

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

 1

ChuckleBrothers

Introduction

This document describes an ECOA® to-and-fro communications example, given the name “Chuckle

Brothers”.

“Chuckle Brothers” demonstrates two entities passing something between each other: one will send

it, and the other will pass it back. Like children throwing a ball backwards and forwards.

Figure 1 “To You” – “To Me”

In computing terms, the children (let’s call them Barry and Paul) “become” two programs, the ball

becomes a data item or message, and throwing the ball becomes the invocation of an operation to

send the message either one way (let’s call that operation “To You”) or the other (“To Me”).

In UML, the behaviour might be shown as a sequence diagram like Figure 2, where the “Barry”

program invokes “ToYou” sending a message to the “Paul” program, which replies by invoking the

“ToMe” operation, which triggers “Barry” to invoke “ToYou”, and so on:

Figure 2 "ChuckleBrothers" Behaviour as a UML Sequence Diagram

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

This document presents the principal user generated artefacts required to create the two “Chuckle

Brothers” programs using the ECOA. It is assumed that the reader is conversant with the ECOA

Architecture Specification (ref.[1]) and the process of defining and declaring ECOA Assemblies, ASCs

(components), Modules, and deployments in XML, and then using code generation to produce

Module framework (stub) code units and ECOA Container and Platform code.

Aims

This ECOA “Chuckle Brothers” example is intended to demonstrate a minimum effort ECOA software

system, comprising two ECOA ASCs (components) (ref.[1]), built as two executables, and with a

single ECOA Service.

ECOA Features Exhibited

• Composition of an ECOA Assembly of multiple ECOA ASCs (components).

• Multiple cooperating ECPA Protection Domains.

• ECOA Logical Interface (ELI) between ECOA Protection Domains.

• Use of the ECOA runtime logging API.

Design and Definition

ECOA Assembly Design and Definition

This ECOA “Chuckle Brothers” example Assembly comprises two ECOA ASCs, named “Barry” and

“Paul”. Each ASC will be deployed into a separate ECOA Protection Domain. The ASCs will

communicate through an ECOA Service, “svc_Shuffle”, which Paul provides, and Barry references.

Figure 3 ECOA "Chuckle Brothers" Assembly Diagram

 ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the copyright is owned by BAE

Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics

United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic Systems, and

is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this document is provided

solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 3

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Chuckle Brothers” Assembly is as follows (file CB.impl.composite):

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="CB" targetNamespace="http://www.ecoa.technology">

 <csa:component name="Paul">
 <ecoa-sca:instance componentType="Paul">
 <ecoa-sca:implementation name="Paul"/>
 </ecoa-sca:instance>
 <csa:service name="svc_Shuffle"/>
 </csa:component>
 <csa:component name="Barry">
 <ecoa-sca:instance componentType="Barry">
 <ecoa-sca:implementation name="Barry"/>
 </ecoa-sca:instance>
 <csa:reference name="svc_Shuffle"/>
 </csa:component>
 <!-- System Wiring... -->
 <csa:wire source="Barry/svc_Shuffle" target="Paul/svc_Shuffle"/>
</csa:composite>

Looking through this XML it will be seen how it is a mapping of the Assembly diagram, with each of

the ASCs (Components) represented, and the Service link (“wire”) connecting them.

The Paul ASC is defined in XML as follows (file Paul.componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extenion-2.0">

 <service name="svc_Shuffle">
 <ecoa-sca:interface syntax="svc_Shuffle"/>
 </service>
</componentType>

i.e. the ASC definition (the <componentType> XML element) declares the ECOA Service (using the

<service> XML tag).

The Barry ASC is defined in XML as follows (file Barry.componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extenion-2.0">

 <reference name="svc_Shuffle">
 <ecoa-sca:interface syntax="svc_Shuffle"/>
 </reference>
</componentType>

i.e. almost identically to Paul, but with the Service referenced instead of declared.

ECOA Service and Types Definition

The svc_Shuffle Service, which is provided by the Paul ASC and referenced by the Barry ASC, is

defined in a XML file (svc_Shuffle.interface.xml):

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">
 <operations>
 <event name="toMe" direction="SENT_BY_PROVIDER">
 <input name="item" type="int32" />
 </event>
 <event name="toYou" direction="RECEIVED_BY_PROVIDER">
 <input name="item" type="int32" />
 </event>
 </operations>
</serviceDefinition>

The Service comprises a pair of ECOA Event Operations called “toMe” and “toYou”. “toMe” is sent by

the Service provider, and “toYou” is received by the provider – that is sent by the referencer (client).

Each Operation takes a single (integer value) parameter – the message content.

ECOA Module Design and Definition

The Paul and Barry ASCs are each composed of a single ECOA Module each (Module

Implementations PAL_modMain_Im and BRY_modMain_Im of Module Types PAL_modMain_t and

BRY_modMain_t respectively) as illustrated in UML in Figure 4. As always in the ECOA, the Module

Implementation implements the Module Lifecycle operations defined by the ECOA (as represented

in UML by the abstract class ECOA::Module), depicted in the diagram as an inheritance relationship.

 ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the copyright is owned by BAE

Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics

United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic Systems, and

is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this document is provided

solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 5

Figure 4 ECOA "Chuckle Brothers" Module Design (as UML Class Diagram)

The Paul ASC (ECOA) Implementation

The Paul ASC is declared in XML as follows, in what the ECOA calls the “Component

Implementation” XML (file PAL.impl.xml):

<componentImplementation
xmlns="http://www.ecoa.technology/implementation-2.0"
componentDefinition="Paul">

 <use library="ECOA" />
 <!-- module PAL_modMain_t type definition -->
 <moduleType name="PAL_modMain_t" hasUserContext="true" hasWarmStartContext="false">
 <operations>
 <eventReceived name="toYou">
 <input name="item" type="int32" />
 </eventReceived>

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

 <eventSent name="toMe">
 <input name="item" type="int32" />
 </eventSent>
 </operations>
 </moduleType>
 <!-- module implementation definition -->
 <moduleImplementation name="PAL_modMain_Im" moduleType="PAL_modMain_t"

language="C" />
 <!-- module instances -->
 <moduleInstance name="PAL_modMain_Instance" implementationName="PAL_modMain_Im"

relativePriority="1">
 </moduleInstance>
 <!-- Definition of module operation links -->
 <eventLink>
 <senders>
 <moduleInstance instanceName="PAL_modMain_Instance" operationName="toMe"/>
 </senders>
 <receivers>
 <service instanceName="svc_Shuffle" operationName="toMe"/>
 </receivers>
 </eventLink>
 <eventLink>
 <senders>
 <service instanceName="svc_Shuffle" operationName="toYou"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="PAL_modMain_Instance" operationName="toYou"/>
 </receivers>
 </eventLink>
</componentImplementation>

Note that a naming convention has been adopted in this example whereby the Module is conceived

as being declared within a code package named “PAL” (for “Paul”). This packaging is illustrated

explicitly in the UML class diagram, and expressed in the XML (and subsequently in actual code)

using the prefix “PAL_”.

So, a Module Type (PAL_modMain_t) is declared which an eventReceived operation “toYou” and an

eventSent operation “toMe”, declarations inherited from the ECOA Service. This Module Type is

implemented by a concrete Module Implementation PAL_modMain_Im (depicted in the UML

expanded in the form of the code class produced by the code generation process), which in turn is

instantiated at runtime as the Module Instance PAL_modMain_Instance.

From these definitions and declarations, a single functional code unit will be produced by the code

generation process, implementing in code the single concrete class on the UML diagram

(PAL_modMain_Im), and named “PAL_modMain_Im.c” (assuming the Module Implementation

declaration has set the language property to “C”).

The Barry ASC (ECOA) Implementation

The Barry ASC is declared in XML as follows, in what the ECOA calls the “Component

Implementation” XML (file BRY.impl.xml):

 ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the copyright is owned by BAE

Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics

United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic Systems, and

is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this document is provided

solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 7

<componentImplementation
 xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Barry">
 <use library="ECOA" />
 <!-- module BRY_modMain_t type definition -->
 <moduleType name="BRY_modMain_t" hasUserContext="false"

hasWarmStartContext="false">
 <operations>
 <eventReceived name="toMe">
 <input name="item" type="int32" />
 </eventReceived>
 <eventSent name="toYou">
 <input name="item" type="int32" />
 </eventSent>
 </operations>
 </moduleType>
 <!-- module implementation definition -->
 <moduleImplementation name="BRY_modMain_Im"

moduleType="BRY_modMain_t" language="C" />
 <!-- module instances -->
 <moduleInstance name="BRY_modMain_Instance"

implementationName="BRY_modMain_Im"
relativePriority="1">

 </moduleInstance>
 <!-- Definition of module operation links -->
 <eventLink>
 <senders>
 <reference instanceName="svc_Shuffle" operationName="toMe"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="BRY_modMain_Instance" operationName="toMe"/>
 </receivers>
 </eventLink>
 <eventLink>
 <senders>
 <moduleInstance instanceName="BRY_modMain_Instance" operationName="toYou"/>
 </senders>
 <receivers>
 <reference instanceName="svc_Shuffle" operationName="toYou"/>
 </receivers>
 </eventLink>
</componentImplementation>

You will note how it is similar to the Paul Component Implementation except where the name prefix

has changed (from PAL to BRY), and where Module Operation directions have reversed.

So, a Module Type (BRY_modMain_t) is declared which an eventSentoperation “toYou” and an

eventTeceived operation “toMe”, declarations inherited from the ECOA Service. This Module Type

is implemented by a concrete Module Implementation BRY_modMain_Im (likewise depicted in the

UML expanded in the form of the code class produced by the code generation process), which in

turn is instantiated at runtime as the Module Instance BRY_modMain_Instance.

From these definitions and declarations, a single functional code unit will be produced by the code

generation process, implementing in code the single concrete class on the UML diagram

(BRY_modMain_Im), and named “BRY_modMain_Im.c” (assuming the Module Implementation

declaration has set the language property to “C”).

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

ECOA Deployment Definition

The ECOA “Chuckle Brothers” Assembly is deployed (that is, the declared Module Instances are

allocated to ECOA Protection Domains, which are themselves allocated to computing nodes) by the

following XML (file CB.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0" finalAssembly="CB"
logicalSystem="hostbased">

 <protectionDomain name="pdBarry">
 <executeOn computingNode="cpu" computingPlatform="host"/>
 <deployedModuleInstance componentName="Barry"

moduleInstanceName="BRY_modMain_Instance" modulePriority="50"/>
 </protectionDomain>
 <protectionDomain name="pdPaul">
 <executeOn computingNode="cpu" computingPlatform="host"/>
 <deployedModuleInstance componentName="Paul"

moduleInstanceName="PAL_modMain_Instance" modulePriority="50"/>
 </protectionDomain>
 <platformConfiguration

faultHandlerNotificationMaxNumber="8"
computingPlatform="host" />

</deployment>

Thus in this case, the two Module Instances (PAL_modMain_Instance and BRY_modMain_Instance),

which are the runtime manifestation of the Paul and Barry ASCs, are deployed into an ECOA

Protection Domain each, pdPaul and pdBarry respectively, both executing on the Computing Node

cpu, which is part of the (possibly multi-Node) ECOA Computing Platform host.

An alternate deployment might have the two Protection Domains hosted on separate ECOA

Computing Platforms, for example “myPC” and “yourPC”:

<deployment xmlns="http://www.ecoa.technology/deployment-2.0" finalAssembly="CB"
logicalSystem="hostbased">

 <protectionDomain name="pdBarry">
 <executeOn computingNode="cpu" computingPlatform="myPC"/>
 <deployedModuleInstance componentName="Barry"

moduleInstanceName="BRY_modMain_Instance" modulePriority="50"/>
 </protectionDomain>
 <protectionDomain name="pdPaul">
 <executeOn computingNode="cpu" computingPlatform="yourPC"/>
 <deployedModuleInstance componentName="Paul"

moduleInstanceName="PAL_modMain_Instance" modulePriority="50"/>
 </protectionDomain>
 <platformConfiguration

faultHandlerNotificationMaxNumber="8"
computingPlatform="host" />

</deployment>

 ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the copyright is owned by BAE

Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics

United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic Systems, and

is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this document is provided

solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 9

Figure 5 ECOA "Chuckle Brothers" Single-host Deployment

Service Availability Considerations

Since the Paul ASC provides an ECOA Service (svc_Shuffle) it might be useful that the Service be

declared (at runtime) as “available”. Clients of the Service (e.g. Barry) could then check and take

alternate action if the Service is not currently being provided. In the present simple example,

availability of the svc_Shuffle Service has not been implemented – it is just assumed to be

available once the Protection Domains (executables) have both started.

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

Implementation

The ECOA “Chuckle Brothers” example is sufficiently simple that the only software code that needs

to be added to the code generated frameworks is to send and print out the actual messages.

As shown in Figure 2, the behaviour we want is that when the Barry ASC receives the “ToMe”

message it sends back the “ToYou” message. And when the Paul ASC receives the “ToYou” message

it sends back the “ToMe” message. The Component Implementation XML for the Barry ASC specifies

that when the toMe ECOA Event (message) is received the toMe Module Operation (of Module Type

BRY_modMain_t) is invoked. That Operation can therefore be coded (in the (C) code unit

BRY_modMain_Im.c) as:

void BRY_modMain_Im__toMe__received
 (BRY_modMain_Im__context* context,
 const ECOA__int32 item)
{
 ECOA__log msg;
 /*
 * Wait a moment, then send toYou */
 nanosleep(&ONESEC, NULL);
 BRY_modMain_Im_container__toYou__send(context, item);
 /**/
 msg.current_size = sprintf(msg.data, "\n\tTo You");
 BRY_modMain_Im_container__log_info(context, msg);
}

Likewise, when the Paul ASC receives the toYou ECOA Event (message), the toYou Module

Operation (of Module Type PAL_modMain_t) is invoked, which can therefore be coded (in the (C)

code unit PAL_modMain_Im.c) as:

void PAL_modMain_Im__toYou__received
 (PAL_modMain_Im__context* context,
 const ECOA__int32 item)
{
 ECOA__log msg;
 //
 context->user.BarryIsAnswering = !0;
 nanosleep(&ONESEC, NULL);
 context->user.SequenceNumber += 1;
 PAL_modMain_Im_container__toMe__send(context, context->user.SequenceNumber);
 //
 msg.current_size = sprintf(msg.data, "\n\tTo Me");
 PAL_modMain_Im_container__log_info(context, msg);
}

In order to kick-start this to-and-fro process though, we need to send one of these two messages on

start-up, independently of having not received the other message, adapting the behaviour as in :

 ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Selex ES Ltd, and the copyright is owned by BAE

Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics

United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic Systems, and

is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this document is provided

solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including no warranties as to

completeness, accuracy or fitness for purpose, with respect to any of the information.

 11

Figure 6 Modified "ChuckleBrothers" Behaviour

In accordance with the ECOA definition, and as illustrated in Figure 4 by the UML Generalization

(inheritance) of the ECOA::Module abstract class, each Module Implementation is code generated

with four stub Module Operation functions, one each for the four ECOA Module Lifecycle operations

(INITIALIZE, START, STOP, and SHUTDOWN). For the ECOA “Chuckle Brothers” example, we want a

message to be sent when the whole Assembly starts operating, which is to say, when one of the

START operations is called. As the Paul ASC is the Service provider, it’s START operation (in Module

Implementation PAL_modMain_Im), implemented by the (C) code function PAL_modMain_Im-

__START_received in the (C) code unit PAL_modMain_Im.c, becomes:

void PAL_modMain_Im__START__received
 (PAL_modMain_Im__context* context)
{
 ECOA__log msg;
 msg.current_size = sprintf(msg.data, "\n\tPaul is ready");
 PAL_modMain_Im_container__log_info(context, msg);
 //
 // Don't (MUSN'T) be too quick to start sending...
 nanosleep(&ONESEC, NULL);
 PAL_modMain_Im_container__toMe__send(context, context->user.SequenceNumber);
 //
 msg.current_size = sprintf(msg.data, "\n\tTo Me");
 PAL_modMain_Im_container__log_info(context, msg);
}

The functions listed all uses the ECOA logging API (log_info) to output a message to the user. The

message is constructed (as variable msg of type ECOA__log) by using sprintf to copy the message

text (“Hello ECOA World”) into the msg variable’s data field, and set its current_length field. msg

is then passed to the ECOA log_info API.

The Paul ASC implementation utilizes the User Context capability provided for ECOA Modules (see

ref.[1]). The PAL_modMain_Im Module Implementation maintains a SequenceNumber which is

ECOA Examples: ChuckleBrothers

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned

by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

incremented each time the toYou message (ECOA Event) is sent to the Barry ASC. This

SequenceNumber is held in the User Context so that the value persists between one invocation of the

toMe operation and the next.

Program Output

When the ECOA “Chuckle Brothers” Assembly is built and run (as two Protection Domains

(executables), an output similar to Figure 7 should be achieved. The log_info information

messages (mentioned earlier) are output to each programs console window, along with ECOA

Platform logging messages (such as the 10 second periodic “alive” message):

Figure 7 ECOA "Chuckle Brothers" in Execution

References

1 European Component Oriented Architecture (ECOA®) Collaboration Programme:

Architecture Specification

(Parts 1 to 11)
“ECOA” is a registered trade mark.

