

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 1

European Component Oriented Architecture (ECOA®)
Collaboration Programme:
Preliminary version of the

ECOA Architecture Specification
Part 4: Software Interface

Dassault Ref No: DGT 2041083-A

Thales DMS Ref No: 69398918-035 --

Issue: 7

Prepared by
Dassault Aviation and Thales DMS

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document
relating to the changes envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard
is the intellectual property of Dassault Aviation and Thales DMS France SAS. The information set out in this
document is provided solely on an ‘as is’ basis and co-developers of this specification make no warranties
expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose, with
respect to any of the information.

Note: This specification is preliminary and is subject to further adjustments. Consequently, users are advised to exercise
caution when relying on the information herein. No warranties are provided regarding the completeness or accuracy of
the information in this preliminary version. The final version of the document will be released to reflect further
improvements.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 2

This Page Intentionally Left Blank

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 3

This Page Intentionally Left Blank

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 4

Contents

0 Introduction 6

1 Scope 8

2 Warning 8

3 Normative References 8

4 Definitions 9

5 Abbreviations 9

6 Component to Language Mapping 10

7 General Rules on Bindings 15

8 Component Context 17

9 Types 18

9.1 Libraries 18

9.2 Basic Types 18

9.3 Derived Types 20

9.4 Predefined Abstract Types 23

9.5 Constants 32

9.6 Predefined constants 32

10 Component Interface 32

10.1 Operations 33

10.2 Component Lifecycle 36

10.3 Supervisor components 37

10.4 Error notification for fault handler components 38

11 Container Interface 39

11.1 Operations 39

11.2 Properties 52

11.3 Logging and Fault Management 55

11.4 Time Services 60

11.5 Triggers 64

11.6 Persistent Information Management (PINFO) 66

11.7 Save Warm Start Context 70

11.8 Supervisor components 70

12 Container Types 73

12.1 Versioned Data Handles 73

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 5

13 Default Values 73

14 External Interface 73

15 External Components 75

16 PeriodicTriggerManager components 77

17 Reference Language Header 78

Figures

Figure 1 Component and Container Interface 6

Tables

Table 1 Component and Container Interfaces 14

Table 2 ECOA Basic Types 18

Table 3 ECOA Predefined Constants 19

Table 4 Table of Errors 29

Table 5 Logging Error Level 56

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 6

0 Introduction

This Architecture Specification provides the specification for creating ECOA®-based SW systems. It describes
the standardised programming interfaces and data-model that allow a developer to construct an ECOA®-
based system. It uses terms defined in the Definitions (Architecture Specification Part 2). The details of the
other documents comprising the rest of this Architecture Specification can be found in Section 3.

This document is Part 4 of the Architecture Specification, and describes the software interfaces used.

In an ECOA® SW system, all interactions between Components rely on three mechanisms: event, versioned
data, and request-response. In addition calls and handlers exist for infrastructure services to allow the
management of the runtime lifecycle, logging, faults, time, persistent information and context management.

This document describes the APIs between components and the containers that host them. The APIs, shown
in Figure 1, are the Component Interface and the Container Interface:

 The Component Interface specifies the interface to a component, which is used by the container to call
component operations.

 The Container Interface specifies the operations that the container provides for a component.

Figure 1 Component and Container Interface

Different language bindings provide mappings for particular programming languages or technologies
mapping.

This document describes all the possible mandatory and optional operations a Component Interface and a
Container Interface may rely on to be ECOA compliant.

The information in this document is based on v3.0.0 of the ECOA® meta-model.

Convention: optional elements of the SW Interface will be written in italic and highlighted.

This document is structured as follows:

 Section 6 describes the Component to Language Mapping

 Section 7 describes the General Rules applicable to SW Interface derived bindings

 Section 8 describes the Component Context

 Section 9 describes the Type libraries

 Section 9.6 describes the Component Interface

 Section 11 describes the Container Interface

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 7

 Section 12 describes the Container Types

 Section 13 describes Default Values

 Section 14 describes the External Interface

 Section 15 describes External Components

 Section 16 describes Periodic Trigger Manager Components

 Section 16.2 describes Reference Language Headers

Note: The structure of this document is also the template for the structure of all language bindings documents.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 8

1 Scope

This Architecture Specification specifies a uniform method for design, development and integration of
software systems using a component oriented approach.

2 Warning

This specification represents the output of a research programme. Compliance with this specification shall
not in itself relieve any person from any legal obligations imposed upon them. Product development shall rely
on the BNAE publications of the ECOA standard.

3 Normative References

Architecture Specification
Part 1

 Dassault Ref No: DGT 2041078-A

Thales DMS Ref No: 69398915-035 --

Issue 7

Architecture Specification Part 1 – Concepts

Architecture Specification
Part 2

 Dassault Ref No: DGT 2041081-A

Thales DMS Ref No: 69398916-035 --

Issue 7

Architecture Specification Part 2 – Definitions

Architecture Specification
Part 3

 Dassault Ref No: DGT 2041082-A

Thales DMS Ref No: 69398917-035 --

Issue 7

Architecture Specification Part 3 – Mechanisms

Architecture Specification
Part 4

 Dassault Ref No: DGT 2041083-A

Thales DMS Ref No: 69398918-035 --

Issue 7

Architecture Specification Part 4 – Software Interface

Architecture Specification
Part 5

 Dassault Ref No: DGT 2041084-A

Thales DMS Ref No: 69398919-035 --

Issue 7

Architecture Specification Part 5 – High Level Platform Requirements

Architecture Specification
Part 6

 Dassault Ref No: DGT 2041491-A

Thales DMS Ref No: 69398920-035 --

Issue 7

Architecture Specification Part 6 – Options

Architecture Specification
Part 7

 Dassault Ref No: DGT 2041086-A

Thales DMS Ref No: 69398925-035 --

Issue 7

Architecture Specification Part 7 – Metamodel

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 9

4 Definitions

For the purpose of this standard, the definitions given in Architecture Specification Part 2 apply.

5 Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CPU Central Processing Unit

ECOA European Component Oriented Architecture. ECOA® is a registered trademark.

HR High Resolution

ID Identifier

OO Object Oriented

PINFO Persistent Information

POSIX Portable Operating System Interface

QoS Quality of Service

UTC Coordinated Universal Time

XML eXtensible Markup Language

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 10

6 Component to Language Mapping

This section gives an overview of the Component Interface and Container Interface APIs, in terms of symbolic
names that refer to instanciated ECOA concepts. Refer to this section in the required language binding for
details relevant to that specific language.

Sections 9.6 and 11 contain prototype definitions of Component/Container Interface operations, in table form
specifying operation characteristics.

Each prototype is illustrated by an example using C like syntax. The correct syntax is given by the
appropriate language binding.

Note : The name of each operation shall include the Component Implementation name for those languages that do not support
namespacing.

The following symbolic names are used in the prototypes:

 #component_impl_name# is the name of the component implementation – the name is used for API

generation.

 #component_instance_name# is the name of a Component Instance – this name is used for

deployment purposes,

 #operation_name# is the name of the component operation (event, request-response or versioned

data),

 #external_operation_name# is the name of the external event operation (used when generating

the External Interface API for a Driver Component),

 #request_parameters# correspond to the ordered list of input parameters specified for a

Request_Received, Request_Sync or a Request_Async operation,

 #response_parameters# correspond to the ordered list of output parameters specified for a

Response_Received, Request_Sync or a Response_Send operation,

 #event_parameters# corresponds to the ordered list of input parameters specified for an event

Send or event Received operation,

 #type_name# is the name of a data-type1,

 #max_concurrent_requests# corresponds to component model attribute

‘maxConcurrentRequests’

 #context# will be used to represent the reference to the context associated with a Component

Instance defined in section 8,

 #error_notification_operation_specification# correspond to operations defined in

section 10.4

 #event_operation_call_specifications# correspond to operations defined in section

11.1.2.7

 #request_response_call_specifications# correspond to operations defined in section 11.1.1

 #versioned_data_call_specifications# correspond to operations defined in section 11.1.2

 #properties_call_specifications# correspond to operations defined in section 11.2

 #PINFO_read_call_specifications# correspond to operations defined in section 11.6.1

1 #type_name# may be extended by the addition of a qualifying prefix where a specific kind of type is indicated, as in

#record_type_name#.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 11

 #PINFO_write_call_specifications# correspond to operations defined in section 11.6.2

 #PINFO_seek_call_specifications# correspond to operations defined in section 11.6.3

 #Save_Warm_Start_Context_operation# correspond to operations defined in section 11.7

 #trigger_name# is the name of a trigger declared in a component.

 #PINFO_name# is the PINFO name declared at Component Type level within PINFO usage

attributes.

 #variable_name# is the name of a variable defined in a supervisor component.

 #variable_type# is the type of a variable defined in a supervisor component.

 #external_operation_name# is the name of a component Event operation whose sender is

declared as external in the assembly schema.

Table 1 details the Component and Container Interface APIs. The “level” column specifies whether an
interface is mandatory (i.e. required in any language binding), or optional.

The actual API will include the name of the operation and component. How this is done is specified in the
language independent section referenced in the table.

The reader must refer to the appropriate language binding document to determine the actual syntax for a
specific language.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 12

Category Abstract API Name
Container
Operation

Component
Operation

Level
Section

Events API Event_Send Yes No MANDATORY 11.1.3

Event_Received No Yes MANDATORY 10.1.3

Request Response API Request_Sync Yes No MANDATORY 11.1.1.1

Request_Async Yes No MANDATORY 11.1.1.2

Request_Received No Yes MANDATORY 10.1.1.1

Response_Received No Yes
MANDATORY*

10.1.1.2

Response_Actually_Received
Response_Not_Received

No
No

Yes
Yes

Response_Send Yes No MANDATORY 11.1.1.3

Request_Cancel Yes No OPTIONAL 11.1.1.4

Versioned Data API Get_Read_Access Yes No MANDATORY 11.1.2.1

Release_Read_Access Yes No MANDATORY 11.1.2.2

Updated No Yes MANDATORY 10.1.2

Get_Write_Access Yes No
MANDATORY**

11.1.2.3

Get_Selected_Write_Access Yes No 11.1.2.4

Cancel_Write_Access Yes No MANDATORY 11.1.2.5
11.1.2.6

Publish_Write_Access Yes No MANDATORY 11.1.2.6

Is_Initialized Yes No OPTIONAL 11.1.2.7

Release_All_Data_Handles Yes No OPTIONAL 11.1.2.8

Properties API Get_Value Yes No MANDATORY 11.2.1

Runtime Lifecycle API Initialize_Received No Yes MANDATORY

10.2

Start_Received No Yes MANDATORY

Stop_Received No Yes MANDATORY

Shutdown_Received No Yes MANDATORY

Reset_Received No Yes MANDATORY

Supervisor Components On_State_Change No Yes OPTIONAL
[OPTION

SUPERVISION]

10.3

Get_Executable_Status Yes No 11.8.1

Executable_Command Yes No 11.8.1

Component_State_Command Yes No 11.8.2

Get_Component_Status Yes No 11.8.2

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 13

Category Abstract API Name
Container
Operation

Component
Operation

Level
Section

Get_Variable Yes No 11.8.3

Set_Variable Yes No 11.8.3

Logging and Fault
Management Services API

Log_Debug
Log_Trace
Log_Info
Log_Warning
Raise_Error
Raise_Fatal_Error

Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No

MANDATORY**

11.3

Flex_Log
Flex_Raise_Fatal_Error

Yes
Yes

No
No

Error_Notification No Yes OPTIONAL
[OPTION FAULT

HANDLER]
10.4

Time Services API Get_Relative_Local_Time Yes No MANDATORY

11.4
Get_UTC_Time Yes No OPTIONAL

[OPTION UTC
TIME]

Get_Absolute_System_Time Yes No MANDATORY

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 14

Category Abstract API Name
Container
Operation

Component
Operation

Level
Section

Get_Relative_Local_Time_
Resolution

Yes No OPTIONAL 11.4

Get_UTC_Time_Resolution Yes No OPTIONAL

Get_Absolute_System_
Time_Resolution

Yes No OPTIONAL

Triggers Trigger_Set Yes No MANDATORY 11.5

Trigger_Cancel Yes No MANDATORY

Persistent Information
(PINFO) Management

Read Yes No MANDATORY 11.6.1

Write Yes No OPTIONAL
[OPTION PINFO

WRITE]

11.6.2

Seek Yes No MANDATORY 11.6.3

Context Management Save_Warm_Start_Context Yes No OPTIONAL
[OPTION WARM

START
CONTEXT]

11.7

External Interface External_Event_Received No Yes OPTIONAL
[OPTION

EXTERNAL
INTERFACE]

14

External Components External_Routine No Yes MANDATORY 15

Start_External_Task Yes No MANDATORY

Stop_External_Task Yes No MANDATORY

Table 1 Component and Container Interfaces

* it is mandatory to define exactly one of the API alternatives in a language binding.
** it is mandatory to define at least one of the API alternatives in a language binding.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 15

7 General Rules on Bindings

The present Architecture Specification Part aims to frame the definition of language bindings in order to:

 Ensure interoperability between ECOA components,

 Enhance portability and reuse of ECOA components.

Note that for portability and reuse, it is strongly recommended to use ECOA Reference Bindings, as
ECOA platforms are required to implement one of them (see Architecture Specification Part 5).

The following rules must be strictly applied to any ECOA language binding:

1. Any language binding must specify source code files organization with their dependencies, explain
which ones may be modified by component developers

2. Any SW Interface mandatory abstract data type must be clearly defined with an equivalent predefined
type in the binding.
In particular, for enumerations, each SW Interface mandatory label must be covered. The addition of
new labels in an enumeration is authorized only if the abstract type is clearly tagged as extensible.

3. Any SW Interface mandatory constant must be clearly defined as a predefined constant in the
binding.

4. A language binding shall not define types or constants that are neither used in the component
interface nor in the container interface.

5. Fields order in “Record” or “Variant Record” types shall be the same as the one defined in the ECOA
model.

6. A language binding shall describe the content of interface files corresponding to the definition of
predefined types and constants.

7. A language binding must describe templates for component/container interface files.
8. Any SW Interface mandatory operation must be clearly associated to at least one function in the

binding. In case the association is not bijective, the mapping of binding functions with SW Interface
operation use cases must be explained.

9. If a language binding offers an optional SW Interface operation, the association between the binding
function and the SW Interface operation must be clearly defined.

10. If a single function of the binding is associated to several SW Interface operations, the association
must be clearly explained.

11. Any binding function that is not associated to a SW Interface operation shall not affect the functional
behaviour of components (e.g. observability service).

12. Any binding function that is associated to a SW Interface operation ensures the same behaviour as
specified in the SW Interface.

13. Variability patterns applied to API element names shall only rely on symbolic names defined in
section 6 (e.g. #operation_name#).

14. Any binding function associated to a SW Interface operation shall offer at least equivalent mandatory
return status.

15. In case a binding function offers complementary return status, the binding specification shall specify
which SW Interface mandatory return status can be used instead.

16. Any binding function associated to a SW Interface operation shall offer at least equivalent mandatory
parameters (equivalent type and equivalent in/out orientation) with an explicit association.

17. Mandatory parameters, and optional parameters when applicable to the binding, shall be defined in
the binding function prototype, except for “context” parameter for which rules defined in section 8
apply.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 16

18. All function parameter types must be ECOA pre-defined types or equivalent as defined in section 9.4,
excluding parameters related to an event or a request-response (which are defined in the ECOA
model).

19. When two possible abstract types are specified for an operation parameter, it means that binding
definition shall fix which one is chosen in the operation prototype.

20. Binding functions parameters order is free, except for Event or Request-Response operation
parameters which shall strictly follow the order defined in the ECOA model.

21. Binding functions parameter order shall be specified.
22. The manner in which parameters are passed is language dependent and is described in the individual

language bindings.
23. For a request-response operation, any output parameters are treated as inputs when passed to the

Response_Send (11.1.1.1) and Response_Received (10.1.1.1.2) functions.
24. The language binding shall specify which ECOA options it complies with (according to list of options

defined in ECOA AS7 Part 5).

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 17

8 Component Context

It is required that the same implementation of a component can be instantiated several times, possibly within
the same executable, without causing any symbol collision. To achieve this requirement, it is expected, for
example, that the implementer of a C or C++ Component would not use any static (either global or local)
variables within the component (except for constants). To this end, components are coded with instance
specific data blocks referred to as the “Component Context".

The purpose of this “Component Context” is to hold all the private data that will be used by:

 the Container and the ECOA infrastructure to handle the Component Instance (infrastructure-level
technical data),

 the Component Instance itself to support its functions (user-defined local private data).

 the Component Instance itself to support warm start functionality (user-defined local private data)

The use and the declaration of the “Component Context” structure may be adapted for each language binding.

The part of the Component Context related to user-defined local private data is optional. It will be made
available for a given Component Type depending on Metamodel attributes declared by the ASC supplier. The
purpose is to allow ASC suppliers to have a simple stateless component if required. State is only generated
and managed where it is required.

The part of the Component Context which holds the infrastructure-level technical and specific data is not
optional.

For non-OO languages, the “Component Context” will be represented as a structure that shall hold both the
user local data (called “User Component Context” and “Warm Start Context”) and all the infrastructure-level
technical and specific part of “Component Context” (such technical data won’t be specified in this document
as they are implementation dependant). For this reason, the Component Context may be generated by the
ECOA infrastructure within the Container Interface Header, and be extended by a user defined "User
Component Context" structure and a user defined “Warm Start Context” structure.

With OO languages, the Component Instance will be instantiated as an object of a Component
Implementation class declared by the user; its associated Container will be associated to an instance of an
ECOA-generated Component Container class. All the "User Component Context" and “Warm Start Context”,
where being used, shall be declared within the user Component Implementation class as public attributes.
The infrastructure-level technical data shall be declared by the ECOA-infrastructure within the corresponding
(generated) Component Container class. In addition, the entry-points declared in the Container Interface
are represented as methods of the Container object, so the Component Instance object must have access
to its corresponding Container object to enable it to call these methods. This is achieved by the Component
Implementation having a pointer or reference to the Container object as a public attribute of the Component
Implementation class. The Container would have access to enable it to set it to the appropriate Container
object, whilst the Component Instance object will be able to access it for use within the Component
Implementation.

The language bindings specify the exact syntax required for the Component User Context and Warm Start
Context, as well as the syntax for declaring any infrastructure-level technical and specific data in the
Component Context for non-OO languages.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 18

9 Types

The API relies on a set of pre-defined types, which can be used to construct user defined complex types.
These types are used by operations on the Component and Container Interfaces. Libraries are used to
organise the types into separate "packages" of types.

9.1 Libraries

Libraries are used to organise the types used by an ECOA system into disjoint sets.

NOTE: Libraries are not hierarchical, i.e. a library does not "contain" any other library.

Type names within the same library shall be unique. All types declared in the same library are located in the
same header file. This file will usually be automatically generated by the ECOA toolset from the XML
descriptions contained within files of the form:

library#.types.xml

The generated header file name and file extension are language specific.

A library named "ECOA" is predefined. No library with this name shall be defined in an ECOA workspace.
The predefined library cannot be modified or extended. It contains basic types and other predefined types.

9.2 Basic Types

A number of portable basic types are provided within the ECOA predefined library that should be used to
write portable code. They are used for all data interchange between components in an implementation. These
portable types do not preclude the use of pre-existing language types, error handling or exception
mechanisms. Mappings for specific languages are described by the bindings.

All of the ECOA basic types, which are listed in Table 2, may be used directly in the XML descriptions without
using the ECOA predefined library.

Table 2 ECOA Basic Types

ECOA Basic Type Description XML Representation

ECOA:boolean8 8-bit boolean boolean8 or ECOA:boolean8

ECOA:int8 8-bit signed integer int8 or ECOA:int8

ECOA:char8 8-bit ASCII character char8 or ECOA:char8

ECOA:byte byte byte or ECOA:byte

ECOA:int16 16 bits signed integer int16 or ECOA:int16

ECOA:int32 32-bits signed integer int32 or ECOA:int32

ECOA:int64 (*) 64 bits signed integer int64 or ECOA:int64

ECOA:uint8 8 bit unsigned integer uint8 or ECOA:uint8

ECOA:uint16 16-bit unsigned integer uint16 or ECOA:uint16

ECOA:uint32 32-bit unsigned integer uint32 or ECOA:uint32

ECOA:uint64 (**) 64-bit unsigned integer uint64 or ECOA:uint64

ECOA:float32 Single precision IEEE 754 floating-
point

float32 or ECOA:float32

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 19

ECOA:double64 Double precision IEEE 754 floating-
point

double64 or ECOA:double64

(*) ECOA:int64 is only available on platforms which support [OPTION INT64]. A dedicated flag

ECOA_INT64_SUPPORT can be used to select their use – see reference headers in the various bindings.

(**) ECOA:uint64 is only available on platforms which support [OPTION UINT64]. A dedicated flag

ECOA_INT64_SUPPORT can be used to select their use – see reference headers in the various bindings.

Table 3 ECOA Predefined Constants

ECOA Basic Type Constant Name Constant Value

ECOA:boolean8 TRUE

FALSE

1

0

ECOA:int8 INT8_MIN

INT8_MAX

-127

127

ECOA:char8 CHAR8_MIN

CHAR8_MAX

0 (NUL)

1272 (DEL)

ECOA:byte BYTE_MIN

BYTE_MAX

0

255

ECOA:int16 INT16_MIN

INT16_MAX

-32767

32767

ECOA:int32 INT32_MIN

INT32_MAX

-2147483647

2147483647

ECOA:int64 INT64_MIN

INT64_MAX

-9223372036854775807

9223372036854775807

ECOA:uint8 UINT8_MIN

UINT8_MAX

0

255

ECOA:uint16 UINT16_MIN

UINT16_MAX

0

65535

ECOA:uint32 UINT32_MIN

UINT32_MAX

0

4294967295

ECOA:uint64 UINT64_MIN

UINT64_MAX

0

18446744073709551615

ECOA:float32 FLOAT32_MIN

FLOAT32_MAX

-3.402823466e+38

3.402823466e+38

2 ECOA:char8 is an ASCII character, and as such its range is 0 to 127, however the 7 bit ASCII code uses 8 bits of
storage, with the upper bit set to zero, because of this values in the range 128 to 255 are invalid.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 20

ECOA Basic Type Constant Name Constant Value

ECOA:double64 DOUBLE64_MIN

DOUBLE64_MAX

-1.7976931348623157e+308

1.7976931348623157e+308

For all the basic types it shall be possible to determine the minimum and maximum values. In C/C++, for
example mandatory constant for basic types will be implemented as macros. These are also defined in the
base namespace, i.e. usable without the prefix "ECOA:".

Every specific binding shall define the basic types mapping on concrete language specific types.

9.3 Derived Types

9.3.1 Simple Types

A simple type is a refinement of a basic type with a new name and optional additional restrictions (e.g. a more
restrictive range). These restrictions can be expressed directly in strongly typed languages such as Ada,
however in less strongly typed languages such a C/C++ they are expressed indirectly using min and max
constants. A simple type can also be defined based upon another user defined simple type.

EXAMPLE 1 defining a simple type based on a basic ECOA basic type:

<simple type="uint32" name="#simple_type_name#" />

EXAMPLE 2 defining a simple type based on a basic ECOA basic type with a restricted range:

<simple type="uint32" name="#simple_type_name#" minRange="4" maxRange="10" />

EXAMPLE 3 defining a type based upon a previously defined simple type:

<simple type="#simple_type_name#" name="#simple_type_name#" />

9.3.2 Enumerations

An enumeration type is the definition of a set of labels, derived from a pre-defined type, with optional values
or integer-based constant definitions. If the optional value of the label is not set, this value is computed from
the previous label value, by adding 1 (or set to 0 if it is the first label of the enumeration). Value entries in the
type definition shall be ordered in the numerical order of the associated values (from the lowest value to the
highest one).

All labels used in an enum shall be unique within the enum scope. The enum type shall be a pre-defined
integer type, or a simple type derived from a pre-defined integer type.

EXAMPLE defining an enumeration type:

<enum name="#enum_type_name#" type="#type_name#">

 <value name="#enumeration_constant_name1#"

valnum="#optional_enum_value_value1#"/>

 <value name="#enumeration_constant_name2#"

valnum="#optional_enum_value_value2#"/>

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 21

 <value name="#enumeration_constant_name3#"

valnum="%#optional_enum_constant_name#%"/>

</enum>;

Where: #optional_enum_value_valueX# is of type #type_name#.

9.3.3 Records

Record types are types containing a fixed set of fields of given types. All types used in a record shall be
previously defined or ECOA pre-defined types.

All fields used in a record shall be unique within the record scope.

EXAMPLE defining a record type:

<record name="#record_type_name#">

 <field type="#type_name#" name="#record_field_name#" />

 <!-- a record may consist of multiple <fields... /> -->

 [<field type="#type_name#" name="#record_field_name#" />]

</record>

9.3.4 Variant Records

Variant Record types

 may contain a fixed set of fields of given type

 shall contain a set of optional fields and a selector. The selector chooses the format of the record by
controlling which optional fields are actually included in the record at runtime.

Variant records allow the definition of flexible data types: at runtime an instance of the variant record will
contain any specified fixed fields plus a subset of the optional fields specified.

It is forbidden to declare multiple 'when' entries with the same selector value.

EXAMPLE defining a variant record:

<variantrecord name="#record_type_name#" selectName="#selector_name#"

selectType="#type_name#">

 <field type="#type_name#" name="#record_field_name#" />

 <union type="#type_name#" name="#union_name#"

when="#selector_value_constant#" />

 <!-- a variantrecord may consist of multiple {<field... /><union... />}

pairs... -->

 [<field type="#type_name#" name="#record_field_name#" />

 <union type="#type_name#" name="#union_name#"

when="#selector_value_constant#" />]

</variantrecord>

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 22

9.3.5 Fixed Arrays

A fixed array is an ordered collection of a defined maximum number of elements of the same type. The value
of maximum number shall be a positive constant of an integer type, and the array shall always contain this
number of elements.

EXAMPLE defining a fixed array:

<fixedarray name="#array_type_name#" itemType="#type_name#"

maxNumber="#uint32_constant#" />

9.3.6 Variable Arrays

A variable array is an ordered collection of elements of the same type. The variable array has a “current size”
and a “maximum size”. The “current size” enables the amount of data that needs to be copied to be minimised.
The "maximum size" bounds the memory and data transfer requirements. Variable arrays of char8 shall be
used to store character strings.

The values of “maximum size” and “current size” shall be positive and “current size” shall be less than or
equal to “maximum size”.

EXAMPLE defining a variable array:

<array name="#array_type_name#" itemType="#type_name#"

maxNumber="#uint32_constant#" />

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 23

9.4 Predefined Abstract Types

9.4.1 Function execution return status

The data type ECOA:return_status is mandatory and extensible. It is an enumeration (using uint32 as

its base type) declared in the ECOA predefined library, which is used to specify the return status of applicable
API operations. The enumeration values are:

ECOA:OK

ECOA:FAILURE

No error has occurred

Generic default return status code for non-nominal execution

ECOA:INVALID_HANDLE An invalid handle has been used

ECOA:DATA_NOT_INITIALIZED The data has never been written

ECOA:NO_DATA The call is not able to provide any data

ECOA:INVALID_IDENTIFIER An invalid ID has been used

ECOA:NO_RESPONSE No response received for a request (for example: timeout
reached or unavailable server)

ECOA:TIMEOUT No response received for a request when timeout is reached

ECOA:OPERATION_ALREADY_PENDING The requested operation is already being processed

ECOA:CLOCK_UNSYNCHRONIZED The clock is not synchronised

ECOA:RESOURCE_NOT_AVAILABLE Insufficient resource is available to perform the operation.

ECOA:OPERATION_NOT_AVAILABLE The requested operation is not available.

ECOA:INVALID_PARAMETER

ECOA:INVALID_IN_PARAMETER

ECOA:INVALID_OUT_PARAMETER

An invalid parameter has been used

An invalid IN parameter has been used

An invalid OUT parameter has been used

The ECOA:return_status may be defined in the ECOA library as follows:

<enum name="return_status" type="uint32">

 <value name="OK" valnum="0"/>

 <value name="FAILURE" valnum="1" />

 <value name="NO_RESPONSE" valnum="2" />

</enum>

Note that when a binding defines optional return status codes, it allows interfaces using them to clarify the
cause of non-nominal executions. Then, the scope of possibilities covered by FAILURE default code is
reduced. FAILURE code remains mandatory anyway.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 24

9.4.2 Component and executable identifiers

The ECOA:asset_id is an optional simple type based on an ECOA positive integer type (see section 9.3.1)

.

Asset IDs uniquely identify component instances and executables, for supervising or fault management
purpose.

The platform tooling may generate a header file for target language bindings. This header file maps assets
described above with Ids according to the deployment. This header file may then be used by the developer
of the Fault Handler to implement supervisor components behaviour, or recovery actions as a result of errors
raised by specific asset IDs and/or to target specific asset IDs.

Note: if the header file is included “as is” in the ECOA Fault Handler source code, the ECOA Fault Handler will need to be recompiled
when the deployment changes. Another possible design choice is for the user to convert the header file into a user-defined configuration
file (such as a binary PINFO) which would be read by the ECOA Fault Handler.

This header file contains declaration of constants defined in the ECOA_Assets library as follows:

 <constant name="CMP_#component_instance_name1#" type="ECOA:asset_id"

value="#CMP_ID1#" />

 <constant name="CMP_#component_instance_name2#" type="ECOA:asset_id"

value="#CMP_ID2#" />

 <!-- ... -->

 <constant name="CMP_#component_instance_nameN#" type="ECOA:asset_id"

value="#CMP_IDN#" />

 <constant name="PD_#executable_name1#" type="ECOA:asset_id"

value="#EXE_ID1#" />

 <constant name="PD_# executable_name2#" type="ECOA:asset_id"

value="#EXE_ID2#" />

 <!-- ... -->

 <constant name="PD_# executable_nameN#" type="ECOA:asset_id"

value="#EXE_IDN#" />

Names used in the constants are names used in the deployment.

Since it depends on a specific deployment, the ECOA_Assets library cannot be used from other ECOA

models.

9.4.3 Write access mode

The data type ECOA:write_access_mode is an optional enumeration declared in the ECOA namespace,

which is used to identify the write access mode required to update a versioned date. The enumeration values
are:

READ_AND_UPDATE
WRITE_ONLY

The data type ECOA:write_access_mode is not extensible.

It may be defined in the ECOA namespace as follows:

<enum name="write_access_mode" type="uint32">

 <value name="READ_AND_UPDATE" valnum="0" />

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 25

 <value name="WRITE_ONLY" valnum="1" />

</enum>

9.4.4 Time management

It is mandatory to define one or several types for time management among the following ones.

9.4.4.1 ECOA:hr_time

A type used as a local (high-resolution) time source. The ECOA:hr_time data-type is a record composed of

the following fields:

 ECOA:uint32 seconds. Seconds elapsed since some reference point in time. The value shall be

positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

The ECOA:hr_time is a record (see section 9.3.3) defined in the ECOA library as follows:

<record name="hr_time">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

9.4.4.2 ECOA:global_time

A type used for global time source (e.g. UTC time). ECOA:global_time is a record composed of the

following fields:

 ECOA:uint32 seconds. Seconds elapsed since the POSIX Epoch (1st of January, 1970). The value

shall be positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

The ECOA:global_time is a record (see section 9.3.3) defined in the ECOA library as follows:

<record name="global_time">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

9.4.4.3 ECOA:duration

A type used for operations that result in communications of delay or duration from one component to another.

ECOA:duration is a record composed of the following fields:

 ECOA:uint32 seconds. The value shall be positive.

 ECOA:uint32 nanoseconds. Nanoseconds measured within the current second. The value shall be

between 0 and 999999999.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 26

The ECOA:duration is a record (see section 9.3.3) defined in the ECOA library as follows:

<record name="duration">

 <field type="uint32" name="seconds" />

 <field type="uint32" name="nanoseconds" />

</record>

9.4.4.4 ECOA:nano_time

Possible alternative to define time data based on a simple type:

<simple type="int64" name="nano_time” />

ECOA:nano_time is expressed in nanoseconds.

9.4.5 Logs

9.4.5.1 ECOA:log

ECOA:log is an optional type. It is a variable array of 256 ECOA:char8 elements, that defines how an

information report is stored. The type is constrained to enable portability, because some implementations
may not be able to support unconstrained logging. That is why this type is used in reference bindings. See
Section 11.3 for information about logging and fault management.

Using a variable array potentially improves performance, because the size of the log can be efficiently
managed.

The ECOA:log is a variable array (see section9.3.6) defined in the ECOA library as follows:

<array name="log" itemType="char8" maxNumber="256" />

9.4.5.2 ECOA:information_category

The data type ECOA:information_category is an optional enumeration declared in the ECOA

namespace, which is used to specify the category of an information to be transmitted to logging and fault
management infrastructure..

The data type ECOA:information_category is not extensible.

It may be defined in the ECOA namespace as follows:

<enum name="information_category" type="uint32">

 <value name="NONE" valnum="0" />

 <value name="CRITICAL" valnum="1" />

 <value name="ERROR" valnum="2" />

 <value name="WARNING" valnum="3" />

 <value name="INFO" valnum="4" />

 <value name="DEBUG" valnum="5" />

 <value name="TRACE" valnum="6" />

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 27

</enum>

9.4.6 Error management

All the following error management types are optional. They are recommended in language bindings to
associate specific types to parameters and then reduce risks of mistake.

9.4.6.1 ECOA:error_id

The ECOA:error_id is an optional simple type (see section 9.3.1) defined in the ECOA namespace as

follows:

<simple type="uint32" name="error_id" />

Error IDs uniquely identify error occurrences. They are generated by the Infrastructure.

9.4.6.2 ECOA:error_code

The ECOA:error_code is an optional simple type (see section 9.3.1) defined in the ECOA library as follows:

<simple type="uint32" name="error_code" />

Error codes may be provided by Component Instances when they raise errors or fatal errors, as well as by
the ECOA Infrastructure when it detects an error, in order to provide contextual information about errors to
the fault management infrastructure and to Fault Handler components.

The functional meaning of error code values is not standardised by ECOA. Each Component is responsible
for specifying the meaning of the error codes it raises. Each Platform supplier is responsible for specifying
the meaning of error codes it raises.

Nevertheless, the value 0 shall be considered as a default value that might mean “undefined error” (see
usage in §11.3).

9.4.6.3 ECOA:asset_type

The data type ECOA:asset_type is an optional enumeration declared in the ECOA namespace, which is

used to identify the type of asset either linked to an error. The enumeration values are:

COMPONENT 0 Component instance
EXECUTABLE 1 Executable

The data type ECOA:asset_type is not extensible.

It may be defined in the ECOA namespace as follows:

<enum name="asset_type" type="uint32">

 <value name="COMPONENT" valnum="0" />

 <value name="EXECUTABLE" valnum="1" />

</enum>

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 28

9.4.6.4 ECOA:error_type

The data type ECOA:error_type is an optional extensible enumeration declared in the ECOA namespace,

which is used to specify the type of the error reported to the error handler. The enumeration values are given
by the table below. For each error, a short description is given.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 29

Table 4 Table of Errors

Error Description

RESOURCE_NOT_AVAILABLE No more resources to carry on the element activities

UNAVAILABLE
The element (potentially a remote platform) has disappeared for an
unknown reason

MEMORY_VIOLATION Memory violation

NUMERICAL_ERROR Divide by zero or floating-point error

ILLEGAL_INSTRUCTION Illegal instruction in the binary code

STACK_OVERFLOW Stack overflow or corruption

DEADLINE_VIOLATION Component deadline violation

OVERFLOW
The component's queue is full or if the container has not enough resources
to track concurrent requests.

UNDERFLOW The component's queue is not enough fulfilled

ILLEGAL_INPUT_ARGS Illegal input arguments

ILLEGAL_OUTPUT_ARGS Illegal output arguments

ERROR Raise_error called by a Component

FATAL_ERROR Raise_fatal_error called by a Component

HARDWARE_FAULT Hardware fault

POWER_FAIL Power failure

COMMUNICATION_ERROR Communication error

INVALID_CONFIG Invalid configuration. The node is not able to load the configuration

INITIALISATION_PROBLEM
Initialisation problem. The node is not able to allocate resources or to start
components

CLOCK_UNSYNCHRONIZED The node clock is not synchronized with the other parts of the system.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 30

The ECOA:error_type is an enumeration (see section 9.3.2) that may be defined in the ECOA namespace

as follows:

<enum name="error_type" type="uint32">

 <value name="RESOURCE_NOT_AVAILABLE" valnum="0" />

 <value name="UNAVAILABLE" valnum="1" />

 <value name="MEMORY_VIOLATION" valnum="2" />

 <value name="NUMERICAL_ERROR" valnum="3" />

 <value name="ILLEGAL_INSTRUCTION" valnum="4" />

 <value name="STACK_OVERFLOW" valnum="5" />

 <value name="DEADLINE_VIOLATION" valnum="6" />

 <value name="OVERFLOW" valnum="7" />

 <value name="UNDERFLOW" valnum="8" />

 <value name="ILLEGAL_INPUT_ARGS" valnum="9" />

 <value name="ILLEGAL_OUTPUT_ARGS" valnum="10" />

 <value name="ERROR" valnum="11" />

 <value name="FATAL_ERROR" valnum="12" />

 <value name="HARDWARE_FAULT" valnum="13" />

 <value name="POWER_FAIL" valnum="14" />

 <value name="COMMUNICATION_ERROR" valnum="15" />

 <value name="INVALID_CONFIG" valnum="16" />

 <value name="INITIALISATION_PROBLEM" valnum="17" />

 <value name="CLOCK_UNSYNCHRONIZED" valnum="18" />

</enum>

9.4.7 Pinfo management

The data type ECOA:seek_whence_type is mandatory and not extensible. It is an enumeration declared in

the ECOA predefined library, which is used to define the position to consider in a PINFO, when invoking the
Seek operation. The enumeration values are:

SEEK_SET Position is the beginning of the PINFO
SEEK_CUR Position is the current PINFO’index
SEEK_END Position is the end of the PINFO

The ECOA:seek_whence_type is an enumeration (see section 9.3.2) that may be defined in the ECOA

library as follows:

<enum name="seek_whence_type" type="uint32">

 <value name="SEEK_SET" valnum="0" />

 <value name="SEEK_CUR" valnum="1" />

 <value name="SEEK_END" valnum="2" />

</enum>

9.4.8 Lifecycle management

All Lifecycle management types are optional, but recommended in language bindings to associate specific
types to parameters and then reduce risks of mistake.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 31

Nevertheless, they seem only useful if [OPTION SUPERVISOR COMPONENTS] is available in the ECOA
Platform.

9.4.8.1 ECOA:component_state

The data type ECOA:component_state is an enumeration declared in the ECOA predefined library, which

is used to define the lifecycle state. It is not extensible.

The enumeration values are:

 UNAVAILABLE

 IDLE

 READY

 RUNNING

9.4.8.2 ECOA:component_command

The data type ECOA:component_command is an enumeration declared in the ECOA predefined library,

which is used to list all possible commands to change the lifecycle state. It is not extensible.

The enumeration values are:

 INIT

 START

 STOP

 RESET

 SHUTDOWN

 KILL

9.4.8.3 ECOA:executable_state

The data type ECOA:executable_state is an enumeration declared in the ECOA predefined library, which

is used to define the lifecycle state. It is not extensible.

The enumeration values are:

 NOT_LAUNCHED

 LAUNCHED

9.4.8.4 ECOA:executable_command

The data type ECOA:executable_command is an enumeration declared in the ECOA predefined library,

which is used to list all possible commands to change the lifecycle state. It is not extensible.

The enumeration values are:

 START

 STOP

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 32

9.5 Constants

A constant is a defined constant value of a given, previously defined, type. It is defined and used in an ECOA
model according to ECOA AS7 Part7 specifications.

<constant name="#constant_name#" type="#type_name#" value="#constant_value#" />

Some examples to illustrate constants definition and use:

EXAMPLE 1 defining a constant of type ECOA:uint32 with an integer #constant_value#:

<constant name="my_message_max_size" type="ECOA:uint32" value="1024" />

EXAMPLE 2 defining a constant of type ECOA:double64 with a floating-point #constant_value#:

<constant name="Pi" type="ECOA:double64" value="3.141592654" />

EXAMPLE 3 defining a constant of type ECOA:char8: with an character #constant_value#:

<constant name="my_char_constant" type="ECOA:char8" value="e" />

EXAMPLE 4 defining a constant of type ECOA:char8 (hexadecimal):with an character #constant_value#:

<constant name="my_hexadecimal_constant" type="ECOA:char8" value="0x4B" />

EXAMPLE 5 using a constant to bound an array:

<array name="my_message" itemType="ECOA:char8"

maxNumber="%my_message_max_size%" />

9.6 Predefined constants

The constant #component_impl_name#_#operation_name#_MAX_CONCURRENT_REQUESTS is

optional. It allows the component to be aware of the maximum number of requests defined in the
component's model by attribute 'maxConcurrentRequests'. This information is useful to allocate memory for
storage of the internal data associated to the handling ot these pending requests.

<constant name="#component_impl_name#_#operation_name#_MAX_CONCURRENT_REQUESTS"

type="ECOA:uint16" value="#max_concurrent_requests#" />

10 Component Interface

The Component Interface specifies the interface to a component, which is used by the container to call
component operations.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 33

10.1 Operations

The Component Interface provides a number of entry points that allow the Container to invoke Component
Operations that cause a Component Instance to execute a block of functionality. The block of functionality
may call any container operation API allowed by its type (see section 10.3).

10.1.1 Request-Response

For components which are declared as a server of a request response operation, Request_Received is
provided to initiate the entry point associated to that request.

For components which are declared as a client of an asynchronous request response operation,
Response_Received is provided to return the result of an asynchronous request.

10.1.1.1 Request Received

For a Component declared as server of a request-response operation, a function is implemented by the

Component to handle the request generated by the client Component. The ID parameter is provided by the

infrastructure to allow the Component Instance to associate the response with the request (see 11.1.1.1).
The name of the function shall be generated to include the name of the operation.

10.1.1.1.1 Request Received when immediate=false

When the attribute "immediate" is set to false in the Component Type model, the Component can send the
response at any time, by calling a reply function; not necessarily during the execution of the function handling
the request.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]#operation_name#__Request_Received([#context#,] ECOA:uint32 ID,

#request_parameters#);

10.1.1.1.2 Request Received when immediate=true

When the attribute "immediate" is set to true in the Component Type model, the Component must send the
response at the end of the execution of the function handling the request. In this case, in addition to input
parameters, this function defines the output parameters of the Operation as output parameters of the function.

 Interface specifying elements:

Abstract API Name Request_Received

Use Case immediate = false

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA unsigned integer IN request identifier

P3 #request_parameters# IN "in" parameters of the request-response

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 34

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]#operation_name#__Request_Received([#context#,] uint32 ID,

#request_parameters#, #response_parameters#);

10.1.1.2 End of an asynchronous Request

For a Component declared as client of an asynchronous request-response operation, its interface must allow
to handle the response generated by the server Component or to deal with a lack of response. In both cases,

the ID parameter is provided by the infrastructure to allow the Component Instance to associate the response

with the request (see 11.1.1.3Erreur ! Source du renvoi introuvable.). This is required because the

component could initiate multiple requests prior to receiving any responses. The #response_parameters#

correspond to the “out” parameters of the request-response, however they are treated as inputs to the
function in line with section 7.

10.1.1.2.1 Alternative 1: generic interface

Interface specifying elements:

The appropriate language binding will define the correct syntax for this required interfaces.

The following illustration provides an abstract definition of the interface to help binding elaboration which
merges the two use cases in a single operation thanks to the optional return_status parameter:

void [#component_impl_name#:]#operation_name#__Response_Received([#context#,] uint32 ID,

ECOA:return_status status, #response_parameters#);

Note that several kinds of problems may explain why the expected response is not received:

 No response received within the expected time

 The server component queue is full

 Server component is IDLE/STOPPED

Abstract API Name Request_Received

Use Case immediate = true

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA unsigned integer IN request identifier

P3 #request_parameters# IN "in" parameters of the request-response

P4 #response_parameters# OUT "out" parameters of the request-response

Abstract API Name Response_Received

Use Case Gives the final result of the request : either the associated response, or the problem that occurred

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA unsigned integer IN link to request identifier

P3 #response_parameters# IN

"out" parameters of the request-response if

response is received

P4 ECOA:return_status IN status on operation execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 35

 Server has called raise_fatal_error()

 The operation is not connected to a RequestLink

Some bindings may offer return status codes to better identify which problem has occurred. Depending on
the problem, the infrastructure may implement several mechanisms to quicken the call of this function.

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

10.1.1.2.2 Alternative 2: dedicated interfaces

Interface specifying elements:

The optional return status of Response_Not_Received may be used to give information about the reason
why the response is not received.

The appropriate language binding will define the correct syntax for these two required interfaces.

The following illustrations provide abstract definitions of theses interfaces to help binding elaboration:

void [#component_impl_name#:]#operation_name#__Response_Actually_Received([#context#,] uint32 ID,

#response_parameters#);

void [#component_impl_name#:]#operation_name#__Response_Not_Received([#context#,] uint32 ID,

ECOA:return_status status);

10.1.2 Versioned Data Updated

The Updated component operation is a callback used by the Container to notify a component when a new
value of Versioned data is available. Once notified, the Component has to explicitly call Get_Read_Access

Abstract API Name Response_Actually_Received

Use Case Response is received before timeout

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA unsigned integer IN link to request identifier

P3 #response_parameters# IN "out" parameters of the request-response

Abstract API Name Response_Not_Received

Use Case Warns component not to expect response any more

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA unsigned integer IN link to request identifier

Optional Parameters

P3 ECOA:return_status IN status on interface execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 36

and Release_Read_Access to access to the updated data. This entry point is used to avoid the use of polling
to identify when new values are available.

Interface specifying elements:

NOTE The default behaviour of versioned data read operations is no notification callback.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]#operation_name#__Updated(#context#);

10.1.3 Event Received

For a Component declared as a handler of an event, a function, method or procedure shall be implemented
by the Component to handle the reception of the event from all possible senders. The

#event_parameters# correspond to the “input” parameters of the event. The name of the function shall

be generated to include the name of the operation.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]#operation_name#__Received([#context#,]#event_parameters#);

10.2 Component Lifecycle

The Component Interface provides functionality to allow the container to command changes to the lifecycle
state of the Component Instances it hosts under the direction of the ECOA Infrastructure. Any Component is
initialised and started automatically by the container.

The component lifecycle is discussed more fully in Architecture Specification Part 3.

Abstract API Name Versioned_Data_Updated

Use Case Versioned Data is refreshed

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

Abstract API Name Event_Received

Use Case Event Received

Level MANDATORY

Minimal variability patterns #component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #event_parameters# IN/OUT values of event parameters

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 37

Operations are provided by the Component Interface to support the following Component Lifecycle
functionality. These operations are applicable to all Component Instances (including Periodc Trigger Manager
and EXTERNAL components).

 INITIALIZE_Received: this is the initialisation entry-point of the component used to perform its local

initialisation; the Initialize entry-point of a Component is the function in which the Component is
supposed to initialise all its local variables (user context).

 START_Received: this is the entry point which is used for starting a Component Instance from a

technical point of view. Once this entry point has been completed, the Component Instance is ready to
process incoming Operations. The ECOA Infrastructure calls this entry point after the
INITIALIZE_Received entry point has returned.

 STOP_Received: this event may be sent to the Component as part of a graceful shutdown procedure

in order to change the Component state from RUNNING to READY

 SHUTDOWN_Received: this event may be sent to the Component as part of a graceful shutdown
procedure in order to change the Component state from READY or RUNNING to IDLE

 RESET_Received: this event may be sent to the Component when it is in RUNNING state, in order to
"reset" its state in a functional way. The exact meaning of "reset" is only dependent on the Component
itself, and not constrained by the standard. Note that this entrypoint may or may not exist: it is an
option defined in the implementation model.

At API level, the following abstract operation will be invoked by the container and shall be implemented by
the Component (mandatory function) for each lifecycle transition among INITIALIZE, START, STOP,
SHUTDOWN and RESET.

Interface specifying elements for a lifecycle operation:

The appropriate language binding will define the correct syntax for these component operations.

The following format is given as an example of prototype definitions in a specific binding:

void [#component_impl_name#:]INTIALIZE__Received(#context#);

void [#component_impl_name#:]START__Received(#context#);

void [#component_impl_name#:]STOP__Received(#context#);

void [#component_impl_name#:]SHUTDOWN__Received(#context#);

void [#component_impl_name#:]RESET__Received(#context#);

Within these five operations the component is restricted such that it may not call any Request Response
container operation API (i.e. Request_Sync, Request_Async or Response_Send). This is to prevent race
conditions and deadlock due to the start-up order of components. The component may still call any other
container operation API allowed by its type (see section 10.3).

10.3 Supervisor components

This section is specific to [OPTION SUPERVISION].

The Component Interface of SUPERVISOR components allows them to be informed of lifecycle state
changes of component instances of the application.

Abstract API Name XXXX_Received

Use Case Component XXXX transition is activated

Level MANDATORY

Minimal variability patterns #component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 38

A specific handler operation shall be called by the ECOA Infrastructure immediately after all lifecycle state

changes of all component instances of the application, including itself.

This operation shall be called independently of the lifecycle state of the SUPERVISOR component itself. This

property allows a SUPERVISOR to initialize and start all the components of an application, including itself.

Typically, a SUPERVISOR component will use this operation to manage components and executables

lifecycles, by calling container interface to send commands to components and executables (see §11.8),

whenever required.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]On_State_Change([#context#,] ECOA:asset_id component_id,

 ECOA:component_state state, ECOA:component_state previous_state);

10.4 Error notification for fault handler components

This section is applicable only to components with the option 'isFaultHandler' set to true in the component
implementation model (then #error_handler_implementation_name# = #component_impl_name#).

The following operation provides error handling functionality that may be used by the platform to provide
information to Fault Handler components when an error occurs.

Interface specifying elements:

Abstract API Name On_State_Change

Use Case Supervisor component is informed of a supervised component state change

Level OPTIONAL

Minimal variability patterns #component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:asset_id IN supervised component identifier

P3 ECOA:component_state IN new supervised component state

P4 ECOA:component_state IN previous supervised component state

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 39

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#error_handler_implementation_name#:]error_notification([#context#,] ECOA:error_id error_id,

ECOA:global_time timestamp, ECOA:asset_id asset_id, ECOA:asset_type asset_type, ECOA:error_type

error_type, ECOA:error_code error_code);

This error notification API can be called when an asynchronous error occurs at container level (e.g. the
container internal buffers are full) or at hardware level (e.g. a divide by zero error), or when errors are raised
by components.

The Infrastructure will not provide incompatible asset ID and error types (e.g. a module cannot be associated
to an OVERRATED error).

Within the handler, the Fault Handler may at least call any log function (§11.3).

The availability of error notifications and their applicability to different asset types depend on the capabilities
offered by the underlying platform. They may be specified in more detail by extensions of the ECOA Standard.

11 Container Interface

11.1 Operations

The Container Interface provides a number of operations that allow a component to invoke Container
Operations to request Services from other Components in the system.

11.1.1 Request Response

Two operations are provided to allow Components to issue requests to other components:

 Synchronous Request (mandatory)

 Asynchronous Request (mandatory)

The operation Response Send (mandatory) is provided to return the result to the requesting component. At
last, an optional operation Request Cancel allows to cancel the handling of a pending request.

Abstract API Name Error_Notification

Use Case Warns fault handler components that an error occurred

Level OPTIONAL

Minimal variability patterns #error_handler_implementation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:error_id IN

error identifier (unique int hte scope of the

notified Fault Handler)

P3 ECOA time predefined type IN

time at which the error has been initially

detected (type to be chosen in section 9.4.4)

P4 ECOA:asset_id IN

identified the asset linked to the error

(unique for a given asset_type)

P5 ECOA:asset_type IN

type of asset linked to the error (component

or executable)

P6 ECOA:error_type IN type of the error raised

P7 ECOA:error_code IN

information provided by the asset that

raised the error. This may be used to pass

more detailed information to the Fault

Handler.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 40

11.1.1.1 Synchronous Request

An operation provided by the Container, used by a Component to invoke an operation provided by a server
Component. The calling Component is blocked until the response is received.

NOTE: If the calling Component shares a same thread with other Components of equal priorities, and makes a synchronous request, all
these components are blocked waiting for the response or the expiration of the timeout..

An error indication is returned to caller if the call fails and the fault is then handled via the fault management
infrastructure.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Request_Sync([#context#,]#request_parameters#,

#response_parameters#);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:NO_RESPONSE]

No response received within the expected time

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Some ECOA platforms may indeed offer complementary return status codes to provide a more accurate
analysis of failure cases. For example :

 [ECOA:return_status:INVALID_PARAMETER]

A Synchronous Request FAILURE status code can also cover the following issues:

 The server component queue is full

 Server component is IDLE/STOPPED

 Server has called raise_fatal_error()

 Container unable to send request (including if the operation is not connected to a RequestLink)

Abstract API Name Request_Sync

Use Case A client component sends a synchronous request to a server component

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #request_parameters# IN "in" parameters of the request-reponse

P3 #response_parameters# OUT "out" parameters of the request-response

P4 ECOA:return_status OUT status on interface execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 41

Depending on the problem, the infrastructure may implement several mechanisms to accelerate the response
of this function.

11.1.1.2 Asynchronous Request

An operation provided by the Container, used by a Component to invoke an operation provided by a server

Component. The ID parameter is provided by the infrastructure to allow the Component Instance to associate

the response with the request (see 10.1.1.1.2). This ID is unique for each Component Instance and for each

call of the operation (because the component could initiate multiple requests prior to receiving any

responses). The #request_parameters# correspond to the “in” parameters of the request-response.

The operation returns immediately so the calling Component is not blocked. If an infrastructure problem
prevents the call from succeeding, the fault is handled via the fault management infrastructure.

Furthermore, if the maximum number of concurrent asynchronous requests that the component is authorized
to perform has been reached and the component invokes another asynchronous request, the container shall
not proceed the request and return a failure status code.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Request_Async([#context#,]ECOA:uint32* ID,

#request_parameters#);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Examples of other return status codes that the platform may implement to specify failure cases:

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

 [ECOA:return_status:INVALID_PARAMETER]

Abstract API Name Request_Async

Use Case A client component sends an asynchronous request to a server component

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ID OUT request identifier

P3 #request_parameters# IN "in" parameters of the request-reponse

P4 ECOA:return_status OUT status on interface execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 42

11.1.1.3 Response Send

An operation provided by the Container, used by the Component to send a Response. The ID parameter is

provided by the infrastructure in the associated Request Received operation and enables the Component

Instance to associate the response with the request (see 10.1.1.1). The #response_parameters#

correspond to the “out” parameters of the request-response, however they are treated as inputs to the
function in line with section 7.

An error indication is returned if an infrastructure problem prevents the API from succeeding, and the fault is
handled via the fault management infrastructure.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]#operation_name#__Response_Send([#context#,]

ECOA:uint32 ID, #response_parameters#);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Examples of other return status codes that the platform may implement to specify failure cases:

[ECOA:return_status:INVALID_PARAMETER]

[ECOA:return_status:INVALID_IDENTIFIER]

11.1.1.4 Request Cancel

As the number of pending requests for a server Component is limited (see §.9.6), an operation is defined to
cancel the handling of a pending request, i.e. notify the infrastructure and the caller that no response will ever
be sent for this request. If a timeout value is defined, the timeout expiration is anticipated.

Interface specifying elements:

Abstract API Name Response_Send

Use Case A server component sends a response to a client component asynchronous request

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ID IN client request identifier

P3 #response_parameters# IN "out" parameters of the request-reponse

P4 ECOA:return_status OUT status on interface execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 43

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]#operation_name#__Request_Cancel([#context#,]

ECOA:uint32 request_ID);

Mandatory return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

11.1.2 Versioned Data

The container provides operations that allow Components to read from or write to Versioned Data. The
operations provided allow a Component Instance to:

 Get (request) Read Access (Mandatory)

 Release Read Access (Mandatory)

 Get (request) Write Access (Mandatory alternative)

 Get (request) Selected rWrite Access (Mandatory alternative)

 Cancel Write Access (without writing new data) (Mandatory)

 Publish (write) new data (automatically releases write access) (Mandatory)

 Is Initialized (Optional)

 Release All Data Handles (Optional)

A Data Handle is provided by the container for each instance of Versioned data to allow Component Instances
to access that Versioned Data.

A Data Handle structure shall contain the following fields:

 An attribute used to provide access to the data version

 An attribute, called "stamp", which reflects if a writer has performed a publish action on the data (without
access control), or if the data has been locally updated (with access control)

Additionally, the Data Handle structure may contain a platform hook, which is opaque to the user, and used
by the ECOA infrastructure to handle that data. The platform hook is typed as an array of bytes, to enable
portability, to allow the infrastructure to allocate memory areas in order to store data handles. It is assumed
that a size of 32 bytes is sufficient to cover any platform implementation.

The appropriate language binding will define the correct syntax for the Data Handle structure.

Abstract API Name Request_Cancel

Use Case A server component cancels the handling of a pending request

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ID IN client request identifier

P3 ECOA:return_status OUT status on interface execution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 44

The following illustration provides an abstract definition of Data Handle structure to help binding elaboration:

typedef struct {

 #type_name#* data;

 ECOA:uint32 stamp;

 ECOA:byte platform_hook[32];

} [#component_impl_name#_container:]#operation_name#_handle;

11.1.2.1 Get_Read_Access

For a Component declared as a reader of a Versioned Data, the container shall provide a function to get read
access to the Versioned Data. This operation shall output the Data Handle parameter that allows the
subsequent code to access the data space:

 With access control this data space contains a local, read-only copy of the data.

o NOTE: Although this is a read-only operation, it is possible for a Component to locally change the data. Any local
changes made will be lost after a release operation however.

 Without access control this data space is the actual version data repository space as there are no
local copies.

o NOTE: Although this is a read-only operation, any change to the data made by a Reader Component will affect the
repository. The ECOA Infrastructure cannot prevent a Reader from writing in the repository when access control is
disabled.

The name of the function shall be generated to include the name of the operation.

The operation does not block and returns immediately with the latest available copy of data (with access
control), or with the handle to the actual data in the repository (without access control). The stamp attribute
in the data handle enables the caller to determine whether the data has been locally updated (with access
control) or if a writer has performed a publish action on the data (without access control). It does not reflect
a global information shareable between all readers.

If the provider has never published an initial value, the Data Handle will contain a null pointer and the stamp
will be equal to zero. Any language binding shall give a solution to detect this case (using a dedicated status
code or Is_Initialized API).

If there is an infrastructure problem that prevents the API from succeeding, an error indication is returned to
the caller and the fault is handled via the fault management infrastructure. If an error is returned from
Get_Read_Access, the call to Release_Read_Access should not be used. In an error condition, the stamp
shall be set to the default for the type.

Architecture Specification Part 3 specifies how the ECOA Infrastructure shall manage the stamp value.

Interface specifying elements:

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 45

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]#operation_name#__Get_Read_Access([#context#,]

[#component_impl_name#_container:]#operation_name#_handle* data_handle);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error and a data value is available for reading

 [ECOA:return_status:FAILURE]

Any other case that is not managed by a dedicated status code, for example:

 No initial value ever published.

 API called with an invalid versioned data handle

 Maximum number of versioned data reached

 Container unable to provide a versioned data

If the platform does not implement the optional “Is_Initialized” API, then it shall also manage the following
return status:

 [ECOA:return_status:NO_DATA]

No initial value ever published. The data has never been written (including if the operation is not connected
to a DataLink).

Examples of other return status codes that the platform may implement to specify failure cases:
[ECOA:return_status:INVALID_HANDLE]

[ECOA:return_status:RESOURCE_NOT_AVAILABLE]

11.1.2.2 Release_Read_Access

With access control, this operation signals to the container that the calling component has finished working
with the local copy of the Versioned Data, and that the data handle is no longer required. The component
should not access the local copy of the data after calling this operation as it cannot be guaranteed to be
consistent.

Without access control, this operation signals to the Infrastructure that the data handle is no longer required.
There is no local copy to be released.

Abstract API Name Get_Read_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data (depending

on access control parameter)

P3 ECOA:return_status OUT status on interface execution

Gets read access to a Versioned Data (provided that the component is declared as a reader for

this VD)

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 46

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Release_Read_Access([#context#,]

[#component_impl_name#_container:]#operation_name#_handle* data_handle);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code, for example:

 API called with an invalid versioned data handle

Examples of another return status code that the platform may implement to better identify failure cases:

[ECOA:return_status:INVALID_HANDLE]

11.1.2.3 Get_Write_Access

For a Component declared as a writer of a Versioned Data, the container shall provide a function to get write
access to the versioned data. This operation shall output the Data Handle parameter that allows the
subsequent code to access the data space:

 With access control:
o In “Read+Write” mode, this data space contains a local, read-write copy of the data initialized

with the latest value available locally.
o In “Write only” mode, this data space contains a local uninitialized copy of the data.

 Without access control this data space is the actual version data repository space as there are no
local copies.

The operation does not block and returns immediately with a handle as previously described. The stamp
attribute in the data handle enables the caller to determine whether the data has been locally updated (with
access control) or if a writer has performed a publish action on the data (without access control). With access
control, each call to Get_Write_Access will use a new dedicated platform resource represented by the
returned data handle and pointing to a new memory area with either the most updated value (in “Read+Write”
mode) or an uninitialized value (in “Write only” mode). With access control, each call to Get_Write_Access
will require a call to either Cancel_Write_Access or Publish_Write_Access to free that corresponding platform

Abstract API Name Release_Read_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data (depending

on access control parameter)

P3 ECOA:return_status OUT status on interface execution

Reader component has finished reading the data

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 47

resources, and commit (publish) the modified data is required. Without access control, each call to
Get_Write_Access will require a call to either Cancel_Write_Access or Publish_Write_Access to release the
data handle and avoid reaching the maxVersion attribute value.

If the data has never been written, Get_Write_Access does not return ECOA:OK but returns a valid data
handle towards a valid memory area. Any language binding shall give a solution to detect this case which is
not an error (using a dedicated status code or Is_Initialized API).

If there is an infrastructure problem that prevents the API from succeeding, ECOA:FAILURE or a dedicated
optional status code is returned to the caller, and the infrastructure handles the fault via the fault management
infrastructure.

If an error is returned from Get_Write_Access, the call to Cancel_Write_Access is not required. In an error
condition, the stamp shall be set to the default for the type.

NOTE: if the operation is not connected to a DataLink, the Writer will still be able to write in a local repository not accessible by any other
component

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Get_Write_Access([#context#,]

[#component_impl_name#_container:]#operation_name#_handle* data_handle);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error and the data has been previously initialized

 [ECOA:return_status:FAILURE]

Any other case that is not managed by a dedicated status code, for example:

 No error – the data has never been written. Initialization requested.

 API called with an invalid versioned data handle

 Maximum number of versioned data reached

 Container unable to provide versioned data

Abstract API Name Get_Write_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data

P3 ECOA:return_status OUT status on interface execution

Writer component gets write access to a Versioned Data (for partial or full update,

depending on specified mode and access control)

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 48

Examples of other return status code that the platform may implement to specify failure cases:

[ECOA:return_status:DATA_NOT_INITIALIZED]

[ECOA:return_status:INVALID_HANDLE]

[ECOA:return_status:RESOURCE_NOT_AVAILABLE]

11.1.2.4 Get_Selected_Write_Access

Interface specifying elements:

P3 parameter specifies if P2 data handle should be initialized by the infrastructure or not:

 WRITE_ONLY: do not initialize the area. It may contain any value. Use this to optimize execution
time when the application code will fully initialize the area anyway.

 READ_AND_UPDATE: initialize the area with the current version of the data. If it does not exist, or
if the DataWritten operation has the 'writeOnly' atttribute set in the component's model, then a failure
status is returned and data handle in P2 is not valid.

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error and the data has been previously initialized

 [ECOA:return_status:FAILURE]

11.1.2.5 Cancel_Write_Access

With access control, this operation signals to the container that the calling component has finished working
with the local copy of the Versioned Data, that no updates are required, and that the data handle is no longer
required. Any local updates which may have been made should not be published to any readers of that
versioned data. The component should not access the local copy of the data after calling this operation as it
cannot be guaranteed to be consistent.

Without access control, although there is no local copy to be released, this operation signals to the
Infrastructure that the data handle is no longer required.

Abstract API Name Get_Selected_Write_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data

P3 ECOA:write_access_mode IN write access mode

P4 ECOA:return_status OUT status on interface execution

Writer component gets write access to a Versioned Data accordingly to the selected mode

(full overwrite or partial update)

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 49

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Cancel_Write_Access([#context#,]

[#component_impl_name#_container:]#operation_name#_handle* data_handle);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code, for example:

 API called with an invalid versioned data handle

Example of another return status code that the platform may implement to specify failure cases:

 [ECOA:return_status:INVALID_HANDLE]

11.1.2.6 Publish_Write_Access

With access control, this operation signals to the container that the calling component has finished working
with the local copy of the Versioned Data and that the container is authorised to broadcast the revised data
to all readers of the Versioned Data. The component should not access the local copy of the data after calling
this operation as it cannot be guaranteed to be consistent.

Without access control, this operation signals to the Infrastructure that the data handle is no longer required.
There is no local copy to be released as all changes made to the data are directly written in the repository by
the component without going through a commit phase.

The operation does not block. An error message is returned to the caller if the handle is invalid (e.g. the
component is reusing a handle already released). Any other fault is handled by the infrastructure.

Abstract API Name Cancel_Write_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data

P3 ECOA:return_status OUT status on interface execution

Releases writer component data handle

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 50

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status

[#component_impl_name#_container:]#operation_name#__Publish_Write_Access([#context#,]

[#component_impl_name#_container:]#operation_name#_handle* data_handle);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code, for example:

 API called with an invalid versioned data handle

Example of another return status code that the platform may implement to specify failure cases:

 [ECOA:return_status:INVALID_HANDLE]

11.1.2.7 Is Initialized

This function allows the component to know if a data has a value or not, i.e. if it has been initialized, either by
a default value in the assembly, or by a write operation.

It is used when functions “Get Access” on data do not offer dedicated return status code to detect when these data
are not initialized.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

Abstract API Name Publish_Write_Access

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

#component_impl_name#

#operation_name#

Data Handle structure OUT

data handle which allows to access actual

data or copy of the actual data

P3 ECOA:return_status OUT status on interface execution

Makes writer component data update available for readers

Abstract API Name Is_Initialized

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:boolean8 OUT true if the data is initialized

Indicates whether a data is initialized (i.e. has a significant value) or not

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 51

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]#operation_name#__Is_Initialized([#context#,] ECOA:boolean8*

result);

11.1.2.8 Release All Data Handles

This function allows to release all data handles (read and write) obtained by the component. It can be used
to simplify data handles management, by ensuring at a given point in code that no handle is kept by the component.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]#operation_name#__Release_All_Data_Handles(#context);

11.1.3 Event Send

For a Component declared as a sender of an event, a function, method or procedure shall be implemented

by the Container to send that event with typed parameters to all receivers. The #event_parameters#

correspond to the “input” parameters of the event. The name of the function shall be generated to include the
name of the operation.

The operation returns immediately so the calling Component is not blocked. If an infrastructure problem
prevents the call from succeeding (e.g. if erroneous parameters are given), an error indication may be
returned to the caller. Anyway, the fault is handled via the fault management infrastructure.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]#operation_name#__Send([#context#,]#event_parameters#);

Abstract API Name Release All Handles

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

Releases all data handles owned by a component

Abstract API Name Event Send

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #event_parameters# IN parameters associated to the event

Optional parameters

P3 ECOA:return_status OUT status on interface execution

Sends an Event

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 52

The ECOA platform may manage the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status: INVALID_PARAMETER]

Erroneous parameter given as an input

 [ECOA:return_status:FAILURE]

Any other error

11.2 Properties

The Container Interface may include operations which allow a Component to access properties at runtime.
Component properties are defined for a Component Type; the value is assigned for each Component
Instance. The Component Instance Property Value can be either:

 A literal value;

 A reference to a Component Property

A Component Property is defined within the Component Definition, whose value is assigned for each
Component Instance within the Assembly. In addition it is also possible to define Assembly Property Values
which may be referenced by a Component Instance Property Value. Note that it is not possible to directly
reference an Assembly Property Value from a Component Instance Property Value as detailed in section
11.2.2.

This mechanism allows different instances of Components to have access to property values specified at the
Component Instance, Component Instance or Assembly level.

A property may be a Basic Type, a Simple Type, an Enumeration, or a Fixed or Variable Array of these types.

11.2.1 Get_Value

Used by Component Instances to get read only access to the properties.

Interface specifying elements:

Where:

 #property_name# is the name of the property used in the Component Type,

 #property_type_name# is the name of the data-type of the property.

The appropriate language binding will define the correct syntax for this component operation.

Abstract API Name Get Value

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #property_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #property_type_name# OUT value of the property

Optional Parameter

P3 ECOA:return_status OUT status on interface execution

Allows to read a property value

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 53

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]get_#property_name#_value([#context#,] #property_type_name#*

value);

The ECOA platform may manage the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:FAILURE]

Any error not managed by a dedicated error code

11.2.2 Expressing Property Values

Values given to properties are set in Component Implementations or in assembly schemas through the writing
of strings, as described below. It is a syntax that allows Basic, Simple, Enumerations and Fixed or Variable
Arrays of these types to be represented.

NOTE: the character strings used to assign property values do not need to be enclosed in double quotes except for the special case of
an array of char8 detailed below.

 « Basic », « Simple » : direct value

EXAMPLES 16, 0xFFFFFFFF, -10, 100.234

 « Enum » : symbol

The case shall follow the one used in the XML type definition.

EXAMPLE: AIR, GROUND.

 « FixedArray » : list of « maxNumber » values of Basic, Simple or Enumerations, comma separated,
surrounded by square braces ‘[]’ or string syntax with ""

EXAMPLE (for maxNumber=5): [1,2,3,4,5]

 « Array » : list of N values (where 0≤N≤maxNumber) of Basic, Simple or Enumerations, comma
separated, surrounded by square braces ‘[]’ or string syntax with ""

EXAMPLE (for maxNumber=10, current_size = 3): [1, 2, 3]

 Character syntax for type char8

The expression ‘ ’ is allowed in property values to represent a single character.

EXAMPLE ‘K’.

EXAMPLE for an array “KEY” can be written as [‘K’, ‘E’, ‘Y’].

A single character can be represented by its ASCII code using integer or hexadecimal.

EXAMPLE ‘K’ can be written as 75.

EXAMPLE for an array “KEY” can be written as [75, 69, 89].

EXAMPLE ‘K’ can be written as 0x4B.

EXAMPLE for an array “KEY” can be written as [0x4B, 0x45, 0x59].

It is possible to mix the different character syntaxes

EXAMPLE for an array “KEY” can be written as [0x4B, ‘E’, 89].

 String syntax for FixedArray or Array of type char8

Character list surrounded with ""

Equivalent to an array with values of char8

For FixedArray, the number of initializer elements must be equal to maxNumber.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 54

EXAMPLE (for maxNumber=5): “HELLO”

For Array, the number of initializer elements must be less than or equal to maxNumber.

EXAMPLE (for Array with maxNumber=10, current_size = 2): “HI”

Escape character for ‘"’ is ‘\’.

EXAMPLE (for a FixedArray with maxNumber=7): "\"ABCDE\""

 Support for constants - valid for integer and floating-point types only

Suppose the following is defined in the library "mylib":

 <constant name="MY_CONST" type="int32" value="32"/>

Then the expression %mylib.MY_CONSTANT% is allowed in property values:

 Syntax to refer to an Component Property from a Component Instance Property Value

To reference a Component Property from a Component Instance Property Value, the ‘$’ sign shall be used
to prefix the name of the Component Property as follows:

 $#component_property_name#

 Syntax to refer to a Composite Property from an Component Instance Property Value

To reference Composite Property from a Component Instance Property value, the ‘$’ sign shall be used to
prefix the name of the Composite Property in the "value" attribute as follows:

 <propertyValue name="#component_property_name#"
value="$#assembly_property_name#" />

Reminder: by definition, artefacts within the Component Implementation scope, such as Component Instance
Property Values cannot reference Composite Properties since these are not visible from the scope of
Component Implementation.

11.2.3 Example of Defining and Using Properties

The following XML defines a component with a simple property “Update_Rate” (example.componentType):

<componentType>

 <properties>

 <property name="Update_Rate" type="float32"/>

 </properties>

</componentType>

The following XML shows how a property is defined for a Component Type and how a value is assigned to a
Component Instance. Two properties are defined for the Component Type. One property is assigned a literal
value, the other references a Component Property.

<componentType>

 <properties>

 <property name="Update_Rate" type="float32"/>

 <property name="Component_Inst_Prop" type="uint32"/>

 </properties>

</componentType>

...

<instance name="inst1" type="component1" implementation="impl">

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 55

 <propertyValue name="Update_Rate" value="$Update_Rate" />

 <propertyValue name="Component_Inst_Prop" value="20" />

</instance>

<instance name="inst2" type="component1" implementation="impl">

 <propertyValue name="Update_Rate" value="$Update_Rate" />

 <propertyValue name="Component_Inst_Prop" value="2" />

</instance>

The composite's Property Values are defined in the upper-lever assembly:

<instance name="example_instance" type="..." implementation="...">

 <propertyValue name="Update_Rate" value="10.0" />

</instance>

According to the language binding example given in section 11.2.1, the above example would generate two
Get_Value APIs:

void [example_mod_impl_container:]get_Update_Rate_value([#context#,] ECOA:float32* value);

void [example_mod_impl_container:]get_Component_Inst_Prop_value([#context#,] ECOA:uint32* value);

For the component instance “example_instance” the get_Update_Rate_value API would return 10.0 for both
the “inst1” and “inst2” Component Instances. However the get_Component_Inst_Prop_value API would
return 20 for the “inst1” Component Instance, but 2 for the “inst2” Component Instance.

11.3 Logging and Fault Management

The Container Interface provides dedicated functionality for each Component Instance to provide information
to the infrastructure. This information may be logged and falls into two categories:

 Application Faults for which the infrastructure is able to provide run-time responses

 Execution Information that can aid offline analysis of problems for system development and
integration

Six categories of information can be recorded: two categories for faults and four categories relating to
execution information as shown in Table 5.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 56

Table 5 Logging Error Level

Category Definition Infrastructure Response
Maskable Within the
Deployment Schema

FATAL

Used by the application to raise
severe errors from which it knows it
cannot recover. No filtering is useful or
desirable.

Component shall be shutdown
by the infrastructure and fault
is reported to the fault
management infrastructure.
The fault management
infrastructure shall filter these
errors to determine whether
the Application is to be
shutdown or not. Information
is logged.

No

ERROR
Used by the application to raise errors
from which the application may be
able to recover, with assistance.

The fault management
infrastructure shall filter these
errors to determine whether
the Component is to be
shutdown or not. Information
is logged.

No

WARNING

Used by the application to log runtime
issues which are undesirable or
unexpected, but not necessarily
"wrong". Useful for non-intrusive
analysis. The Component Instance
performing the log is not stopped (i.e.
continues execution).

Information is logged. Yes

INFO

Used by the application to log runtime
events (e.g. startup/shutdown). Useful
for non-intrusive analysis. The current
Component Instance is not stopped
(i.e. continues execution).

Information is logged. Yes

DEBUG
Detailed information on the flow
through the system.

Information is logged. Yes

TRACE More detailed information. Information is logged. Yes

At runtime, logging levels are determined according to the alternative of fault management API available in
the language binding. There are only two possible alternatives, and at least one of them shall be offered:

1. Using fixed interfaces: an entry-point in the Container Interface is associated with each of the categories
listed in Table 5. A fixed list of parameters is defined for each operation prototype. This alternative may
be recommended for development requiring strict coding rules.

2. Using flex interfaces: one entry-point for fatal errors, and a single generic entry-point allowing to
manage information categories other than FATAL. All operation prototypes are flex.

Note that it is possible for a language binding to additionally offer all or part of the other alternative, taking
care then to clearly make the difference between fixed and flex interfaces for raising a fatal error.

11.3.1 Alternative 1: using fixed interfaces

An entry-point in the Container Interface is associated with each of the categories in Table 5. If necessary

the container shall truncate the data to the maximum size of ECOA:log.

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 57

11.3.1.1 Log_Trace

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]log_trace([#context#,]const ECOA:log log);

11.3.1.2 Log_Debug

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]log_debug([#context#,]const ECOA:log log);

11.3.1.3 Log_Info

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]log_info ([#context#,]const ECOA:log log);

Abstract API Name Log_Trace

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Provides information to ECOA infrastructure according to error category TRACE

Abstract API Name Log_Debug

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Provides information to ECOA infrastructure according to error category DEBUG

Abstract API Name Log_Info

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Provides information to ECOA infrastructure according to error category INFO

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 58

11.3.1.4 Log_Warning

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]log_warning([#context#,]const ECOA:log log);

11.3.1.5 Raise_Error

Interface specifying elements:

The value 0 shall be used as default value for error_code. Thus, if the optional parameter is not present in a
language binding, the function shall behave the same way than when forcing the error_code to 0.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]raise_error([#context#,]const ECOA:log log, ECOA:error_code

error_code);

Abstract API Name Log_Warning

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Provides information to ECOA infrastructure according to error category WARNING

Abstract API Name Raise_Error

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Optional parameters

P3 ECOA:error_code IN contextual information about error

Provides information to ECOA infrastructure according to error category ERROR

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 59

11.3.1.6 Raise_Fatal_Error

Interface specifying elements:

The value 0 shall be used as default value for error_code. Thus, if the optional parameter P3 is not present
in a language binding, the function shall behave the same way than when forcing the error_code to 0.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]raise_fatal_error([#context#,]const ECOA:log log,

ECOA:error_code error_code);

11.3.2 Alternative 2: using flex interfaces

11.3.2.1 Flex_Log

Flex_Log generic operation allows to define a formatted string to be logged with the same approach than

printf in C language: this string contains both ordinary characters and format specifiers, each of these
specifier refers an argument that is passed as an optional parameter of the function prototype.

The formatted string is truncated by the container to 1024 characters, including a terminating null byte.

 Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

Abstract API Name Raise_Fatal_Error

Use Case

Level MANDATORY (if alternative 1)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:log IN

information given to the ECOA

infrastructure

Optional parameters

P3 ECOA:error_code IN contextual information about error

Provides information to ECOA infrastructure according to error category FATAL

Abstract API Name Flex_Log

Use Case

Level MANDATORY (if alternative 2)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:information_category IN information category

P3 formatted string IN

information given to the ECOA

infrastructure

as a formatted string which may require

arguments

Optional parameters

P3 arguments

Provides information to ECOA infrastructure for logging and fault management

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 60

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]flex_log([#context#,] ECOA:information_category category,

ECOA:char8* log_string,…);

11.3.2.2 Flex_Raise_Fatal_Error

Flex_Raise_Fatal_Error input formatted string has the same characteristics than Flex_Log one.

Interface specifying elements:

The value 0 shall be used as default value for error_code. Thus, if the optional parameter P3 is not present
in a language binding, the function shall behave the same way than when forcing the error_code to 0.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]raise_fatal_error([#context#,] ECOA:char8* log_string,…);

11.4 Time Services

The Container Interface API can provide the Components with a set of functions used to access time services.
Three, possibly distinct, time sources are defined:

 Relative Local Time - The high-resolution real-time clock local to the current computing node,
representing the time elapsed since node start up.

 Absolute System Time – The synchronised time across an ECOA Platform, relative to a system clock
reference defined by the system integrator. Absolute System Time may or may not coincide with
UTC Time. Absolute System Time may or may not be synchronised with other ECOA Platforms, and
with non-ECOA systems.

 UTC Time - The synchronised time across all systems (ECOA and non-ECOA). Defined in terms of
UTC, and offset such that zero corresponds to 00:00 1 Jan 1970. UTC Time may not be available in all
ECOA systems.

Each time source is available for a Component only if the Component Implementation's model requires it,
through the following implementation options (refer to Metamodel, [Architecture Specification Part 7]):

 needsLocalTime

 needsSystemTime

Abstract API Name Flex_Raise_Fatal_Error

Use Case

Level MANDATORY (if alternative 2)

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 formatted string IN

information given to the ECOA

infrastructure

as a formatted string which may require

arguments

Optional parameters

P2 arguments

P3 ECOA:error_code IN contextual information about error

Provides information to ECOA infrastructure according to error category FATAL

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 61

 needsUTCTime

Thus, it is possible to identify, only looking at the models, the Components that need each kind of time
reference. A Component that does not use time is more easily reusable in different contexts (e.g. simulation)
than a component that needs it.

The Relative Local Time source may generally be used to compute and express durations with a high
resolution required for real-time precision services. The ECOA infrastructure provides the components with
a high resolution (HR) clock which may not be synchronized with other time sources.

As a consequence, the HR clock is considered as local to a Component, and should only be used to locally

compute real time durations. The HR clock (expressed with type ECOA:hr_time or ECOA:nano_time)

represents the time elapsed since system start up on that CPU. It may only be considered as local to the
Component, as Components may be deployed in different executables and hence on different computing
nodes, which would mean that the HR time cannot be guaranteed to be synchronised between them.

The ECOA infrastructure may provide the software components with UTC time. The globally defined clock
has a less precise clock, and should be used to date events.

A non-UTC global time source is also useful because it may not be desirable to convert to UTC time (e.g. for
performance reasons).

The ECOA:global_time is used for both UTC and non-UTC system times comprising two 32 bits unsigned

integers, seconds and nanoseconds.

In addition, if the Component Implementation's model requires it through the implementation option
"needsTimeResolution", it is possible to retrieve the time resolution for each of the time sources available to
the component. The output resolution parameter contains the time resolution provided by the underlying
software environment. The time resolution is the shortest duration between two updates of the associated
clock. The get time resolution operations shall always return a valid value.

The following sections provide prototype definitions for the time service operations.

11.4.1 Get_Relative_Local_Time

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]get_relative_local_time([#context#,] ECOA:hr_time
*relative_local_time);

This operation is available only if option 'needsLocalTime' is set in the Component Implementation model.

Abstract API Name Get_Relative_Local_Time

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1

ECOA:hr_time

or ECOA:nano_time OUT local time

Optional parameters

P2 #context# IN/OUT component context

Returns relative local time

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 62

11.4.2 Get_UTC_Time

This operation is available only if option 'needsUTCTime' is set in the Component Implementation.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]get_UTC_time([#context#], ECOA:global_time
*utc_time);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:CLOCK_UNSYNCHRONIZED]

No error – clock is unsynchronized; the local time (converted if necessary) is returned

 [ECOA:return_status:FAILURE]

Any other status that is not managed by a dedicated status code, for example:

 UTC is not available

Zero is returned as UTC time in case of failure.

Example of other return status code that the platform may implement to specify failure cases:

[ECOA:return_status:OPERATION_NOT_AVAILABLE]

11.4.3 Get_Absolute_System_Time

This operation is available only if option 'needsSystemTime' is set in the Component Implementation model.

Interface specifying elements:

Abstract API Name Get_UTC_Time

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1

ECOA:global_time or

ECOA:nano_time OUT UTC time

P2 ECOA:return_status OUT status on interface execution

Optional parameters

P3 #context# IN/OUT component context

Returns UTC Time

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 63

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]get_absolute_system_time([#context#],
ECOA:global_time *absolute_system_time);

When a return status is available for this operation, the ECOA platform shall at least manage the following
status codes:

 [ECOA:return_status:OK]

No error

 [ECOA:return_status:CLOCK_UNSYNCHRONIZED]

No error – clock is unsynchronized; the local time (converted if necessary) is returned

 [ECOA:return_status:FAILURE]

Any other error (such as: system time is not available); the local time (converted if necessary) is then
returned.

11.4.4 Get_Relative_Local_Time_Resolution

This operation is available only if option 'needsTimeResolution' is set in the Component Implementation
model.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]get_relative_local_time_resolution([#context#],const

ECOA:duration *relative_local_time_resolution);

Abstract API Name Get_Absolute_System_Time

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1

ECOA:global_time or

ECOA:nano_time OUT system time

Optional parameters

P2 #context# IN/OUT component context

P3 ECOA:return_status OUT status on interface execution

Returns system time

Abstract API Name Get_Relative_Local_Time_Resolution

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 ECOA:duration OUT local time resolution

Optional parameters

P2 #context# IN/OUT component context

Returns relative local time resolution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 64

11.4.5 Get_UTC_Time_Resolution

This operation is available only if option 'needsTimeResolution' and 'needsUTCTime' are set in the
Component Implementation model.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]get_UTC_time_resolution ([#context#],const ECOA:duration

*utc_time_resolution);

If UTC Time is not available when the operation is called, Get_UTC_Time_Resolution will return a zero

utc_time_resolution.

11.4.6 Get_Absolute_System_Time_Resolution

This operation is available only if options ' needsTimeResolution' and 'needsSystemTime' are set in the
Component Implementation model.

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]get_absolute_system_time_resolution ([#context#],const

ECOA:duration *absolute_system_time_resolution);

11.5 Triggers

For a Component whose ECOA model contains a 'trigger' object in its definition, two functions, methods or
procedures shall be implemented by the Container. The name of the functions shall be generated to include
the name of the operation.

Abstract API Name Get_UTC_Time_Resolution

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 ECOA:duration OUT UTC time resolution

Optional parameters

P2 #context# IN/OUT component context

Returns UTC time resolution

Abstract API Name Get_Absolute_System_Time_Resolution

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 ECOA:duration OUT system time resolution

Optional parameters

P2 #context# IN/OUT component context

Returns system time resolution

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 65

The operation returns immediately so the calling Component is not blocked. If an infrastructure problem
prevents the call from succeeding (e.g. if erroneous parameters are given), the fault is handled via the fault
management infrastructure.

11.5.1 Trigger_Set

Interface specifying elements:

Upon delay expiration, the corresponding declared event will be received by the Component.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]#trigger_name#__Trigger_Set([#context#,]

ECOA:duration delay);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error

 ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Some ECOA platforms may indeed offer complementary return status codes to provide a more accurate

analysis of failure cases. For example : [ECOA:return_status:OPERATION_ALREADY_PENDING] in

case the trigger is already set and has not expired yet.

11.5.2 Trigger_Cancel

Interface specifying elements:

The appropriate language binding will define the correct syntax for this component operation.

Abstract API Name Trigger_Set

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #trigger_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

ECOA:duration or

ECOA:nanotime IN delay

P3 ECOA:return_status OUT status on interface execution

Sets a trigger from an input delay

Abstract API Name Trigger_Cancel

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #trigger_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:return_status OUT status on interface execution

Cancels a pending trigger

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 66

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]#trigger_name#__Trigger_Cancel([#context#]);

This method has no effect if the trigger is no currently pending trigger.

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error.

 ECOA:return_status:FAILURE]

No pending trigger or any error that is not managed by a dedicated status code.

11.6 Persistent Information Management (PINFO)

Persistent Information can be in the form of PINFO. PINFO makes use of the read_#PINFOname#,

write_#PINFOname# , and seek_#PINFOname# APIs.

The following sections define the PINFO prototype definitions:

11.6.1 PINFO read

Interface specifying elements:

Some details on operation characteristics:

 P4 parameter is the actual number of bytes read, equal to the minimum of P3 and (PINFO’size –
PINFO’index).

The read operation will adjust PINFO’index position to the minimum of (PINFO’index position + out_size)
and PINFO’size.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]read_#PINFOname#([#context#], ECOA:byte

*memory_address, ECOA:uint32 in_size, ECOA:uint32 *out_size);

Abstract API Name PINFO_Read

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #PINFO_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:byte IN

memory address (pointer) of the memory

area where read data are copied to

P3 ECOA:uint32 IN

number of bytes to read from the current

PINFO'index position

P4 ECOA:uint32 OUT actual number of bytes read

P5 ECOA:return_status OUT status on interface execution

Reads a data buffer in a PINFO from an index position

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 67

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error. PINFO data have been properly read.

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Some ECOA platforms may indeed offer complementary return status codes to provide a more accurate
analysis of failure cases. For example :

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

An infrastructure error occurred. Example: Mass memory failure.

 [ECOA:return_status:INVALID_PARAMETER]

P2 is a NULL pointer or inaccessible

11.6.2 PINFO write

The Write operation is only available if the PINFO is declared as "writable" in the Component Type model.
This declaration, in turn, is allowed only if [OPTION PINFO WRITE] si supported by the ECOA Platform).

Interface specifying elements:

Some details on interface characteristics:

 P4 parameter is the actual number of bytes written from the current PINFO’index position, equal to the
minimum of P3 and the maximal size of PINFO.

The write operation will adjust PINFO’index position to the end of the written data.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

ECOA:return_status [#component_impl_name#_container:]write_#PINFOname#([#context#], ECOA:byte

*memory_address, ECOA:uint32 in_size, ECOA:uint32 *out_size);

Abstract API Name PINFO_Write

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #PINFO_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:uint32 IN

memory address (pointer) of the memory

area where data to be written are taken

from

P3 ECOA:uint32 IN

number of bytes to write from the current

PINFO'index position

P4 ECOA:uint32 OUT actual number of bytes written in PINFO

P5 ECOA:return_status OUT status on interface execution

Writes a data buffer into a PINFO from an index position

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 68

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error. PINFO data have been properly read.

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Some ECOA platforms may indeed offer complementary return status codes to provide a more accurate
analysis of failure cases. For example :

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

An infrastructure error occurred. Example: Mass memory failure.

 [ECOA:return_status:INVALID_PARAMETER]

P2 is a NULL pointer or inaccessible

11.6.3 PINFO seek

Interface specifying elements:

Some details on interface characteristics:

 P2 ‘offset parameter’ is an int32 so as to allow to seek backwards from the selected position in the
persistent data.

 P3 ‘whence parameter’ defines how the offset is applied (SEEK_SET is relative to the start of the
PINFO, SEEK_CUR is relative to PINFO’index position and SEEK_END is relative to the end of the
PINFO)

 ‘new_position’ returns the value of the new PINFO’index position.

If the seek operation is successful, the PINFO’index position is adjusted to the minimum of (‘whence’
position + ‘offset’) and PINFO’size.

If the seek operation is unsuccessful, the PINFO’index position is not modified and the ‘new_position’
contains the value of the original PINFO’index position.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

Abstract API Name PINFO_Seek

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#; #PINFO_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:int32 IN

offset, i.e number of bytes to be added to

the selected position chosen in P3

P3 ECOA:seek_whence_type IN defines the selected reference position

P4 ECOA:uint32 OUT new PINFO'index position

P5 ECOA:return_status OUT status on interface execution

Allows to move PINFO'index

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 69

ECOA:return_status [#component_impl_name#_container:]seek_#PINFOname#([#context#,] ECOA:int32

offset, ECOA:seek_whence_type whence, ECOA:uint32 *new_position);

The ECOA platform shall be able to manage at least the following return status codes:

 [ECOA:return_status:OK]

No error. PINFO’index position has been set according to the parameters.

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Some ECOA platforms may indeed offer complementary return status codes to provide a more accurate
analysis of failure cases. For example :

 [ECOA:return_status:RESOURCE_NOT_AVAILABLE]

An infrastructure error occurred. Example: Mass memory failure.

 [ECOA:return_status:INVALID_PARAMETER]

When SEEK_SET is chosen, the offset is outside the range of 0..PINFO’size

When SEEK_CUR is chosen, the current PINFO’index position + ‘offset’ is outside the range of
0..PINFO’size

When SEEK_END is chosen, the PINFO'size + ‘offset’ is outside the range of 0..PINFO’size (i.e. must
be a negative offset)

11.6.4 Example of defining PINFO

PINFO attributes are implemented in the XML Metamodel as follows:

 The XML Metamodel provides a way for defining PINFO at Component Type level. The following
attributes can be configured:

 PINFO Name.

 The XML Metamodel provides a way for declaring PINFO Filename Association at Component
Instance level:

o This is done via an association between PINFO name and a filename. This file will provide the
PINFO data.

The following example XML declares PINFO at Component Type level. The example shows two Component
Type definitions, both of which can access a number of PINFO (both read-only and read-write PINFO):

<componentType>

 <pinfos>

 <pinfo name="PinfoOne" />

 <pinfo name="PinfoTwo" writable="true"/>

 </pinfos>

 <operations>

 <!-- … -->

 </operations>

</componentType>

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 70

The following example XML declares PINFO at Component Instance level. The example shows three
Component Instances being defined and PINFO assignments being made:

<instance name="M11" type="M1" implementation="M1_Im">

 <pinfoValue name="PinfoOne" value="example_PINFO_1.txt"/>

 <pinfoValue name="PinfoTwo" value="example_PINFO_2.txt"/>

</instance>

11.7 Save Warm Start Context

This operation is available only if option 'hasWarmStartContext' is set in the Component Implementation
model and if [OPTION WARM START CONTEXT] is available in the ECOA Platform.

Interface specifying elements:

Warm start context is a non-volatile context such that it will be restored by the ECOA Infrastructure upon a
Warm Restart.

Only the latest saved version of the warm start context will be restored by the ECOA Infrastructure, according
to the Platform ability to do so.

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#_container:]save_warm_start_context([#context#]);

11.8 Supervisor components

This section is specific to [OPTION SUPERVISION].

For SUPERVISOR components, the Container Interface API is extended with operations that can be used to
control the executables and the components of the Application. It can also read and modify variables.

11.8.1 Supervision of executables

Interface specifying elements:

Abstract API Name Save_Warm_Context

Use Case

Level OPTIONAL

Minimal variability patterns #component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

Saves a context to be restored as part of a recovery action

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 71

11.8.2 Supervision of components

Interface specifying elements:

Abstract API Name Get_Executable_State

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

ECOA:asset_id or

ECOA:int32 IN executable identifier

P3 ECOA:executable_state OUT state of the executable

Optional parameters

P4 ECOA:return_status OUT status on the interface execution

Get the current status of a component executable

Abstract API Name Executable_Command

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

ECOA:asset_id or

ECOA:int32 IN executable identifier

P3 ECOA:executable_command IN command to be applied on the executable

Optional parameters

P4 ECOA:return_status OUT status on the interface execution

Allows to apply a command on an component executable

Abstract API Name Get_Component_State

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

ECOA:asset_id or

ECOA:int32 IN component instance identifier

P3 ECOA:component_state OUT state of the component instance

Optional parameters

P4 ECOA:return_status OUT status on the interface execution

Gets the current lifecycle state of a component instance

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 72

11.8.3 Supervision variables

Interface specifying elements:

For those two operations, the ECOA platform shall be able to manage at least the following return status
codes:

 [ECOA:return_status:OK]

No error.

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

Notes

 Variables are used to activate/deactivate conditional links defined in the assembly model.

 The name and type of each variable is defined in the Component Type model.

 The type of a variable #variable_type# must be based on an integer type of 32 bits or less.

Abstract API Name Component_State_Command

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2

ECOA:asset_id or

ECOA:int32 IN executable identifier

P3 ECOA:component_command IN command to be applied on the component

Optional parameters

P4 ECOA:return_status OUT status on the interface execution

Allows to apply a lifecycle command on an component instance

Abstract API Name Get_Variable

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #variable_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #variable_type# OUT current value of the variable

P3 ECOA:return_status OUT status on the interface execution

Gets the current value of a supervisor component variable

Abstract API Name Set_Variable

Use Case

Level OPTIONAL

Minimal variability patterns#component_impl_name#; #variable_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #variable_type# IN variable value to be set

P3 ECOA:return_status OUT status on the interface execution

Sets the new value of a supervisor component variable

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 73

12 Container Types

This section contains details of the data types that comprise the container API i.e. the data types that can be
used by a component.

12.1 Versioned Data Handles

This section in the language binding will contain the language specific syntax in order to define data handles
for versioned data operations defined in the Container Interface.

This definition shall respect requirements related to Data Handle Structure defined in section 11.1.2.

13 Default Values

Platforms shall initialize data to a deterministic, legal value regarding all languages when these values are
initially allocated and provided by the container to the component.

It is applicable to:

 Request Response callback arguments in case of “ECOA:NO_RESPONSE” return status,

 Memory space pointed by a get_write_access for the initial access (“ECOA:DATA_NOT_INITIALIZED”
return status),

The initialisation mechanism shall rely on the following rules:

 The initial value of a data shall be set according to its simple type, using the minimum boundary of the
sub-range of that simple type.

 For an enumeration as well as for the select field of variant records, it shall correspond to the lowest
numerical value.

 The default values of the union in a variant record shall be set according to the default value of the
select field.

14 External Interface

This section only applies to ECOA Platform implementing [OPTION EXTERNAL INTEFACE] so it may not
be available in some language bindings.

A Driver Component allows non-ECOA software to interact asynchronously with the ECOA System (see
ECOA AS7 Part 3). The Container will provide interfaces which may be used by non-ECOA software to post
an event to the Component Instance queue specified,

Interface specifying elements:

Abstract API Name External_Event_Received

Use Case

Level OPTIONAL

Minimal variability patterns #component_impl_name#; #external_operation_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 #event_parameters# IN input external data

activates a component entry-point dedicated to the reception of non-ECOA external software data

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 74

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#__]#external_operation_name#([#context#,]const #event_parameters#);

An external interface to a Component is specified by the use of the “external” sender notation within an
associated eventLink.

This eventLink can connect the external interface to an eventReceived operation defined within the
Component.

The example below shows an eventReceived “TheFeedback”, that may be used to asynchronously notify the
Component of an event.

01-Components/cp_type2/cp_type2.comp.xml:

<componentType kind="STANDARD">

 <operations>

 <eventReceived name="TheFeedback">

 <input name="param1" type="uint32"/>

 </eventReceived>

 </operations>

</componentType>

01-Components/cp_type2/C/cp_type2.C.impl.xml:

<implementation>

 <language.c fullName=”cp_type2”>

</ implementation >

02-Assemblies

<instance name="MyComp" componentType="cp_type2" implementation="C"/>

An external interface may be linked to the eventReceived operation using the “external” sender, as shown
below, where the external interface operation is “FeedbackLegacy”.

<eventLink>

 <sender><external operation="FeedbackLegacy" language="C"/></senders>

 <receiver instance="MyComp" operation="TheFeedback"/>

</eventLink>

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 75

This will result in an external API being provided by the Container with the following prototype definition:

void [#component_impl_name#__]FeedbackLegacy_External_Event_Received([#context#,] const ECOA:uint32

param1);

On the ECOA side, the external API permits all the normal ECOA connection flexibility for Component Event
Operations.

Note: the choice of the language for generating external APIs is made separately from the choice of the language for generating ECOA
modules APIs. The choice of supported languages is made depending on needs that are to be taken into account in platform procurement
requirements.

15 External Components

External Components are a special kind of Components, which have an additional specific, private thread.
This thread is called the "external thread".

Standard Components are entirely executed by the ECOA Infrastructure in a thread that is possibly shared
with other Components of equal priority. Therefore, standard Components shall not make "blocking" calls,
because it may block other Components. External Components are designed to overcome this limitation.

An external component actually behaves exactly the same as a standard component. The only difference is
that each instance of external component will start an additional thread, which implementation is left to the
Component's developer.

External components allow to perform specific treatments, without disturbing the execution of other
Components, especially blocking calls (like reading/writing from/to a device, listening on a socket, …).

The properties of the external thread of an External Component are the following:

 It is private to the External Component Instance. Each instance will have its own thread.

 It only executes a single routine (function/procedure/method), called the "external routine", which is
implemented by the External Component. The external routine has no argument except the context of
the External Component Instance.

 It typically contains an infinite loop, and shall never return. If it returns, the external thread terminates.

 It can call any Container API of the External Component, with restrictions on request-response
operations (detailed below).

 It can be started automatically by the ECOA infrastructure, if the option “autoStartExternalThread“ is
set to 'true' in the External Component implementation model.

 It can be stopped and started by the External Component itself, using a specific container API detailed
below (Start/Stop_External_Thread). Note that an External Component is not a Supervision
component.

 It is independent of the External Component lifecycle, i.e. it is not stopped or destroyed when the
External component is stopped or shut down.

 External routine can call any Container API of the External Component.

Interface specifying elements for external routine:

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 76

The appropriate language binding will define the correct syntax for this component operation.

The following illustration provides an abstract definition of the interface to help binding elaboration:

void [#component_impl_name#:]external_routine ([#context#]);

Note: In the following, the "standard thread" denotes the thread onto which this component instance is
deployed, like any other component. The "external thread" denotes the additional thread that is specially
created for this component instance because it is an external component.

The communication of information from the external thread to the standard thread can be done through a
sent event of the component, connected to a received event of the same component.

The synchronisation between the external thread and the standard thread, if needed, is under the
responsibility of the component implementation. This synchronisation may be necessary to guarantee data
consistency, for example if both threads use information from the component's user context, in a concurrent
way. This synchronisation may be realised by lock-free structures, or by directly accessing the OS' mutexes
(in which case the component becomes non portable on other OSes).

Since external components have the same container API as other components, they can call container
functions from both the external thread and the standard thread. However:

 Calling a synchronous request-response from the external thread is not allowed, and causes a

runtime error trace.

 Calling an asynchronous request-response from the external thread is allowed, but the callback

corresponding to the response received by the external component will always be executed by the

standard thread (like every other entry-point).

In addition to common methods that are generated for all standard ECOA components, the external
component container API is enriched with dedicated functions to enable starting and stopping the external
thread, directly from the standard thread.

Interface specifying elements for these functions:

Abstract API Name External_Routine

Use Case

Level MANDATORY

Minimal variability patterns #component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

Treatments to be executed in an external thread (for external components only)

Abstract API Name Start_External_Task

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:return_status OUT status on the interface execution

Starts the external thread of an external component

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 77

For those two operations, the ECOA platform shall be able to manage at least the following return status
codes:

 [ECOA:return_status:OK]

No error.

 [ECOA:return_status:FAILURE]

Any error that is not managed by a dedicated status code

For a given component instance, there is only one instance of the external thread, so any call to
start_external_thread() when it is already started will fail. A dedicated status code may be defined for that

case : [ECOA:OPERATION_NOT_AVAILABLE].

16 TriggerManager components

16.1 PeriodicTriggerManager Components

PeriodicTriggerManager components require a Component Type to be specified, as any other component;
however, the implementation is implicit and managed by the infrastructure.

A PeriodicTriggerManager Component Type defines a list of periodic events to be sent. These events will be
sent, periodically, while the component instance is in RUNNING state.

A PeriodicTriggerManager Component Type has the following specificities:

 Every operation must be an eventSent operation, without any parameters.

 Every operation must define an attribute 'period', in order to define the period of the periodic event to
be sent by the PeriodicTriggerManager component.

 Every operation can define an attribute 'delay', in order to define the initial delay of the periodic event
to be sent by the PeriodicTriggerManager component. This delay is counted from the moment the
component is started.

 The component shall define no property, and no PINFO.

The following XML shows an example of a PeriodicTriggerManager Component definition:

<componentType>

 <operations>

 <eventSent name="out1" period="100" />

 <eventSent name="out2" period="20" delay="100" />

 </operations>

</componentType>

In this example, the component sends 2 period events, one every 100ms, the other every 20ms.

Abstract API Name Stop_External_Task

Use Case

Level MANDATORY

Minimal variability patterns#component_impl_name#

Mandatory parameters Name Abstract Type IN/OUT Role

P1 #context# IN/OUT component context

P2 ECOA:return_status OUT status on the interface execution

Stops the external thread of an external component

Without prejudice to the property rights relating to the ECOA AS6 Standard, the information in this document relating to the changes
envisaged for the transition from the ECOA AS6 Standard to the ECOA AS7 Standard is the intellectual property of Dassault Aviation
and Thales DMS France SAS. The information set out in this document is provided solely on an ‘as is’ basis and co-developers of this
specification make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

Dassault Ref No: DGT 2041083-A/Thales DMS Ref No: 69398918-035 --Issue 7 78

Since the event 'out2' has a delay of 100ms, the first occurence of 'out2' will occur at the same time the
second occurence of 'out1' is sent.

 times for out1: 0, 100, 200, 300,...

 times for out2: 100, 120, 140,...

Since the two events are defined with the same component, they are based on the same time reference, and
will stay synchronised (i.e. they will occur simultaneoulsy for 1 out of 5 occurences of 'out2') forever, even if
the PeriodicTriggerManager is stopped and restarted.

16.2 DynamicTriggerManager Components

When DYNAMIC_TRIGGER option is available, DynamicTriggerManager components can be defined using
a dedicated Component Type. The implementation DynamicTriggerManager components is implicit and
managed by the infrastructure. See ECOA AS7 Part7 for specification of such a component in an ECOA
model.

17 Reference Language Header

This section in the language binding contains a reference header for the specific language containing the
Basic and Predefined ECOA types defined within the ECOA predefined library.

