECOA.nano_time SARC_int64

9.4.5 Logs

In this language binding, no specific type is defined for logs.

9.4.6 Error management

In this language binding, no specific type is defined for error management.

9.4.7 Pinfo management

In this language binding, the data type ECOA.seek_whence_type is named SARC_RomOrigin.

The C syntax for this type is:

/** Reference position used when moving the reading head */

typedef enum

{

 /** Beginning of ROM */

 SARC_ROM_ORIGIN_START,

 /** Current position */

 SARC_ROM_ORIGIN_CURRENT,

 /** End of ROM */

 SARC_ROM_ORIGIN_END

} SARC_RomOrigin;

9.4.8 Lifecycle management

 ECOA.component_state

The C syntax for this type is:

typedef SARC_uint32 SARC_LifeCycleState;

/** UNAVAILABLE Instance state */

#define SARC_LIFE_CYCLE_STATE_UNAVAILABLE 0x00

/** IDLE Instance state */

#define SARC_LIFE_CYCLE_STATE_IDLE 0x01

/** READY Instance state */

#define SARC_LIFE_CYCLE_STATE_READY 0x02

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 24

/** RUNNING Instance state */

#define SARC_LIFE_CYCLE_STATE_RUNNING 0x03

 ECOA.component_command

The C syntax for this type is:

typedef SARC_uint32 SARC_LifeCycleShift;

/** INITIALIZE transition */

#define SARC_LIFE_CYCLE_SHIFT_INITIALIZE 0x02

/** START transition */

#define SARC_LIFE_CYCLE_SHIFT_START 0x03

/** RESET transition */

#define SARC_LIFE_CYCLE_SHIFT_RESET 0x04

/** STOP transition */

#define SARC_LIFE_CYCLE_SHIFT_STOP 0x05

/** SHUTDOWN transition */

#define SARC_LIFE_CYCLE_SHIFT_SHUTDOWN 0x06

/** KILL transition */

#define SARC_LIFE_CYCLE_SHIFT_KILL 0x07

 ECOA.executable_state

The C syntax for this type is:

typedef SARC_uint32 SARC_ExecutableStates;

/** Tag for unavailable executable status */

#define SARC_STATUS_EXECUTABLE_NULL 0

/** Tag for running executable status */

#define SARC_STATUS_EXECUTABLE_LAUNCHED 1

 ECOA.executable_command

The C syntax for this type is:

typedef SARC_uint32 SARC_ExecutablesCommands;

#define SARC_PANEL_COMMAND_LAUNCH 1

#define SARC_PANEL_COMMAND_KILL 2

9.5 Constants

The syntax for the declaration of a Constant called “#constant_name#” in C is shown below. Note that the

#type_name# is not used in the C binding. In addition, namespaces are not supported in the C language,

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 25

so the name of the constant (known as the complete name and referred to here by prefixing complete_) will

be computed by adding as a prefix the name of the library in which it is included.

#define #complete_constant_name# (#constant_value#)

where #constant_value# is either an integer or floating point value described by the XML description.

9.6 Predefined constants

The constant #component_impl_name#_#operation_name#_MAX_CONCURRENT_REQUESTS is

implemented in the present language binding with the following C language syntax:

#define #component_impl_name#_#operation_name#_SERVICE_MAXDEFERRED

#max_concurrent_requests#

9.7 Functions defined on types

9.7.1 Initialization functions

For each ECOA library, a file called #library#_initialize.h contains initialization functions. Each type defined
in the library has an initialization function conforming to the following declaration:

void #library#_#type_name#_initialize (#library#_#type_name# *value);

This method initializes 'value' with a default value, which is defined as:

 For boolean types, the default value is false.

 For scalar types, the default value is 0.

 For enumerated types, the default value is the first value.

 For record types, the default value is made of the default value of each field.

 For variant record types, the default value is made of the default value of each field, and the selector
has the default value of its type.

 For fixed array types, the default value is made of the default value of each element.

 For array types, the default value is the empty array.

9.7.2 Comparison functions

For each ECOA library, the same file #library#.h contains comparison functions. Each type defined in the
library, except scalar types (enum and simple types), has an comparison function conforming to the following
declaration:

SARC_boolean8 #library#_#type_name#_equals (

 const #library#_#type_name# *v1, *v2);

This method returns true if the types have an equal value and false otherwise. Note that contrary to a
memcmp() function call, only the significant bytes are compared. Alignment gaps, unused memory in array
or variantrecord types is not taken onto account.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 26

10 Component Interface

10.1 Operations

This section contains details of the operations that comprise the component API i.e. the operations that can
invoked by the container on a component.

10.1.1 Request-Response

10.1.1.1 Request Received

The following is the C syntax for invoking a request received by a component instance when a response is
required, where #component_impl_name# is the name of the component implementation receiving the
request and #operation_name# is the operation name. The same syntax is applicable for both synchronous
and asynchronous request-response operations.

10.1.1.1.1 Request Received when immediate=false

void #component_impl_name#_#operation_name#_SERVICE_provide

 (#component_impl_name#_context* context,

 SARC_uint32 request_id,

 const #request_parameters#);

10.1.1.1.2 Request Received when immediate=true

void #component_impl_name#_#operation_name#_SERVICE_provide

 (#component_impl_name#_context* context,

 const #request_parameters#,

 #response_parameters#

);

10.1.1.2 End of an asynchronous Request

10.1.1.2.1 Response Received

The following is the C syntax for an operation used by the container to send the response to an asynchronous
request response operation to the component instance that originally issued the request, where
#component_impl_name# is the name of the component implementation receiving the response and
#operation_name# is the operation name. (The reply to a synchronous request response is provided by the
return of the original request).

void #component_impl_name#_#operation_name#_Callback

 (#component_impl_name#_context* context,

 SARC_uint32 request_id,

 const #response_parameters#);

The “#response_parameters#” are the “out” parameters of the request-response operation, but are

treated as inputs to the function and passed as “const” parameters, so they are not modified by the
component.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 27

The following is the C syntax for an operation used by the container to signal a timeout (i.e. no response
received after the given time) on the response to an asynchronous request response operation:

void #component_impl_name#_#operation_name#_Timeout

 (#component_impl_name#_context* context,

 SARC_uint32 request_id);

10.1.1.2.2 Optional Alternative

10.1.1.2.2.1 Response_Actually_Received

Not available in this binding.

10.1.1.2.2.2 Response_Not_Received

Not available in this binding.

10.1.2 Versioned Data Updated

The following is the C syntax that is used by the container to inform a component instance that reads an item
of versioned data that new data has been written.

void #component_impl_name#_sarc_notify_#operation_name#_EVENT_receive

 (#component_impl_name#_context* context);

10.1.3 Event Received

The following is the C syntax for an event received by a component instance.

void #component_impl_name#_#operation_name#_EVENT_receive

 (#component_impl_name#_context* context,

 const #event_parameters#);

10.2 Component Lifecycle

The following operations are applicable to application, trigger and dynamic-trigger component instances.

10.2.1 Initialize_Received

The C syntax for an operation to initialise a component instance is:

void #component_impl_name#_initialize

 (#component_impl_name#_context* context);

10.2.2 Start_Received

The C syntax for an operation to start a component instance is:

void #component_impl_name#_start

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 28

 (#component_impl_name#_context* context);

10.2.3 Stop_Received

The C syntax for an operation to stop a component instance is:

void #component_impl_name#_stop

 (#component_impl_name#_context* context);

10.2.4 Shutdown_Received

The C syntax for an operation to shutdown a component instance is:

void #component_impl_name#_shutdown

 (#component_impl_name#_context* context);

10.2.5 Reset_Received

This entry point is only available if the component implementation model has set the option hasReset.

The C syntax for an operation to (functionally) reset a component instance is:

void #component_impl_name#_reset

 (#component_impl_name#_context* context);

10.3 Supervisor components

The following C types and methods are applicable to application component instances of kind SUPERVISOR,
to be informed of lifecycle state changes of component instances of the application.

void #component_impl_name#_onStateChange

 (#component_impl_name#_context* context,

 SARC_int32 componentInstanceId,

 SARC_int32 state,

 SARC_int32 oldState);

state represents the new state of the component instance identified with the componentId, among the
following set:

 SARC_LIFE_CYCLE_STATE_IDLE;

 SARC_LIFE_CYCLE_STATE_READY;

 SARC_LIFE_CYCLE_STATE_RUNNING;

 SARC_LIFE_CYCLE_STATE_UNAVAILABLE.

oldState represents the old state of the component instance identified with the componentId, among the
following set:

 SARC_LIFE_CYCLE_STATE_IDLE;

 SARC_LIFE_CYCLE_STATE_READY;

 SARC_LIFE_CYCLE_STATE_RUNNING;

 SARC_LIFE_CYCLE_STATE_UNAVAILABLE.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 29

10.4 Error notification for fault handler components

Not applicable to this binding.

11 Container Interface

11.1 Operations

11.1.1 Request Response

11.1.1.1 Synchronous Request

The C syntax for a component instance to perform a synchronous request response operation is:

SARC_Ecode

 #component_impl_name#_#operation_name#_SERVICE_call

 (#component_impl_name#_context* context,

 const #request_parameters#,

 #response_parameters#);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_INVALID_IN_PARAMETER: invalid value in service input parameters;

 SARC_INVALID_OUT_PARAMETER: invalid value in service output parameters;

 SARC_TIMEOUT: called function timed out;

 SARC_KO: failed service call (invalid instance or there is actually no server).

11.1.1.2 Asynchronous Request

The C syntax for a component instance to perform an asynchronous request response operation is:

SARC_Ecode

 #component_impl_name#_#operation_name#_ASYNC_SERVICE_call

 (#component_impl_name#_context* context,

 SARC_uint32* request_id,

 const #request_parameters#);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_INVALID_IN_PARAMETER: invalid value in service input parameters;

 SARC_KO: failed service call (invalid instance or there is actually no server).

11.1.1.3 Response Send

The C syntax, applicable to both synchronous and asynchronous request response operations, for sending
a reply is:

SARC_Ecode

 #component_impl_name#_#operation_name#_SERVICE_reply

 (#component_impl_name#_context* context,

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 30

 const SARC_uint32 request_id,

 const #response_parameters#);

The “#response_parameters#” are the “out” parameters of the request-response operation, but are

treated as inputs to the function and passed as “const” parameters, so they are not modified by the container.
The request_id parameter is that which is passed in during the invocation of the request received operation.

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_INVALID_OUT_PARAMETER: invalid value in service output parameters;

 SARC_KO: failed service call (invalid instance or there is actually no server).

The following constant allows the component to be aware of the maximum number of requests defined in the
component's model by attribute 'maxConcurrentRequests'. This information is useful to allocate memory for
storage of the interna data associated to the handling ot these pending requests:

#define #component_impl_name#_#operation_name#_SERVICE_MAXDEFERRED

#max_concurrent_requests#

11.1.1.4 Request Cancel

The following function allows the component to cancel the handling of a pending request, i.e. notify the
infrastructure and the caller that no response will be sent for this request. If a timeout value is defined, the
timeout expiration is anticipated, i.e. the caller does not wait until timeout expiration and receives a FAILURE
return code.

SARC_Ecode

 #component_impl_name#_#operation_name#_SERVICE_cancel

 (#component_impl_name#_context* context,

 const SARC_uint32 request_id);

11.1.2 Versioned Data

This section contains the C syntax for versioned data operations, which allow a component instance to

 Get (request) Read Access

 Release Read Access

 Get (request) Write Access

 Cancel Write Access (without writing new data)

 Publish (write) new data (automatically releases write access)

 Note: the definition of versioned data handles involved in all #operation_name# is done in the
Container Types header file, as specified in Section 12.1.1.

11.1.2.1 Get Read Access

#include “#component_impl_name#_data.h”

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 31

SARC_Ecode

 #component_impl_name#_#operation_name#_DATA_get_reader

 (#component_impl_name#_context* context,

 t_#operation_name#_handle* data_handle);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call (invalid instance; or value has not yet been published; or maximum
reader versions count reached for the component).

11.1.2.2 Release Read Access

#include “#component_impl_name#_data.h”

SARC_Ecode

 #component_impl_name#_#operation_name#_DATA_release

 (#component_impl_name#_context* context,

 t_#operation_name#_handle* data_handle);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call (invalid instance; or value has no concrete existence; or accessor is
corrupted).

11.1.2.3 Get Write Access

Not available in this binding.

Use "Get Selected Write Access" defined in next section.

11.1.2.4 Get Selected Write Access

#include “#component_impl_name#_data.h”

SARC_Ecode

 #component_impl_name#_#operation_name#_DATA_get_writer

 (#component_impl_name#_context* context,

 t_#operation_name#_handle* data_handle,

 SARC_DataValue init);

The parameter 'init' specifies if the memory area pointed by 'handle' should be initialized by the infrastructure
or not:

 SARC_DATA_NO_VALUE: do not initialize the area. It may contain any value. Use this to optimize
execution time when the application code will fully initialize the area anyway.

 SARC_DATA_CURRENT_VERSION: initialize the area with the current version of the data. If it does
not exist, or if the DataWritten operation has the 'writeOnly' atttribute set in the component's model,
then SARC_Ecode will be SARC_KO. Use this when the application code only updates the area

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 32

before publishing the new value. This case corresponds to the Get Overwrite Access operation from
[Architecture Specification Part 4].

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call (invalid instance; or all DataVR slots are already in use; or no value
have been published yet and initialization is requested).

11.1.2.5 Cancel Write Access

#include “#component_impl_name#_data.h”

SARC_Ecode

 #component_impl_name#_#operation_name#_DATA_cancel

 (#component_impl_name#_context* context,

 t_#operation_name#_handle* data_handle);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call (invalid instance or accessor is corrupted).

11.1.2.6 Publish Write Access

#include “#component_impl_name#_data.h”

SARC_Ecode

 #component_impl_name#_#operation_name#_DATA_publish

 (#component_impl_name#_context* context,

 t_#operation_name#_handle* data_handle);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_INVALID_DATA: invalid value in to-be-published data;

 SARC_KO: failed operation call (invalid instance or accessor is corrupted).

11.1.2.7 Is Initialized

This function allows the component to know if a data has a value or not, i.e. if it has been initialized, either by
a default value in the assembly, or by a write operation.

#include “#component_impl_name#_data.h”

SARC_boolean8

 #component_impl_name#_#operation_name#_is_initialized

 (#component_impl_name#_context* context);

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 33

11.1.2.8 Release All Data Handles

This function allows to release all data handles (read and write) obtained by the component. It can be used
to simplify by ensuring at a given point in code that no handle is kept by the component.

#include “#component_impl_name#_data.h”

void

 #component_impl_name#_#operation_name#_release_all_data_handles

 (#component_impl_name#_context* context);

11.1.3 Events

11.1.3.1 Send

The C syntax for a component instance to perform an event send operation is:

SARC_Ecode #component_impl_name#_#operation_name#_EVENT_send

 (#component_impl_name#_context* context,

 const #event_parameters#);

SARC_Ecode return value is one among the following set:

 SARC_OK: event sent properly;

 SARC_KO: event not sent, because of invalid context pointer.

11.2 Properties

This section describes the syntax for the Get_Value operation to request the component properties whose
values are fulfilled by the Infrastructure based on elements described in the component implementation XML
file.

11.2.1 Get Value

The syntax for Get_Value is shown below, where

 #property_name# is the name of the property used in the component definition,

 #property_type_name# is the name of the data-type of the property.

SARC_Ecode #component_impl_name#_get_attribute_#property_name#

 (#component_impl_name#_context* context,

 #property_type_name#* value);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call.

11.2.2 Expressing Property Values

Not applicable to the C Binding.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 34

11.2.3 Example of Defining and Using Properties

Not applicable to the C Binding.

11.3 Logging and Fault Management

This section describes the C syntax for the logging and fault management operations provided by the
container.

This language binding uses "Alternative 2 : using flex interfaces" defined in [Architecture Specification Part
4].

In the following subsections, the interpretation of ‘format’ and the supplemental parameters (“…”) is
delegated to the function 'vsnprintf' (from the C standard library).

11.3.1 Alternative 1: using fixed interfaces

Not available in this binding.

11.3.2 Alternative 2: using flex interfaces

11.3.2.1 Flex_Log

void #component_impl_name#_trace

 (#component_impl_name#_context* context, SARC_TraceLevel level,

 const char *format, ...);

The formatted string is truncated to 1024 characters, including a teminating null byte.

The type SARC_TraceLevel is defined as:

typedef enum

{

 /** NONE is not used in actual traces */

 SARC_TRACE_NONE = 0,

 /** CRITICAL trace level */

 SARC_TRACE_CRITICAL = 1,

 /** ERROR trace level */

 SARC_TRACE_ERROR = 2,

 /** WARNING trace level */

 SARC_TRACE_WARNING = 3,

 /** INFO trace level */

 SARC_TRACE_INFO = 4,

 /** DEBUG trace level */

 SARC_TRACE_DEBUG = 5,

 /** TRACE trace level */

 SARC_TRACE_TRACE = 6

} SARC_TraceLevel;

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 35

11.3.2.2 Raise_Fatal_Error

This corresponds to the Flex_Raise_Fatal_Error generic function.

void #component_impl_name#_raise_fatal_error

 (#component_impl_name#_context* context,

 const char *format, ...);

Note: The error code cannot be given with this API. It is forced to the value 0.

The formatted string is truncated to 1024 characters, including a teminating null byte.

11.3.2.3 Display

This function allows the component to display arbitrary text on a text stream, which is not line-oriented,
contrary to other logging functions. It can be considered as an abstract 'printf' function provided by the
container. The text output may be stored, and/or directed to a local device, and/or sent remotely through a
network.

void #component_impl_name#_display

 (#component_impl_name#_context* context,

 const char *format, ...);

The formatted string is truncated to 1024 characters, including a teminating null byte.

On some platforms, the implementation of this function may be empty. This has no incidence on the behaviour
of the component.

11.4 Time Services

11.4.1 Get_Relative_Local_Time

SARC_int64 #component_impl_name#_get_local_time();

The returned time is expressed in nanoseconds.

11.4.2 Get_UTC_Time

Not applicable to this binding.

Note: UTC Time is an ECOA feature that is optional at component level. Component implementations that
have the option 'needsSystemTime' set shall not use the present binding.

11.4.3 Get_Absolute_System_Time

SARC_int64 #component_impl_name#_get_time

 (#component_impl_name#_context* context);

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 36

The returned time is expressed in nanoseconds.

11.4.4 Get_Relative_Local_Time_Resolution

Not applicable to this binding.

Note: Access to time resolution is an ECOA feature that is optional at component level. Component
implementations that have the option 'needsTimeResolution' set shall not use the present binding.

11.4.5 Get_UTC_Time_Resolution

Not applicable to this binding.

See note in previous section.

11.4.6 Get_Absolute_System_Time_Resolution

Not applicable to this binding.

See note in previous section.

11.5 Triggers

11.5.1 Trigger_Set

The C syntax for a component instance to set a trigger is:

SARC_Ecode #component_impl_name#_#trigger_name#_TRIGGER_set

 (#component_impl_name#_context* context,

 SARC_int64 delay);

The delay is expressed in nanoseconds.

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call, i.e., there is a pending trigger.
11.5.2 Trigger_Cancel

The C syntax for a component instance to cancel a trigger is:

SARC_Ecode #component_impl_name#_#trigger_name#_TRIGGER_cancel

 (#component_impl_name#_context* context);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call, i.e., there is no pending trigger.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 37

11.6 Persistent Information management (PINFO)

11.6.1 PINFO read

The C syntax for a component instance to read persistent data (PINFO) is:

SARC_Ecode #component_impl_name#_#PINFOname#_ROM_read

 (#component_impl_name#_context* context,

 SARC_byte *memory_address,

 SARC_uint32 in_size,

 SARC_uint32 *out_size);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call.

11.6.2 PINFO write

Not applicable to this binding.

11.6.3 PINFO seek

The C syntax for a component instance to seek within persistent data (PINFO) is:

SARC_Ecode #component_impl_name#_#PINFOname#_ROM_seek

 (#component_impl_name#_context* context,

 SARC_int32 offset, SARC_RomOrigin whence,

 SARC_uint32 *new_position);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call.

11.7 Save Warm Start Context

Not applicable to this binding.

11.8 Supervisor components

This section is specific to [OPTION SUPERVISION].

When the component is of the SUPERVISOR kind, the C syntax for a component instance to command and
control components, and variables is:

SARC_ExecutableStates #component_impl_name#_executable_status

 (#component_impl_name#_context* context,

 SARC_int32 executable_id);

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 38

void #component_impl_name#_executable_command

 (#component_impl_name#_context* context,

 SARC_int32 executable_id,

 SARC_ExecutablesCommands command);

void #component_impl_name#_component_state_command

 (#component_impl_name#_context* context,

 SARC_int32 p_instance,

 SARC_LifeCycleShift p_shift);

SARC_LifeCycleState #component_impl_name#_component_status

 (#component_impl_name#_context* context,

 SARC_int32 p_instance);

SARC_Ecode #component_impl_name#_get_variable_#variable_name#

 (#component_impl_name#_context *context,

 #variable_type# *value);

SARC_Ecode #component_impl_name#_set_variable_#variable_name#

 (#component_impl_name#_context *context,

 #variable_type# value);

12 Container Types

This section contains details of the data types that comprise the container API i.e. the data types that can be
used by a component.

12.1.1 Versioned Data Handles

This section contains the C syntax in order to define data handles for versioned data operations defined in
the Container Interface.

/*

 * The following is the data handle structure associated to the data operation

 * called #operation_name# of data-type #type_name#

 */

typedef struct {

 /* pointer to the local copy of the data */

 #type_name# * ptr;

 /* version counter modified by the infrastructure

 each time the data is updated */

 SARC_int32 ref;

} t_#operation_name#_handle;

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 39

13 Default Values

Not applicable to the C Binding.

14 External Interface

Not applicable to this Binding, since it does not implement [OPTION EXTERNAL INTEFACE].

15 PeriodicTriggerManager Components

There is no specific API for PeriodicTriggerManager components, since these components are entirely
managed by the infrastructure.

16 External Components

This section contains the C syntax for the "External" special component kind.

The C syntax for the external routine (code executed by the external thread) of an External Component is:

void #component_impl_name#_external_routine

 (#component_impl_name#_context* context);

This definition is in #component_implementation#.h.

The C syntax for the functions to allow starting and stopping the external thread is:

SARC_Ecode #component_impl_name#_start_external_thread

(#component_impl_name#_context* context);

SARC_Ecode #component_impl_name#_stop_external_thread

(#component_impl_name#_context* context);

SARC_Ecode return value is one among the following set:

 SARC_OK: operation call performed properly;

 SARC_KO: failed operation call.
This definition is in #component_implementation#_container.h.

17 Reference C Header

The following file contains definitions that are included from any header file defined in §6.2.

It is given as an example only. In case of inconsistency between the above text and the following file, the
above text has precedence.

#ifndef SOFTARC_H

#define SOFTARC_H

#ifdef __cplusplus

extern "C"

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 40

{

#endif

/**

 * Boolean type - 1 byte long

 */

typedef unsigned char SARC_boolean8;

/** Boolean value for logical false */

#define SARC_FALSE 0U

/** Boolean value for logical true */

#define SARC_TRUE 1U

typedef char SARC_Byte;

/** Scalar type for characters - 1 byte long */

typedef char SARC_char8;

/** Scalar type for 1-byte long signed integers */

typedef signed char SARC_int8;

/** Scalar type for 1-byte long unsigned integers */

typedef unsigned char SARC_uint8;

/** Scalar type for 2-byte long signed integers */

typedef signed short int SARC_int16;

/** Scalar type for 2-byte long unsigned integers */

typedef unsigned short int SARC_uint16;

/** Scalar type for 4-byte long signed integers */

typedef signed int SARC_int32;

/** Scalar type for 4-byte long unsigned integers */

typedef unsigned int SARC_uint32;

/** Scalar type for 8-byte long signed integers */

typedef signed long long SARC_int64;

/** Scalar type for 8-byte long unsigned integers */

typedef unsigned long long SARC_uint64;

/** Scalar type for IEEE-754 simple precision floating point numbers */

typedef float SARC_float32;

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 41

/** Scalar type for IEEE-754 double precision floating point numbers */

typedef double SARC_double64;

typedef enum

{

 /** Used when function behaved as expected */

 SARC_SUCCESS = 0,

 /** Most of the time, abnormal behaviour results in a FAILURE */

 SARC_FAILURE = 1,

 /** When a function returns because its execution time slot has expired */

 SARC_TIMEOUT = 7,

 /** Alias for SARC_SUCCESS - deprecated */

 SARC_OK = SARC_SUCCESS,

 /** Alias for SARC_FAILURE - deprecated */

 SARC_KO = SARC_FAILURE,

 /** Used by SOFTARC container functions to link FAILURE to its inputs */

 SARC_INVALID_IN_PARAMETER = 2,

 /** Used by SOFTARC container functions to link FAILURE to its outputs */

 SARC_INVALID_OUT_PARAMETER = 3,

 /**

 * Used by SOFTARC container functions regarding data management to link

 * FAILURE to its inputs

 */

 SARC_INVALID_DATA = 4

} SARC_Ecode;

/**

 * This enumerated type describes the possible ways a data

 * handle can be initialized.

 */

typedef enum

{

 /**

 * The memory area pointed by the handle has no specific value

 * Use this by default in order to have better performances.

 */

 SARC_DATA_NO_VALUE,

 /**

 * The memory area pointed by the handle is filled with the

 * current data value. This mode has lower performances, but

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 42

 * allows access the current data version before modifying it.

 */

 SARC_DATA_CURRENT_VERSION

} SARC_DataValue;

/** Reference position used when moving the reading head */

typedef enum

{

 /** Beginning of ROM */

 SARC_ROM_ORIGIN_START,

 /** Current position */

 SARC_ROM_ORIGIN_CURRENT,

 /** End of ROM */

 SARC_ROM_ORIGIN_END

} SARC_RomOrigin;

typedef SARC_uint32 SARC_LifeCycleState;

/** UNAVAILABLE Instance state */

#define SARC_LIFE_CYCLE_STATE_UNAVAILABLE 0x00

/** IDLE Instance state */

#define SARC_LIFE_CYCLE_STATE_IDLE 0x01

/** READY Instance state */

#define SARC_LIFE_CYCLE_STATE_READY 0x02

/** RUNNING Instance state */

#define SARC_LIFE_CYCLE_STATE_RUNNING 0x03

typedef SARC_uint32 SARC_LifeCycleShift;

/** INITIALIZE transition */

#define SARC_LIFE_CYCLE_SHIFT_INITIALIZE 0x02

/** START transition */

#define SARC_LIFE_CYCLE_SHIFT_START 0x03

/** RESET transition */

#define SARC_LIFE_CYCLE_SHIFT_RESET 0x04

/** STOP transition */

#define SARC_LIFE_CYCLE_SHIFT_STOP 0x05

/** SHUTDOWN transition */

#define SARC_LIFE_CYCLE_SHIFT_SHUTDOWN 0x06

/** KILL transition */

#define SARC_LIFE_CYCLE_SHIFT_KILL 0x07

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 43

typedef SARC_uint32 SARC_ExecutableStates;

/** Tag for unavailable executable status */

#define SARC_STATUS_EXECUTABLE_NULL 0

/** Tag for running executable status */

#define SARC_STATUS_EXECUTABLE_LAUNCHED 1

typedef SARC_uint32 SARC_ExecutablesCommands;

#define SARC_PANEL_COMMAND_LAUNCH 1

#define SARC_PANEL_COMMAND_KILL 2

#ifdef __cplusplus

}

#endif

#endif /* SOFTARC_H */

18 Compatibility with ECOA Options

18.1 Compatibility with Options defined in the ECOA Standard

The following table indicates, for each optional functionnality defined in the ECOA Standard (taken from [Part
5] document), whether it is supported or not by this binding.

 YES: the option is supported by this binding

 NO: the option is not supported by this binding

 N/A: Not Applicable. The option has no impact on bindings.

Name of Option Supported by this binding

[OPTION SUPERVISOR COMPONENTS] YES

[OPTION ELI] N/A

[OPTION FAULT HANDLING] NO

[OPTION MULTI APP ASSEMBLY] N/A

[OPTION DYNAMIC TRIGGER MANAGER] N/A

[OPTION UINT64] YES

[OPTION INT64] YES

[OPTION PINFO WRITE] NO

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2059972-A / Thales DMS Ref No: 69629513-035 -- Issue 7 44

[OPTION WARM START CONTEXT] YES

[OPTION AUTO START EXTERNAL TASK] N/A

[OPTION SYSTEM TIME] YES

[OPTION UTC TIME] NO

18.2 Compatibility with Component Implementation Options

The following table gives the possible values of each option listed in [AS Part 7], §6.1.3 Component
Implementation, for components that use the SOFTARC C Binding:

Component Implementation Option Allowed values for component
implementations using this Binding

needsLocalTime false, true

needsSystemTime false, true

needsUTCTime false

needsTimeResolution false

hasReset true

isFaultHandler false

autostartExternalThread false, true

hasWarmStartContext false, true

