

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

BishBashBosh

Introduction
This document describes an ECOA® example of using the ECOA Dynamic Trigger Instance

mechanism.

This document presents outline information about principal user generated artefacts required to

create a “BishBashBosh” program using the ECOA. It is assumed that the reader is thoroughly

conversant with the ECOA Architecture Specification (ref.[1]) and the process of defining and

declaring ECOA Assemblies, ASCs (components), Modules, and deployments in XML, and then using

code generation to produce Module framework (stub) code units and ECOA Container and Platform

code. If not, then let me suggest working through some of the other examples/samples provided,

starting with “Hello World” and working your way up to “Pub Sub”.

An ECOA Dynamic Trigger Instance allows software to schedule a single asynchronous ECOA Event at

some future time. The client “sets” the trigger (using the “in” ECOA Event Operation) to expire at a

given time and (possibly) passes values for one or more parameters. When that future time arrives,

the trigger sends an “out” ECOA Event, carrying the parameter values if applicable, and the Module

Operation linked to that Event is called. This is depicted in Figure 1. As in all ECOA Operation

invocations there will be a small intervals during the time the ECOA Operation is queued (see ref.[1]

for an explanation of ECOA Operation queuing).

Figure 1 ECOA Dynamic Trigger Behaviour

ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

An ECOA Dynamic Trigger can, within the context of the ECOA Inversion-of-Control principle,

therefore be used where a “delay until” statement might be used in Ada, or a “sleep()” function in

C
1
. Note however that unlike these two, the Module Operation that “sets” the trigger (using the

“in” operation) does not resume when the trigger expires. A different Module Operation, or even a

Service Operation, is invoked.

ECOA Dynamic Trigger Instances are not “busy waits”. The invoking Module thread is not blocked.

Aims

This ECOA “BishBashBosh” example is intended to provide a simple example of how ECOA Dynamic

Trigger Instances can be used.

ECOA Features Exhibited

• ECOA Dynamic Trigger Instances.

Design and Definition

ECOA Assembly Design and Definition

As with many of these examples, “BishBashBosh” comprises a single ECOA ASC (Component) with no

provided or referenced Services, as in Figure 2.

Figure 2 ECOA "BishBashBosh" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“BishBashBosh” Assembly is as follows (file bbb.impl.composite):

1
 Note however that the ECOA Dynamic Trigger and the Ada “delay until” statement use an absolute time

reference. “sleep()” uses a relative time reference – a delay period.

 ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="bbb" targetNamespace="http://www.ecoa.technology">

 <csa:component name="BishBashBosh">
 <ecoa-sca:instance componentType="BishBashBosh">
 <ecoa-sca:implementation name="BishBashBosh"/>
 </ecoa-sca:instance>
 </csa:component>
</csa:composite>

ECOA Module Design and Definition

The BishBashBosh ASC is composed of three ECOA Modules defined (as Module Types) and

declared (as Module Implementations and Instances) following the normal ECOA principals. The

“BishBashBosh” ECOA example was originally created as a development test vehicle for ECOA

Dynamic Trigger Instances, and therefore includes an ECOA Module Implementation simulating the

Dynamic Trigger Instance behaviour. This Module has been left in for interest (Module

Implementation dynTrig_Im). The internal interactions of the BishBashBosh ASC are depicted in

UML in Figure 3.

Figure 3 The ECOA “BishBashBosh” ASC Internals as an UML Composite Structure

Module BishBashBosh_modA receives four ECOA Event Module Operations: Bish, Bash, Bosh, and

Tick. Tick is invoked periodically by a “normal” ECOA Trigger Instance (BishBashBosh_Trigger).

The other three operations are invoked when the Dynamic Trigger Instances (DL_Trig1, DL_Trig2,

ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

and DLTrig3) fire. DL_Trig1 invokes Module Operation Bish in both Modules BishBashBosh_modA

and BishBashBosh_modB.

Module Instance DL_Trig4 is the simulated, application level implementation, of the Dynamic

Trigger Instance behaviour. When it fires, Module Operation Bosh of BishBashBosh_modA is

invoked.

All four Dynamic Trigger Instances (i.e. the three “real” ones and the simulated one) are “set” (re-

programmed), using their in operation, by Module BishBashBosh_modA. Periodically DL_Trig2 is

cancelled using its reset operation (see ref.[1] for an explanation).

The Module Type definition BishBashBosh_modA_t, taken from the ECOA Component

Implementation XML (file BishBashBosh.impl.xml) is (for illustration):

<moduleType name="BishBashBosh_modA_t" hasUserContext="true"
hasWarmStartContext="false">

 <operations>
 <eventReceived name="Tick" />
 <eventReceived name="Bish">
 <input name="a" type="int32" />
 <input name="b" type="bbb:LogItem" />
 </eventReceived>
 <eventReceived name="Bash" />
 <eventReceived name="Bosh">
 <input name="a" type="int32" />
 <input name="b" type="bbb:LogItem" />
 </eventReceived>
 <eventSent name="Trig1Set">
 <input name="expiryTime" type="ECOA:global_time" />
 <input name="a" type="int32" />
 <input name="b" type="bbb:LogItem" />
 </eventSent>
 <eventSent name="Trig1Reset"/>
 <eventSent name="Trig2Set">
 <input name="expiryTime" type="ECOA:global_time" />
 </eventSent>
 <eventSent name="Trig2Reset"/>
 <eventSent name="Trig3Set">
 <input name="expiryTime" type="ECOA:global_time" />
 <input name="a" type="int32" />
 <input name="b" type="bbb:LogItem" />
 </eventSent>
 <eventSent name="Trig3Reset"/>
 <eventSent name="Trig4Set">
 <input name="expiryTime" type="ECOA:global_time" />
 <input name="a" type="int32" />
 <input name="b" type="bbb:LogItem" />
 </eventSent>
 <eventSent name="Trig4Reset"/>
 </operations>
</moduleType>

Note how the Bish and Bosh Module Operations receive the additional (application) parameters (a

and b) posted by the Dynamic Trigger Instance, which are set by the TrigNSet operations of the

relevant Dynamic Trigger Instance.

 ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

The rest of the ECOA Component Implementation XML is not repeated here. If you have worked

through (some of) the other examples, you should be familiar enough with what it contains…

ECOA Deployment Definition

The ECOA “BishBashBosh” Assembly is deployed (that is, the declared Module, Trigger, and Dynamic

Trigger Instances are allocated to an ECOA Protection Domain, which is itself allocated to a

computing node) by the following XML (file bbb.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="bbb" logicalSystem="hostbased">

 <protectionDomain name="bbb">
 <executeOn computingNode="cpu" computingPlatform="host"/>
 <deployedModuleInstance componentName="BishBashBosh"

moduleInstanceName="BishBashBosh_modA_Instance"
modulePriority="50"/>

 <deployedModuleInstance componentName="BishBashBosh"
moduleInstanceName="BishBashBosh_modB_Instance"
modulePriority="50"/>

 <deployedTriggerInstance componentName="BishBashBosh"

triggerInstanceName="BishBashBosh_Ticker"
triggerPriority="51"/>

 <deployedTriggerInstance componentName="BishBashBosh"

triggerInstanceName="DL_Trig1" triggerPriority="52"/>
 <deployedTriggerInstance componentName="BishBashBosh"

triggerInstanceName="DL_Trig2" triggerPriority="52"/>
 <deployedTriggerInstance componentName="BishBashBosh"

triggerInstanceName="DL_Trig3" triggerPriority="52"/>

 <deployedModuleInstance componentName="BishBashBosh"

moduleInstanceName="DL_Trig4" modulePriority="52"/>
 </protectionDomain>
 <platformConfiguration faultHandlerNotificationMaxNumber="8"

computingPlatform="host"/>
</deployment>

Thus in this case, all Module, Trigger, and Dynamic Trigger Instances are deployed into a single ECOA

Protection Domain bbb executing on the Computing Node cpu which is part of the ECOA Computing

Platform host:

ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

Figure 4 ECOA " BishBashBosh " Deployment

Implementation

Figure 5 shows the overall behaviour of “BishBashBosh” as a UML sequence diagram. The comments

at the side describe the various behaviours depicted. Note that initialisation of the Dynamic Trigger

Instances is omitted for clarity. The periodic behaviours invoked by the (normal) ECOA Trigger

Instance BishBashBosh_Ticker are included:

a) To demonstrate multiple, queued, invocations of a Dynamic Trigger Instance (DL_Trig2 in

this case);

b) Cancelling queued invocations (also of DL_Trig2).

 ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

Figure 5 "BishBashBosh" Overall Behaviour

 “BishBashBosh” Functional Code

The C code implementation of the Bish and Bosh Module Operations of Module Implementation

BishBashBosh_modA_Im are, for illustration and comparison with the behaviour illustrated above:

void BishBashBosh_modA_Im__Bish__received(BishBashBosh_modA_Im__context *context,
const ECOA__int32 a,
const bbb__LogItem *b)

{
 ECOA__global_time next_time;
 ECOA__log msg;
 //
 BishBashBosh_modA_Im_container__get_UTC_time(context, &next_time);

ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

 context->user.TDEL.seconds = (context->user.TDEL.seconds + 1) % 10;
 msg.current_size = sprintf(msg.data, "Bish! (DL_Trig1) a = %u; b->timeStamp =

{%u,%09u}; next in %u.%09u seconds...",
a, b->timeStamp.secs, b->timeStamp.nsecs,
context->user.TDEL.seconds,
context->user.TDEL.nanoseconds);

 BishBashBosh_modA_Im_container__log_info(context, msg);
 //
 next_time.seconds += context->user.TDEL.seconds;
 next_time.nanoseconds += context->user.TDEL.nanoseconds;
 BishBashBosh_modA_Im_container__Trig1Set__send(context, &next_time, 1234, &LOGITEM);
}

void BishBashBosh_modA_Im__Bosh__received(BishBashBosh_modA_Im__context *context,

const ECOA__int32 a,
const bbb__LogItem *b)

{
 ECOA__global_time next_time;
 ECOA__log msg;
 //
 BishBashBosh_modA_Im_container__get_UTC_time(context, &next_time);
 context->user.TDEL.seconds = (context->user.TDEL.seconds + 3) % 30;
 msg.current_size = sprintf(msg.data, "Bosh! (DL_Trig3) a = %d; b->timeStamp =

{%u,%09u}; next in %u.%09u seconds...",
a, b->timeStamp.secs, b->timeStamp.nsecs,
context->user.TDEL.seconds,
context->user.TDEL.nanoseconds);

 BishBashBosh_modA_Im_container__log_info(context, msg);
 //
 next_time.seconds += context->user.TDEL.seconds;
 next_time.nanoseconds += context->user.TDEL.nanoseconds;
 BishBashBosh_modA_Im_container__Trig3Set__send(context, &next_time, 1234, &LOGITEM);
 BishBashBosh_modA_Im_container__Trig4Set__send(context, &next_time, 1234, &LOGITEM);
}

The Module Operation implementations in Module BishBashBosh_modB_Im are trivial, simply

reporting that they have been invoked:

void BishBashBosh_modB_Im__Bish__received(BishBashBosh_modB_Im__context *context,
const ECOA__int32 a,
const bbb__LogItem *b)

{
 ECOA__log msg;
 msg.current_size = sprintf(msg.data, "Beep! (DL_Trig1) a = %u; b->timeStamp =

{%u,%09u}...", a, b->timeStamp.secs, b->timeStamp.nsecs);
 BishBashBosh_modB_Im_container__log_info(context, msg);
}

void BishBashBosh_modB_Im__Bosh__received(BishBashBosh_modB_Im__context *context,

const ECOA__int32 a,
const bbb__LogItem *b)

{
 ECOA__log msg;
 msg.current_size = sprintf(msg.data, "Bang! (DL_Trig4) a = %u; b->timeStamp =

{%u,%09u}...", a, b->timeStamp.secs, b->timeStamp.nsecs);
 BishBashBosh_modB_Im_container__log_info(context, msg);
}

 ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

Simulated ECOA Dynamic Trigger Instance Code

In order to simulate the Dynamic Trigger Instance behaviour the Module Implementation has to be

very non-ECOA. The key Module Operation is in which, in C code has the function signature:

void dynTrig_im__in__received(dynTrig_im__context *context,
const ECOA__global_time *expiryTime,
const ECOA__int32 a,
const bbb__LogItem *b);

The function must:

a) Program a timer to expire when expiryTime is reached;

b) Invoke the out Operation when that timer expires;

c) Hold the values of the parameters a and b until the timer expires and then pass those values

with the out operation;

d) Be able to do this for multiple invocations of in while previous invocations are still pending

timer expiry.

The simple implementation used here is:

void dynTrig_im__in__received(dynTrig_im__context *context,
const ECOA__global_time *expiryTime,
const ECOA__int32 a,
const bbb__LogItem *b)

{
 ECOA__global_time now;
 ECOA__duration delayTime;
 thrdInfo *thrdInf = NULL;
 Thread_Attr_Type thrdAttr;
 Create_Thread_Status_Type ctStat;
 int thrdId;
 //
 dynTrig_im_container__get_UTC_time(context, &now);
 delayTime.seconds = expiryTime->seconds - now.seconds;
 delayTime.nanoseconds = expiryTime->nanoseconds - now.nanoseconds;
 //
 if(delayTime.seconds >= 0 && delayTime.nanoseconds > 0){
 thrdInf = (thrdInfo*)malloc(sizeof(thrdInfo));
 thrdInf->context = context;
 thrdInf->usec = (delayTime.seconds * 1000000) + (delayTime.nanoseconds / 1000);
 thrdInf->a = a;
 memcpy(&(thrdInf->b), b, sizeof(bbb__LogItem));
 //
 thrdAttr = (Thread_Attr_Type){ Sched_FIFO, 99, 1000000 };
 Create_Thread(&thrdAttr, &waitFunc, thrdInf, &thrdId, &ctStat);
 }
}

The function calculates how long until expiryTime occurs (in this case in microseconds) and stores

this, along with the parameter values, into memory (at thrdInf). The function then creates a new

thread, passing thrdInf to the thread function (waitFunc). This function therefore breaks the

ECOA’s Inversion-of-Control principle by creating that independent thread.

ECOA Examples: BishBashBosh

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

The thread function (waitFunc) simply waits for the passed number of microseconds, and then

invokes the out operation with the passed parameter values:

static void waitFunc(void* p)
{
 thrdInfo *thrdInf = (thrdInfo *)p;
 usleep(thrdInf->usec);
 dynTrig_im_container__out__send(thrdInf->context, thrdInf->a, &(thrdInf->b));
 free(p);
}

Program Output
When the ECOA “BishBashBosh” Assembly is built and run, an output similar to Figure 6 should be

achieved. Text messages are output to the system console indicating when each Dynamic Trigger

Instance fires and the values of the parameters passed, interleaved with other ECOA Platform

logging messages (such as the 5 second periodic “alive” message in the example shown):

Figure 6 ECOA "BishBashBosh" in Execution

References

1 European Component Oriented Architecture (ECOA®) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

