INSPIRED WORK

Dining Philosophers

Introduction
This document describes an ECOA® implementation example of the famous “Dining Philosophers”
problem (ref.[2]).

“Dining Philosophers” is an often used example in concurrent programming design, addressing
resource contention and synchronization issues.

Five silent® philosophers sit at a round table with bowls of noodles. A chopstick is placed between
each pair of adjacent philosophers.

Each philosopher must alternately think and eat. However, a philosopher can only eat noodles when
he has both “left” and “right” chopsticks. Each chopstick can be held by only one philosopher and so
a philosopher can use the chopstick only if it is not being used by another philosopher. After he
finishes eating, he needs to put down both chopsticks so they become available to others. A
philosopher can take the chopstick on his right or the one on his left as they become available, but
cannot start eating before getting both of them. Nor can he take a chopstick that is not immediately
on his left or right.

Eating is not limited by the remaining amounts of noodle or stomach space; an infinite supply is
assumed!

The problem is how to design a discipline of behaviour (a concurrent algorithm) such that no
philosopher will starve; i.e. each can forever continue to alternate between eating and thinking,
assuming that no philosopher can know when others may want to eat or think.

Figure 1 The Dining Philosophers

Philosapher

Philosopher Philosopher

— S

Philesopher \ Philosopher

! The philosophers cannot communicate with each other.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

1

ECOA Examples: Dining Philosophers INSPIRED WORK

This document presents the principal user generated artefacts required to create a “Dining
Philosophers” example using the ECOA. It is assumed that the reader is conversant with the ECOA
Architecture Specification (ref.[1]) and the process of defining and declaring ECOA Assemblies, ASCs
(components), Modules, and deployments in XML, and then using code generation to produce
Module framework (stub) code units and ECOA Container and Platform code.

Aims

This ECOA “Dining Philosophers” example is intended to demonstrate how ECOA concepts of
concurrency and inversion of control (see ref.[1]) ease and facilitate the design and implementation
of multi-threaded, multi-processing, applications.

ECOA Features Exhibited

e Composition of an ECOA Assembly of multiple ECOA ASCs (components).
e Contention-free resource sharing within an ECOA Assembly.

e Multiple cooperating ECOA Protection Domains.

e Service Availability.

e Use of the ECOA runtime logging API.

Design and Definition

Resource Hierarchy Solution
The method of solving the resource contention issue in the Dining Philosophers problem, i.e. how to
ensure that no philosopher starves because he cannot get both chopsticks at once, is Dijkstra’s
original “resource hierarchy” solution.

Each chopstick is assigned a “partial order” value (“0” to “4”) (with no duplication) so each
philosopher has a “lower ordered” chopstick on one side and a “higher ordered” chopstick on the
other side. The solution derives from imposing the rule that the lower ordered chopstick must be
picked up first.

So after a philosopher has finished thinking, rather than pick up the first chopstick to become
available (of those on his left or right), he must wait until the lower ordered of those chopsticks is
available, pick that up, then possibly wait again until the higher ordered chopstick becomes
available.

Once he has both chopsticks, he eats, and when finished, surrenders each chopstick. He then thinks
for a while, before getting hungry and starting over.

This solution is depicted (for one philosopher) in the UML Activity Diagram of Figure 2.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

2

INSPIRED WORK ECOA Examples: Dining Philosophers

Figure 2 Resource Hierarchy Solution Applied to a Dining Philosopher

DiningPhilosopher

e]/Take chopstick

[Lower ordered chopstick availab

[Done thinking]

[Higher ordered chopstick avaitable]/Take chopstick

[Done eatipg]/Surrender chopsticks

ECOA Assembly Design and Definition

This ECOA “Dining Philosophers” example is realized as an ECOA Assembly named “Restaurant”
comprising five ECOA ASCs named “P1” to “P5” of the ASC type “Philosopher”, and one ASC named
“Table” of ASC type “Table”. The “Table” ASC provides a “svc_Chopsticks” ECOA Service, which is
referenced by the “Philosopher” ASCs, and by which each “Philosopher” can take and surrender
chopsticks.

The ECOA “Dining Philosophers” (Restaurant) Assembly is depicted in Figure 3.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

3

ECOA Examples: Dining Philosophers INSPIRED WORK

Figure 3 ECOA "Dining Philosophers" Assembly Diagram

Restaurant

=%

v

= 7| P1 : Philosopher

»

.

sve_Ch

i

P2 : Philosopher

8
9

iz]

q

=3
/ P3 : Philosopher Table : Table

swve_Chopsticks

"

P4 : Philosopher

b

PS5 : Philosopher

-

e

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or
Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA
“Dining Philosophers” (Restaurant) Assembly is as follows (file Restaurant.impl.composite),
reflecting the Assembly diagram above:

<csa:composite xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
name="Restaurant">
<csa:component name="Table">
<ecoa-sca:instance componentType="Table">
<ecoa-sca:implementation name="Table"/>
</ecoa-sca:instance>
<csa:service name="svc_Chopsticks"/>
</csa:component>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

4

BAE SYSTEMS

INSPIRED WORK ECOA Examples: Dining Philosophers

<l---->
<csa:component name="P1">
<ecoa-sca:instance componentType="Philosopher">
<ecoa-sca:implementation name="Philosopher"/>
</ecoa-sca:instance>
<csa:reference name="svc_Chopsticks"/>
<csa:property name="Id"><csa:value>1</csa:value></csa:property>
</csa:component>

components P2 to P4 repeat

<csa:component name="P5">
<ecoa-sca:instance componentType="Philosopher">
<ecoa-sca:implementation name="Philosopher"/>
</ecoa-sca:instance>
<csa:reference name="svc_Chopsticks"/>
<csa:property name="Id"><csa:value>5</csa:value></csa:property>
</csa:component>
<l---->
<!-- System Wiring... -->
<csa:wire source="P1/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-
sca:rank="1"/>
<csa:wire source="P2/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-
sca:rank="1"/>
<csa:wire source="P3/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-
sca:rank="1"/>
<csa:wire source="P4/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-
sca:rank="1"/>
<csa:wire source="P5/svc_Chopsticks" target="Table/svc_Chopsticks" ecoa-
sca:rank="1"/>
</csa:composite>

The Table ASC type is defined in XML as follows (file Table. componcompoententType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"” xmlns:ecoa-
sca="http://www.ecoa. technology/sca-extension-2.0">
<service name="svc_Chopsticks">
<ecoa-sca:interface syntax="svc_Chopsticks"/>
</service>
</componentType>

That is, the ASC provides a single Service (svc_Chopsticks).

The Philosopher ASC type is defined in XML as follows (file Philosopher. componentType):

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"” xmlns:ecoa-
sca="http://www.ecoa.technology/sca-extension-2.0">
<reference name="svc_Chopsticks">
<ecoa-sca:interface syntax="svc_Chopsticks"/>
</reference>
<property name="Id" type="xs:string" ecoa-sca:type="int32"/>
</componentType>

That is, in addition to declaring a reference to the svc_Chopsticks Service, the ASC defines an ECOA
Property (Id). Note that the Property value is given for each instance of the ASC in the Restaurant
Assembly declaration (above), not here in the ASC type definition.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

5

ECOA Examples: Dining Philosophers INSPIRED WORK

ECOA Service Definition
The svc _Chopsticks Service, which is provided by the Table ASC and referenced by the
Philosophers ASCs, is defined in a XML file (svc_Chopsticks. interface.xml):

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0"><!--
name="svc_Chopsticks" -->
<operations>
<requestresponse name="take">
<input name="which" type="int32"/>
<input name="who" type="int32"/>
<output name="taken" type="boolean8"/>
</requestresponse>
<requestresponse name="surrender">
<input name="which" type="int32"/>
<input name="who" type="int32"/>

</requestresponse>
<data name="ready" type="boolean8"/>
</operations>

</serviceDefinition>

The Service comprise two ECOA Request-Response Operations, take and surrender, each of which
takes two input parameters (which and who), whilst take also has a return parameter (taken). The
parameter which specifies which chopstick the request is for, and is the partial order number for the
chopstick (“0” to “4”). The who parameter specifies the philosopher’s identity (“1” to “5”) as given
by its Id ECOA Property. The taken parameter will be true if the requested chopstick is available,
or false if not.

The Service also includes an ECOA Versioned-Data Operation, ready, which will be used to indicate
to the Service clients (the Philosophers) that the Service is ready to accept operation requests — that
is, to indicate “Service Availability”, which will be discussed later.

Note that there is no mention or imposition at this declarative stage of the Resource Hierarchy
algorithm, except to note that the chopsticks are identified by their numerical order value.

ECOA Module Design and Definition

The Table and Philosopher ASC (component) types are composed of a single ECOA Module each
(Module Implementations Table _modMain Im and Philosopher _modMain Im of Module Types
Table _modMain_t and Philosopher _modMain_t respectively) as illustrated in UML in Figure 4.
Here is depicted in UML the Table ASC (component) providing the svc_Chopsticks ECOA Service,
whilst the Philosopher ASC references the Service, and possesses the Id ECOA Property. As always
in the ECOA, the Module Implementations implement the Module Lifecycle operations defined by
the ECOA (as represented in UML by the abstract class ECOA: :Module).

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

6

BAE SYSTEMS

INSPIRED WORK ECOA Examples: Dining Philosophers

Figure 4 ECOA "Dining Philosophers" Module Design (as UML Class Diagram

)

“Interfaces

£ ECOA:Module

«ecoa.services «Interfaces

2 svc_Chopsticks [Z] ECOA::Triggerinstance

€2 - language: String (1]

3 «ecoa.event, sent_by_providers ~ INITIALIZE()
4§ <ecoa.event, sent_by_providers ~ START()

@ «ecoa.event, sent_by_providers ~ STOP(

3 «ecoa.event, sent_by_providers ~ SHUTDOWN(Q

@ erequestReceiveds + take(inwhich:int32, inwho: int32, outtaken: booleant) # <ecoa.event, sent by_providers ~ trigger()
@ «requestReceiveds + surrender(inwhich: int32, in who: int32)
A i
] '
«provides» erefererfcess !
0 E £COA:Triggerimplementation
[<ecoa.components [-ecoa.component ©) + relativePriority: int32 [1]
Table E Philosopher & + period: int32 [1]
2 -1d:in32(1] | Ph ker, | & eventSents + Tick: ECOA:ContainerOperation [1]
® nte + trigger)
B3 Table £ Philosopher
«ecoa.moduleTypes
«ecoa.moduleTypes E Philosopher. modMain_t
E Table modMain_t L -Id:int32 [1)
& «dataReads + ready: booleans [1]
@ «requestReceived» + take(in which: |nt31., inwho: mﬁ?, out taken: booleans) W <eventReceiveds ~ Tick)
& erequestReceiveds + surrender(in which: int32, in who: int32) @ erequestReceiveds + take(inwhich: int32, inwho:int32, outtaken: boolean8)
@ erequestReceiveds + sumender(in which: int32, in who: int32)
1 A
__________ i T
i T
! + Table_modMain Instanc + Philosopher_hodMain_Instance 0
| |
«ecoamodulelmplementations «ecoamodulelmplementations
Table_modMain_Im E Philosopher_modMain_Im
2 - language: String (1] €2 -1d: int32 (1]
2 - language: String [1]
@~ INTIALIZE_received()
@ ~ START_received() @ -~ INTIALIZE _received()
~ STOP_received() @ ~ START_received()
4 ~ SHUTDOWN_ received() @ ~ STOP_received()
@ +take_request received(inwhich: int32, inwho: int32, out taken: boolean) @ ~ SHUTDOWN_received()
@ +surrender_request_received(in which: int32, in who: int32) & ~ Tick_received()

The Table ASC
The Table ASC is declared in XML as follows (file TablLe. impL.xmL):

<componentImplementation xmlns=http://www.ecoa.technology/implementation-2.0

componentDefinition="Table">
<use library="ECOA" />
<l---->
<moduleType name="Table_modMain_t" hasUserContext="true"
hasWarmStartContext="false">
<operations>
<requestReceived name="take">
<input name="which" type="int32" />
<input name="who" type="int32"/>
<output name="taken" type="boolean8"/>
</requestReceived>
<requestReceived name="surrender">
<input name="which" type="int32" />
<input name="who" type="int32"/>
</requestReceived>
</operations>
</moduleType>
<l---->

<moduleImplementation name="Table_modMain_Im" moduleType="Table_modMain_t"

language="C" />

<l---->

<moduleInstance name="Table_modMain_Instance"
implementationName="Table_modMain_Im" relativePriority="1">

</moduleInstance>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes

Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the co|
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems

pyright is owned
Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

7

ECOA Examples: Dining Philosophers INSPIRED WORK
<l---->
<requestLink>
<clients>
<service instanceName="svc_Chopsticks" operationName="take"/>
</clients>
<server>

<moduleInstance instanceName="Table_modMain_Instance"
operationName="take"/>
</server>
</requestLink>
<l---->
<requestLink>
<clients>
<service instanceName="svc_Chopsticks" operationName="surrender"/>
</clients>
<server>
<moduleInstance instanceName="Table_modMain_Instance"
operationName="surrender"/>
</server>
</requestLink>
/componentImplementation>

That is, a Module Type (Table_modMain_t) is declared which has two requestReceived operations,
“take” and “surrender”, inherited from the svc_Chopsticks ECOA Service (depicted by the UML
generalization association). This Module Type is implemented by a concrete Module
Implementation Table _modMain_Im (depicted in the UML expanded in the form of the code class
produced by the code generation process), which in turn is instantiated at runtime as the Module
Instance Table_modMain_Instance.

The <requestLink> XML segments logically associate the specific concrete operations of the
runtime Module Instance with the abstract Service operations.

A single functional code unit will be produced by the code generation process, implementing in code
the concrete Table _modMain_Im class, and named “Table _modMain_Im.c"” (assuming the Module
Implementation declaration has set the Language property to “C”).

The Philosopher ASC
The Philosopher ASC is declared in XML as follows (file Philosopher. impl.xml):

<componentImplementation xmlns="http://www.ecoa.technology/implementation-
2.0"componentDefinition="Philosopher">
<use library="ECOA" />
<moduleType name="Philosopher_modMain_t" hasUserContext="true"
hasWarmStartContext="false">
<properties>
<property name="Id" type="uint32"/>
</properties>
<operations>
<eventReceived name="Tick" />
<requestSent name="take" isSynchronous="true" timeout="-1.0">
<input name="which" type="int32" />
<input name="who" type="int32"/>
<output name="taken" type="boolean8"/>
</requestSent>

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

8

BAE SYSTEMS

INSPIRED WORK ECOA Examples: Dining Philosophers

<requestSent name="surrender" isSynchronous="true"
timeout="-1.0">
<input name="which" type="int32" />
<input name="who" type="int32"/>
</requestSent>
</operations>
</moduleType>
<l---->
<moduleImplementation name="Philosopher_modMain_Im"
moduleType="Philosopher_modMain_t"
language="C" />
<l---->
<moduleInstance name="Philosopher_modMain_Instance"
implementationName="Philosopher_modMain_Im"
relativePriority="1">

<propertyValues>
<propertyValue name="Id">$Id</propertyValue>
</propertyValues>
</moduleInstance>
<l-- -->
<triggerInstance name="Philosopher Ticker" relativePriority="2"/>
<l-- -->
<requestLink>
<clients>

<moduleInstance instanceName="Philosopher_modMain_Instance"
operationName="take"/>
</clients>
<server>
<reference instanceName="svc_Chopsticks" operationName="take"/>
</server>
</requestLink>
<requestLink>
<clients>
<moduleInstance instanceName="Philosopher_modMain_Instance"
operationName="surrender"/>
</clients>
<server>
<reference instanceName="svc_Chopsticks" operationName="surrender"/>
</server>
</requestLink>
<eventLink>
<senders>
<trigger instanceName="Philosopher_Ticker" period="0.05" />
</senders>
<receivers>
<moduleInstance instanceName="Philosopher_modMain_Instance"
operationName="TicR"/>
</receivers>
</eventLink>
</componentImplementation>

That is, a Module Type (Philosopher _modMain_t) is declared which has two requestSent
operations, “take” and “surrender”, inherited from the svc_Chopsticks ECOA Service (depicted
by the UML generalization association), and an eventReceived operation named “Tick”. This
Module Type is implemented by a concrete Module Implementation Philosopher _modMain_ Im
(depicted in the UML expanded in the form of the code class produced by the code generation

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

9

ECOA Examples: Dining Philosophers INSPIRED WORK

process), which in turn is instantiated at runtime as the Module Instance
Philosopher_modMain_Instance.

The Philosopher Ticker Trigger Instance is introduced because a periodic iterative polling
behaviour is required to implement the philosopher implementation state machine (of which more
later). Once every period (0.05 seconds as set in the <eventLink> XML?) the Trigger will fire and
the Module Operation Tick will be invoked.

The Service Link (<requestLink> and <eventLink>) XML segments logically associate the specific
concrete operations of the runtime Module Instance with the abstract Service operations, or in the
case of the “Tick” operation, associates the concrete Module Operation to the Trigger Instance
operation.

A single functional code unit will be produced by the code generation process, implementing in code
the concrete Philosopher _modMain Im class, and named “Philosopher _modMain Im.c”
(assuming the Module Implementation declaration has set the Language property to “C”).

ECOA Deployment Definition

The ECOA “Dining Philosophers” (Restaurant) Assembly is deployed (that is, the declared Module
and Trigger Instances are allocated to ECOA Protection Domains, which are themselves allocated to
computing nodes) by the following XML (file Restaurant. deployment. xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="Restaurant"” logicalSystem="hostbased">
<protectionDomain name="Restaurant">

<executeOn computingNode="cpu" computingPlatform="host"/>

<deployedModuleInstance componentName="Table"
moduleInstanceName="Table_modMain_Instance"
modulePriority="50"/>

<l---->

<deployedModuleInstance componentName="P1"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

<deployedTriggerInstance componentName="P1"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

<l---->

<deployedModuleInstance componentName="pP2"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

<deployedTriggerInstance componentName="p2"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

<l---->

> The UML does not explicitly depict Service Links. The period attribute is therefore depicted as a UML
property of the «ecoa. triggerInstance» UML interface class.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

10

BAE SYSTEMS

INSPIRED WORK ECOA Examples: Dining Philosophers

<deployedModuleInstance componentName="P3"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

<deployedTriggerInstance componentName="P3"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

<l---->

<deployedModuleInstance componentName="P4"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

<deployedTriggerInstance componentName="P4"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

<l---->

<deployedModuleInstance componentName="P5"
moduleInstanceName="Philosopher_modMain_Instance"
modulePriority="50"/>

<deployedTriggerInstance componentName="P5"
triggerInstanceName="Philosopher_Ticker"
triggerPriority="51"/>

</protectionDomain>
<platformConfiguration faultHandlerNotificationMaxNumber ="8"
computingPlatform="host" />
</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Restaurant) executing on ECOA
Computing Node cpu, in ECOA Computing Platform host (as represented as a UML Deployment
Diagram in Figure 5).

Figure 5 ECOA “Dining Philosophers” (Restaurant) Assembly Deployment

«ecoa.computingPlatforms
host

«ecoa.computingNode»
cpu

A

«execute on»
'
'

«executionEnvironment»
«ecoa.protectionDomain»
Restaurant

«deployed to» @

T | T 1 |
L n L L L

«artifacts
«ecoa.modulelnstance»
Table_modMain_Instance

«artifacts «artifacts «artifacts «artifact» «artifacts

ecoa. e ecoa. ecoa. ec

ecoa.
PLPhilosopher_modMain_Instance| [P2.Philosopher_modMain_Instance| [P3.Philosopher_modMain_Instance| |P4.Philosopher_modMain_Instance| [P5.Philosopher_modMain_Instance|

1
«artifacts «artifacts «artifacts «artifacts «artifacts
i ecoa.tri «ecoa.tri e ecoa.tri «ecoatriggerinstances»

e en en e
P1Philosopher_Ticker P2.Philosopher_Ticker P3.Philosopher Ticker P4.Philosopher_Ticker P5.Philosopher Ticker

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

11

ECOA Examples: Dining Philosophers INSPIRED WORK

Service Availability Considerations?

Since the Table ASC provides an ECOA Service (svc_Chopsticks) it can be useful that the Service be
declared (at runtime) as “available”. Clients of the Service can then check and take alternate action
if the Service is not currently being provided. In the present simple example, availability of the
svc_Chopsticks Service will be indicated using the ready ECOA Versioned Data item. ready will be
set true (the Service is “available”) when the Table ASC’'s Module (Module Implementation
Table_modMain_Im) receives a START Event Operation. No error conditions are defined in this
example, so once set the svc Chopsticks Service will always be “available” and the ready
Versioned Data item will always be true.

Implementation

In the implementation, philosophers are numerically identified “1” to “5”. Chopsticks are
numerically identified “0” to “4” — the modulus-to-base-5 of which is the partial ordering required
for the Resource Hierarchy Solution, i.e.:

llo” < llln < ”2” < ll3ll < ll4ll < Moll

The Table ASC

The Table ASC provides the svc_Chopsticks Service using a trivial chopstick allocation algorithm:

1f the requestedChopstick is free
allocate requestedChopstick to requestingPhilospher
return taken Boolean set true

otherwise
return taken Boolean set false

There is no attempt to police whether a requestingPhilosopher “may” or “may not” request a
particular chopstick. An error is raised if a philosopher tries to surrender a chopstick that is not
allocated to him, including a chopstick that is already free.

All chopsticks are initially free, initialized by the INITIALIZE operation — implemented by the(C)

code function Table modMain_Im _INITIALIZE received in the code unit
Table_modMain_Im.c:

void Table_modMain_Im__INITIALIZE__ received(
Table_modMain_Im__context* context)

{
int i;
for(i =0; i < 5; i++){
context->user.Stick[i] = FREE;
}
}

® Service Availability was a concept and intrinsic functionality included in the ECOA up to issue 5 of the
Architecture Specification. It allowed ECOA Service providers to signal to clients when the provider was active
and able to accept Service Operation requests.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

12

INSPIRED WORK ECOA Examples: Dining Philosophers

On invocation of the START operation, the TablLe ASC will set the ready Versioned Data item (Service
Availability) for the svc Chopsticks ECOA Service, and announce its presence. That START
operation is implemented by the (C) code function Table modMain_Im START _received in the
code unit Table _modMain_Im.c:

void Table_modMain_Im__START__received(
Table_modMain_Im__context* context)

{

ECOA__log msg;

ECOA__return_status erc;

//

msg.current_size = sprintf(msg.data,

"\n\tThe Table is laid, the chopsticks are available...\n");

Table_modMain_Im_container__log info(context, msg);

//

Table_modMain_Im_container__ready get write_access(context, &rdyHndl);

*(rdyHndl.data) = ECOA__TRUE;

Table_modMain_Im container__ready__publish_write_access(context, &rdyHndl);
}

The “take” Service Operation is handled by the code function Table modMain Im _ -
take _request _received. The function checks if the requested chopstick (which) is free, and if so
allocates it to the requesting philosopher (who). The taken output parameter is set true (not zero)
or false (zero) respectively. The code function completes the request-response transaction by
invoking the Table _modMain _Im container_ _take _response_send APl function:

void Table_modMain_Im__take__request_received(
Table_modMain_Im__context* context,
const ECOA__uint32 ID,
const ECOA__int32 which,
const ECOA__int32 who)

{
ECOA__boolean8 taken = 0;
/!
if(context->user.Stick[which] == FREE){
taken = ECOA__TRUE;
context->user.Stick[which] = who;
}else{
taken = ECOA__ FALSE;
}
Table_modMain_Im_container__take__response_send(context, ID, taken);
}

The “surrender” Service Operation is handled by the code function Table modMain Im -
surrender _request_received. The function checks if the nominated chopstick (which) is
allocated to the philosopher (who). If it is, then the chopstick becomes free. Otherwise an error is
signalled.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

13

ECOA Examples: Dining Philosophers INSPIRED WORK

void Table_modMain_Im__surrender__request_received(Table_modMain_Im__context*
context,
const ECOA__uint32 ID,
const ECOA__int32 which,
const ECOA__int32 who)

{
if(context->user.Stick[which] != who){
errno = EPERM; perror("surrender");
fprintf(stderr,
"%d is trying to surrender chopstick %d held by %d...\n",
who, which, context->user.Stick[which]);
exit(4);
}else{
context->user.Stick[which] = FREE;
}
Table_modMain_Im_container__surrender__response_send(context, ID);
}

The request-response transaction is completed by the code function by invoking the
Table_modMain Im container _surrender _response send APl function. Note that the
request-response transaction must be completed even though, in this case, there is no response
data.

The Philosopher ASC

The implementation behaviour State Machine of the Philosopher ASC, in order to meet the
Resource Hierarchy Solution, is depicted in Figure 6.

Figure 6 ECOA “Dining Philosophers” Implementation State Machine

Philosopher

UNDEFINED
" INITIALIZE START/takeChopsticks

THINKING

GETTINGSTICKS

takeChppsticks

NeedBothSticks
doneThinking/takeChopsticks eedBothste

takel gftStick

HaveleftStick

takeRightStick

[not svc_chopsticks.rpady]

HaveRightStick

doneEating/surrendeg(LeftStick); surrender(RightStick) takeL effStick
akel effStic

HaveBothSticks

)

@ DeepHistoryl \ y,

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

14

INSPIRED WORK ECOA Examples: Dining Philosophers

On initialization (receipt of the ECOA Module Lifecycle INITIALIZE operation) the philosopher’s
state is “UNDEFINED”. When the ECOA Module Lifecycle START operation is received, the
philosopher’s state is set to “GETTINGSTICKS”. From there on, the state machine is free-running,
PROVIDED that the ready Versioned Data item is true (i.e. that the svc_chopsticks Service is
available):

e wheninthe "GETTINGSTICKS” state, the LeftStick and RightStick are taken;

e the philosopher then enters the "EATING” state;

e when the philosopher has finished eating” the chopsticks are surrendered;

e the philosopher then enters the "THINKING” state;

e when the philosopher has finished thinking®, he enters the ”"GETTINGSTICKS” state again.

The INITIALIZE Lifecycle operation is implemented by the code function
Philosopher _modMain Im _INITIALIZE received of the (C) code unit Philosopher -
modMain_Im.c:, and simply initializes philosopher the state variables:

void Philosopher_modMain_Im__INITIALIZE__ received
(Philosopher_modMain_Im__context* context)
{

context->user.PhiloState = philosopher__State_ UNDEFINED;
context->user.EatUntil =
context->user.ThinkUntil =
(ECOA__hr_time){ o, @ };
context->user.HavelLeftStick =
context->user.HaveRightStick =
ECOA__ FALSE;

}

On invocation of the START operation, the Philospher ASC will move to (set itself as being “in”) the
“GETTINGSTICKS" state, find out (by reading the Id ECOA Property value) its identity, and announce
that it is ready to start eating and thinking. That START operation is implemented by the code
function Philosopher _modMain Im _START _received:

void Philosopher_modMain_Im__START__received
(Philosopher_modMain_Im__context* context)

{
ECOA__uint32 IAm;
ECOA__log msg;
//
context->user.PhiloState = philosopher__State GETTINGSTICKS;
//
Philosopher_modMain_Im_container__get_Id_value(context, &IAm);
msg.current_size = sprintf(msg.data,
"\n\tPhilosopher %d is ready...\n", IAm);
Philosopher_modMain_Im_container__log_info(context, msg);
}

* In this implementation the philosopher has finished eating after 7 seconds — he is VERY hungry!
> In this implementation the philosopher has finished thinking after just 11 seconds.

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

15

ECOA Examples: Dining Philosophers INSPIRED WORK

We just now program the remaining (free-running) part of the philosopher state machine. In order
to preserve ECOA Inversion of Control principals, the state machine is implemented by sampling the
state periodically, triggered by the Philosopher Ticker ECOA Trigger Instance, and implemented
in the code function Philosopher _modMain _Im__Tick__received (as on the pages following):

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

16

ECOA Examples: Dining Philosophers

INSPIRED WORK

//
{
fudniau
f(8sw “3x33uU0d)OJuT 80T JIUTEIUOD WI UuTewpow JaydosoTTyd
f(wyr €,°--9TgeTlTeAe jou syI2T3sdoy) Ing DTl p% JoydosoTtyd, ‘eirep-3sw)Jjutuads = IZTS JudJJnd - 3Isw

9TqeTTeAe aJe sydT1isdoydy a3yl 113, SutyiAue Sutop ut utod oN //
}(pre1atqeri)3T
f(31gerTeAey ‘s)dT3sdoyd dAS PT 9d2UdJ3JFdJ JIUTRIUOD WI UuTepwpow JaydosoTTyd
€1x93uU0d)AITTIQEIIBAER 9DTAJDS 393 JIUTEIUOD WI uTewpow JaydosoTTyd
{
fudaniad
f(8sw 3x33U0d>)OJUT FOT JSUTEIUOD WI uTewpow JaydosoTTyd

f(wyr ¢, °--9TgerTeAe jou sydT3sdoyd Ing YOTL p% JOYdosoTTyd, ‘ezep-8sw)JJutdds = 9ZTS JuaJdnd-Fsuw

91gqelTeAe ade sydrisdoyd syl 113, SutyirAue Sutop ut utod oN //
}(preisrqeLj)3t
¢(TPuHApJ® €31X33U0D)SS3IDE pedJd 9SEdTaJ Apesad JauTejuod wl uTeppow JaydosoTTyd
f(e3yep TpuHApJ) « = prelarqel
¢(TpuHApJ® f31Xx33U0D>)Ssodde pead 3198 Apead dJsauTeluUOd W uTeppow JaydosoTTyd
//
f(8sw “3x93u0d>)O4UT 80T JSUTEIUOD WI UTeppow JaydosoTTyd

£((@3e350TTYd Jdsn<

-31X33U0d)anTeA 93els dJaydosortyd ‘wyl €,s% = 931e1S MITL p% JoydosoTTyd, ‘eirep-3sw)Fjutuads = IZTS JudJJnd - Isw
f(MONSWTIY® €3IXD3UO0D)BWTI} [EIOT SATIe[dd 393 JauTeluod Wl uTewpow JaydosoTTyd

//

{0v" "1} st styy sdojadayy {g°°T} ST Wyl //fS % WYL = >ITISIY3TY
{v* '@} st sTyy aJojadayy {5 "T} ST WYI //{T - WYI = >DTISHFd]
//

f(wyIg ‘3x23uU0d)anTeA pI 338 JSUTEIUOD WI UTeppow JaydosoTTyd

{IPUHApJ @Tpuey Apead JauTeiluod wl uteppow JaydosoTTyd
OOTISIYSTY DTISIIOT TE€IUT V03

{pTelaTgqel ‘usdel guesTooq V0D

fMONSWTIY} SWIY JYy VO0D3

HeNE) Sni1eas udnisad vod3

Ssu 801 vod3

‘wyI TEIUIN V03

(3X393U0D ,3X23U0d™ WI UTeppow JaydoSOTTIYd)pPaATadad ITL Wl uteppow J3ydosOoTTYyd PIOA

/

1/

/

}

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

17

INSPIRED WORK

ECOA Examples: Dining Philosophers

¢(8sw ‘3x323uU0d)OJuT 80T JIUTRIUOD WI uTewpow JaydosoTTyd
£(2ud ‘wyI PTISIYSTY
“.P% Urtm pattes (p%<=Aq ‘p%<=>2T1SIY3TY)3issanbau adex, ‘eizep-3sw)Jjutuads = IZTS JudJJnd - 3Isw
}(M0 shieisTudniad” v0d3 =j
((uadel® ‘wyl “OTISIYSTY “3Ixd3U0D)DUAS 3sanbau™ 9)e3 JauTelUOD” WI UTepwpow JaydoSOTTYd = DdJd))4T
}(3PT3S3YSTYSABH UBSNK-1X33U0D|)JT
3(PTISIFDT < MITISIUSTY)IT

{
. {
fIN¥l” V0D3 = 3DTISIFOTIABH JSSN<-IX3IU0D
}asta{
***)DT] 3IX3dU 3yl uo o8 Jayioue aaey TT,3M // fudniad
}(uaelLj V$M
f(8sw “3x33uU0d)OJuT 80T JIUTRIUOD WI uTewpow JaydosoTTyd
£(2d9 ‘wyI OTISHAT
“.P% Urtm paTted (p%<=Aq ‘p%<=>2T1S3437)iIsonbad odjel, ‘ejep-8sw)43utdds = 9zTS JuaJddnd-Fsw
}(M0 snieis udniad” v0d3
=i ((udjely ‘wyl “)OT3ISIFOT “3IX93U0D)DUAS 3sanbad” el JBUTEIUOD WI UTewpow JaydosoTTyd = dJdd))JT
}(J2TIS3I4OT9ABH UBSN<-1X3IU0D|) 4T

{
{

{
fINYL V0D3 = AITISIYSTYIABH USSN< -3XIIU0D
}asta{
***)DT] 3IX3dU 3yl uo o8 Jayioue aaey TT1,3M // fudniad
}(uaelLj V$M
f(8sw ‘3x33uU0d)OJuT 80T JIUTRIUOD WI uTewpow JaydosoTTyd
£(209 ‘wyI PTISIYSTY
“.P% Urtm pattes (p%<=Aq ‘p%<=>2T1SIY3TY)3issanbau ayex, ‘eizep-3sw)Jjutuads = IZTS JudJJnd - 3Isw
}(M0 shieisTudniad” v0DI =i
((uadel® ‘wyl “OTISIYSTY “3Ixd3U0D)DUAS 3sanbau™ 9)e3 JauTeUOD” WI UTepwpow JaydoSOTTYd = JdJd))4T
}(3PT3S3YSTYSABH UBSNK-1X33U0D|)JT
3(9TISIFOT > MITISIUSTY)IT
[xx/
***1SJT4 uddel sAemTe ST YDT3sdoOyd padaqunu JamoT ayl //
3k 3k 3k 3k 3k skosk sk ko3 sk sk sk sk sk >k sk sk sk skook sk 3k skoskosk skook sk skosk sk kook skk skosk sk kk koskk ok k \\
% ° ' UOTINTOS AYdJBJSTH 92J4nosay s,edisLtd « //

%M*ﬁMM********************************** \\
}(SYDILSONILLID 91e1S JdydosoTTyd == 931e3SOTTYd ' JISN<-IXSIU0D)JT

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.
18

INSPIRED WORK ECOA Examples: Dining Philosophers

N~
(V]
o kg
+ 2
1o o
x w
(0] .a a
c i =
=2 T}
[J] o o
< — ca x
+ — - 35
.n]
< < 0 o —~ V]I
o O = 0 9 v
O H Z o]
o w -~ o H o
0o < o = v +
1] w a <t n
< | 4+ w o~
<) ~ U © | .a
< = 2w Y~ ~c
+ o © oA]
o + o T p s
< %] wn = + I a
© + [v 5 H O
< =2 + wn
<% Q0 [ST © ~ 0
> o O £ Cow [~
© 24 e C oM v . c o
< g ~ Q -S_L — c
] o . .
— © E 0~ o w . o
— T < O w s c o
- . H— T O A -
() & << — o P o
= GJ ~Cc v e R © +
] = Qs < X U ©
~ > c o Q.q;E]
~ /I\ ~ I ”-E’o T W0V
. <
gt B o W Il o 2,9.
c bad c o w0 -
c & [J] = @© — OJ — - c
CIJ= + 2 P oA 4—’-"_' c o
X‘P < © W C =z . o~ .
s ¥ e} o 0O C + 0o L 4 o
S =2 PAR= v
- P = S w S 0
b o< T E~ ® 3>
T o i g~ =7
:'..-I- 2. T o N
v o N~ c Y- X
T un S a ¢ P
¥ > > v e 3 c o
= A A wop - C
Lo LW OES
N~
- Y X X =R
+ U O bR o w ~
[S] x 0 ~
- Cc Cc [N —
€ O O ~ ¥ 4 [
~ QU v \S-,—I -~)
(V]
N~
Y=
~ A ~

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

19

INSPIRED WORK

ECOA Examples: Dining Philosophers

fudniau
¢(8sw “3x33uU0d)OJuT 80T JIUTEIUOD WI uTewpow JaydosoTTyd
¢((93e31SOTTYd" JdSN<-IXdIUO0D
)anTen a3e3ls Jaydosortyd ‘wyr €, u\°°°sy% 923e3s Te39TTT sey p% JaydosorTydi\u\, ‘elep-8sw)Jjutdds = 9zTS JuaJdJnd-Fsuw
}(ONIYNIHL 23e3s uJaydosoTtyd < 93831SOTTYd"JISN<-3Xd3U0D

|| @aNId3ann @3e1s uJsydosoTtyd => 93183SOTTYd " JISNK-3XIIU0D)3T

//

fSADILSONILLID 93e3S JaydosoTTyd = 93e3SOTTYd " JdSN-IXIIUOD
fC wyr €,u\"SuDUTY} PaYSTUT4 p%,)FIuTud

{
**r8ur3e3tsod TTT3S // ‘udniadd
}C 0 > (TTIUMUTYL J3SN<-1X33U0D ‘MONSWTI)dwdawTl)4T

{

}(ONIYNIHL 93e3s uJaydosoTryd == 93181SOTTYd JISN<-3XIIU0D)3T

//

£(POTUSUTYL ‘MONSWTI)PPYSWTL = TTIUMAUTYL' JSSN<-IXSIU0D
fONIMNIHL 93e1S” Jdydosortyd = 931e3S0TTYd " JISN<-3Xd3U0d
fC wyr ‘,u\‘Sumjutyy utdaq py,)FIutud
€357v4” V0D3I = MITISIYSTYIABH JISN<-1X3IUOD = XDTISIFDTIABH" JISN<-1XIIUOD
{
¢(8sw “3x33u0d>)3utudem 30T JBUTEIUOD WI UTewpow JaydosoTTyd
£(PTISIYSTY
‘WyI €,U\"°°p% JOT3ISdOyd Jdpuaddns 031 paTTed py JaydosoTTydi\u\, ‘eiep:8sw)Fjutdads = 3ZTS JudJJnd-Zsu
}(M0 snieis uuniad” V03
=i ((wyI “OT3ISIYSTY “3IXx23U0d)DUAS 3sSanbad” J3pusJUNS JIUTEIUOD WI UTeppow JaydoSOTTYd = DdJd))4T
{
¢(8sw “3x33u0d>)3utudem 30T JDUTEIUOD WI UTewpow JaydosoTTyd
£(31T3IS3491
‘WyI €,U\"°°p% JOT3ISdOyd Jdpuaddns 031 paTTed py JaydosoTTtydi\u\, ‘eiep:8sw)Fjutdads = 3ZTS JudJJnd-Zsu
}(M0 snieis udniad” V03
=i ((wyl “)YOT3S3I497 “3IX23U0D)DUAS 3s3anbad” J3dpusJdUNS JIUTRIUOD WI UTepwpow JaydoSOTTYd = dJdD))4T

{

}(ONIYIANIYYNS 93e1S JaydosoTTyd == 93e3SOTTYd JISN<-IXSIU0D)JT

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General

Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic

The information set out in this

document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including

no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems.
20

BAE SYSTEMS

INSPIRED WORK

The code function Philosopher _modMain Im Tick__received requires two constant values that
are used to determine when the philosopher has had enough eating or thinking.

7, 0 };
1, 0 };

3

static const ECOA__hr_time EatPeriod

{
static const ECOA__hr_time ThinkPeriod = { 1

)

In each case, the function records the time that the state is entered (“EATING” or “THINKING”) and
each time it is triggered it checks the current time against the recorded time. Only when the period
set by the constant has passed will the state machine progress (either to the “SURRENDERING” or
“GETTINGSTICKS” states of Figure 6).

Program Output

When the ECOA “Dining Philosophers” (Restaurant) Assembly is built and run, an output similar to
Figure 7 should be achieved. The Philosopher ASC start-up messages are output to the system
console, prefixed by miscellaneous logging data (time stamp, logging type, etc.) (one of which is
shown from “Philosopher 5” (i.e. ASC P5 of the Assembly)). Each philosopher then outputs state
changes, reporting his Id number and whether he is beginning or finishing eating or thinking. These
outputs are interleaved with any other ECOA Platform logging messages (such as the 10 second
periodic “alive” messages in the example shown):

Figure 7 ECOA “Dining Philosophers” (Restaurant) Assembly in Execution

\Projects\ECOAYSamples'Samples'Philosophersh Steps ouktp

1586486721 seconds. 531613480 nanoseconds:BA:INFO:cpu:Restaurant:
Philozopher 5 iz ready...

$4_Restaurant™Levell 1586486721 532613408:alive sent PD status
1 hegin eating.

3 begin eating.

$4_Restaurant™Levell 1586486726 5346134PA:alive zent PD status
1 finizhed eating.

1 begin thinking.

3 finished eating.

3 begin thinking.

L bhegin eating.

2 begin eating.

$4_Restaurant™Levell. 1586486731 5356134PB:alive status
L finished eating.

% begin thinking.

2 finizhed eating.

2 begin thinking.

4 hegin eating.

%4 Restaurant™Levell 1586486736 536613488:alive

1 finished thinking.

1 bhegin eating.

3 finished thinking.

54 Restaurant™Levell 1586486741 5376134PB:alive

4 finizhed eatin

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

21

ECOA Examples: Dining Philosophers INSPIRED WORK
References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification

(Parts 1to 11)
“ECOA” is a registered trade mark.

2 Dining philosophers problem
Dijkstra, Hoare
https://en.wikipedia.org/wiki/Dining philosophers problem

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systémes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Electronic
Systems, and is the Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. The information set out in this
document is provided solely on an ‘as is’ basis and the co-developers of this software make no warranties expressed or implied, including
no warranties as to completeness, accuracy or fitness for purpose, with respect to any of the information.

22

