
 
 

 

European Component Oriented Architecture (ECOA®) 
Collaboration Programme: 

Guidance Document: 
Data Servers 

 
 

 

 

 

Date: June 2016 
Revised: October 2017 

 
Prepared by 

BAE Systems (Operations) Limited 
Electronic Systems (UK) 

 
 
 
 
 
 
 
 

This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales 
Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and 
Leonardo MW Ltd and the copyright is owned by BAE Systems (Operations) Limited, Dassault Aviation, 
Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom 
Limited and Leonardo MW Ltd. The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties 
as to completeness, accuracy or fitness for purpose, with respect to any of the information. 
 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  i 

 

Contents 

1 Scope 1 

2 Introduction 1 

3 Abbreviations 2 

4 Definitions 2 

5 References 3 

6 Data Server Scenarios 4 

6.1 Scenario 1: Mission Planning 5 

6.2 Scenario 2: Sensor Data Fusion 7 

6.3 Scenario 3: Mission Management System 12 

6.4 Scenario 4: Demonstrating Large Data Sets 17 

7 Design Considerations 29 

7.1 Pushmi Pullyu 29 

7.2 Operation Choice 31 

7.3 Data Encoding 32 

8 ECOA Data Server Designs 34 

8.1 Query-based Data Servers 34 

8.2 Rapid-Access (Indexed) Data Servers 44 

8.3 File-based Data Servers 53 

8.4 Web Servers 61 

9 ECOA Data Server Demonstration 69 

9.1 The Demonstration Mission System Oriented ASCs 69 

9.2 Build and Execution 71 

9.3 Warranty 71 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  ii 

Figures 

Figure 1  Data Server Scenarios 4 

Figure 2  Scenario 1: Mission Planning 5 

Figure 3  JDL Data Fusion Model 8 

Figure 4  JDL Data Fusion Management 9 

Figure 5  Combat UAV Mission Data Management Architecture 13 

Figure 6  Reconnaissance UAV Mission Data Management Architecture 14 

Figure 7  Distributed Data Management (DDM) Architecture 15 

Figure 8  Scenario 4: Demonstrating Large Data Sets – Demonstration Scenarios 18 

Figure 9  Scenario 4.1: HUMS Data Processing 19 

Figure 10  Scenario 4.2: HUMS Data Recording 20 

Figure 11  Scenario 4.3: Weather Data 21 

Figure 12  Scenario 4.4: Vehicle State 22 

Figure 13  Digital Map Tiling 24 

Figure 14  Scenario 4.5: Digital Map Tiles 25 

Figure 15  Scenario 4.6: Target Data 26 

Figure 16  Scenario 4.7: Tactical Data 27 

Figure 17  Push Model Behaviour 29 

Figure 18  Pull Model Behaviour 30 

Figure 19  ECOA Versioned Data - Push/Pull Implementations 32 

Figure 20  Example Base64 Encoded Value 32 

Figure 21  Typical SQL Client-Data Server Configuration 35 

Figure 22  ECOA SQL Client-Data Server Configuration 36 

Figure 23  ECOA SQL Service Definition (as a UML Interface Class) 37 

Figure 24  sqlServer ASC Design (as UML Class Diagram) 41 

Figure 25  Typical Key-Value Data Server Configuration 44 

Figure 26  ECOA Key-Value Data Server Configuration 45 

Figure 27  ECOA Key-Value Data Server Configuration (Multiple Hosts) 45 

Figure 28  ECOA Key-Value Service Definition (as a UML Interface Class) 46 

Figure 29  dbmServer ASC Design (as UML Class Diagram) 50 

Figure 30  Typical File-based Data Server Configuration 53 

Figure 31  ECOA File-based Data Server Configuration 54 

Figure 32  ECOA File-based Data Server Configuration (Multiple Hosts) 54 

Figure 33  ECOA File IO Service Definition (as a UML Interface Class) 55 

Figure 34  fileServer ASC Design (as UML Class Diagram) 58 

Figure 35  Typical Web Service Data Server Configuration 62 

Figure 36  ECOA-ized Web Service Data Server Configuration 63 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  iii 

Figure 37  ECOA (Weather) Web Server Access Service Definition (as a UML Interface Class) 64 

Figure 38  metServer ASC Design (as UML Class Diagram) 66 

Figure 39  ECOA Data Servers Demonstration Assembly 69 

 
 

Tables 

Table 1  Demonstrating Large Data Sets (Examples) 17 

 
 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  iv 

0 Executive Summary 

‘Data server’ is the phrase used to describe computer software and hardware (a database platform) that 
delivers database services.  Also called a ‘database server’ it may also perform tasks such as data 
analysis, storage, data manipulation, archiving, and other tasks using a client-server architecture. 

A ‘Data server’ is a stand-alone computer or application in a local area network that holds and manages the 
database. It implies that database management functions, such as locating the actual record being 
requested, are performed in the server computer/application. 

This document describes a number of ways how to interface an ECOA® software system to a data server.  
That is, how to create ECOA Application Software Components (ASCs) that provide ECOA Services that 
provide data server functionality. 

It is not in any way a “normative”, part of the ECOA, or even definitive.  The discussions here are purely 
examples of how ECOA ASC interfaces can be designed and implemented for the different data server 
types addressed. 

After describing example scenarios calling for use of data servers in an ECOA mission system context, 
example (basic) ECOA ASC interfaces are addressed for several types of data server. 

The document concludes with a description of an implemented software system able to demonstrate the 
concepts and example solutions discussed. 

 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  1 

1 Scope 

This document is intended to provide an overview of implementing data server mechanisms within an 
ECOA software system, particularly in respect of the client-server model, and to provide some guidance on 
the design issues and choices that may arise.  The document and its content are not intended to be 
normative nor in any way regulatory.  The designs and implementations presented are purely illustrational 
examples. 

Section 2 gives a brief introduction to the data server topic. 

Section 3 expands abbreviations used in this report. 

Section 4 provides definitions for the key terms used in this report. 

Section 5 lists key documents referenced by this report. 

Section 6 discusses a number of mission system scenarios requiring data servers where ECOA systems 
may be relevant.  These scenarios set the context in which the subject of data servers is then explored. 

Section 7 discusses a number of significant design considerations that must be addressed when designing 
and implementing data servers, particularly with the ECOA. 

Section 8 describes example designs for ECOA ASC interfaces to a number of data server types. 

Section 9 describes demonstration implementations of the described ASC designs. 

Section 10 records the Intellectual Property ownership of the material in this document. 

2 Introduction 

‘Data server’ is the phrase used to describe computer software and hardware (a database platform) that 
delivers database services.  Also called a ‘database server’ it may also perform tasks such as data 
analysis, storage, data manipulation, archiving, and other tasks using a client-server architecture 
(ref. [Howe]). 

A ‘Data server’ is a stand-alone computer or application in a local area network that holds and manages the 
database. It implies that database management functions, such as locating the actual record being 
requested, are performed in the server computer/application. 

It is not our purpose here to elaborate on the details of what a data server may or may not do.  There are 
plenty of sources for that.  Nor will we describe how to create or employ a data server.  All we are 
interested in here is how to interface an ECOA software system to a data server.  That is, how to create 
ECOA Application Software Components (ASCs) that provide ECOA Services that provide data server 
functionality. 

Nor is this document intended to be in any way “normative”, part of the ECOA, or even definitive or 
complete.  The discussions here are purely examples of how ECOA ASC interfaces can be designed and 
implemented for the different data server types addressed, in the hope that they might provide some useful 
guidance.  At best, we might hope that these examples might form the basis of fully designed ASCs for 
inclusion in the ECOA Vault. 

We will address ECOA ASC interfaces for a number of different types of data server, starting with a SQL-
driven data management system, then a Key-Value pair data server, a simple file access interface for 
flexible persistent data storage, and finally a web-service interface. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  2 

3 Abbreviations 

API Application Programming Interface 

(A)MMS (Advanced) Mission Management System 

ASAAC Allied Standards Avionics Architecture Council 

ASC Application Software Component 

COTS Commercial Off-The-Shelf 

DAS Defensive Aids System 

DGA Direction Générale de l’Armement 

Dstl Defence Science and Technology Laboratory 

ECOA European Component Oriented Architecture 

ELINT Electronically Obtained Intelligence 

EO/IR Electro-Optic / Infra-Red 

HUMINT Human (derived) Intelligence 

HUMS Health and Usage Monitoring (or Management) System 

IP Intellectual Property 

MOD Ministry of Defence 

OS Operating System 

PC Personal Computer 

POSIX Portable Operating System Interface 

QoS Quality of Service 

SAR Synthetic Aperture Radar 

SitRep Situation Report 

SOA Service-oriented Architecture 

UAV Unmanned Aerial vehicle 

UML Unified Modeling Language 

WASM Weapon Aiming and Stores Management 

XML eXtensible Markup Language 

XSD XML Schema Definition 

 

4 Definitions 

For the purpose of this document, the definitions given in the ECOA Architecture Specification (ref. [AS]) 
Part 2 and those given below apply. 

Term Definition 

(currently none)  

  

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  3 

5 References 

AS European Component Oriented Architecture (ECOA) Collaboration Programme: 
Architecture Specification 
(Parts 1 to 11)  
“ECOA” is a registered trade mark. 

Howe Dictionary.com, "database server," in The Free On-line Dictionary of Computing.  
Source location: Denis Howe. http://dictionary.reference.com/browse/database server. 

SQL Structured Query Language.  ISO/IEC 9075 

ODBC Open Database Connectivity.  SQL Access Group, 1992 

JDL Functional Description of the Data Fusion Process, 
technical report for the Office of Naval Technology Data Fusion Development Strategy 
O. Kessler, et. al. 
Naval Air Development Center, Nov. 1991 

DFUS Data Fuser for an Advanced Mission Management System (AMMS) 
FUTURE TECHNOLOGIES FOR COMBAT AIRCRAFT: 
AVIONICS TECHNOLOGIES: Integrated Modular Avionics 
Identify Characteristics of Applications to be Modelled  
BAE Systems & THALES Airborne Systems, 2001 

MIFS Mission Information-Flow Analysis and Computing Resource Allocation study for: 
System Concepts for Mission Management  
Smiths Industries Aerospace & Marconi Electronic Systems, 1999 

CODE The official ECOA
®
 website: 

http://www.ecoa.technology/ 

“ECOA” is a registered trade mark 

dbm dbm (the UNIX dbm Library) 
https://en.wikipedia.org/wiki/Dbm 

 GDBM (GNU dbm) 
http://www.gnu.org.ua/software/gdbm/ 

SOAP SOAP Version 1.2 
W2C

®
 Recommendation (Second Edition) 2007 

http://www.w3.org/TR/soap/ 

KLV Data Encoding Protocol Using Key-Length Value 
SMPTE 336M-2007 

BER Information technology – ASN.1 encoding rules: 
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and 
Distinguished Encoding Rules (DER) 
ITU-T X.690, 07/2002 

B64 The Base16, Base32, and Base64 Data Encodings. 
RFC 4648, 
IETF. October 2006. 

XML Extensible Markup Language (XML) 1.0 
W3C

®
 Recommendation 26 November 2008 

http://www.w3.org/TR/2008/REC-xml-20081126/ 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  4 

6 Data Server Scenarios 

A number of scenarios have been identified for Data Servers within an ECOA system context, three 
specifically applying to Mission Systems.  The intention here is not to fully describe each scenario and the 
data and processes therein, but rather to present them in overview as examples of where and why data 
server principles are likely to be invoked. 

The fourth scenario is one applicable to demonstrating some of the concepts likely to be required in any 
attempt to fulfil the first three. 

These scenarios are illustrated (in UML) and described below.  Each scenario is associated with one or 
more DataSources and/or DataClients, and also with one or more DataServers.  It is these DataServers, 
and the technology they require, that we seek to identify for each scenario. 

Figure 1  Data Server Scenarios 

 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  5 

6.1 Scenario 1: Mission Planning 

6.1.1 Description: 

The planning of complex multi-agency missions involves information and data garnered from and 
distributed by many independent providers and users.  Sources would include such agencies as weather 
bureaux, cartographic publications, geographic feature and culture surveys, aeronautical/navigational 
regulatory authorities, as well as tactical and battlespace information sources.  Many of these agencies may 
also accept revisions as a mission progresses, particularly for high rate-of-change information such as 
tactical and battlespace information, which may include local (to the mission) weather updates. 

The following description presents a hypothetical, highly simplified, view of the specifically Mission Planning 
information flow in such a system, highlighting where data server principles are likely to apply.  The 
scenario is presented, in overview, as a UML Activity Diagram (Figure 2). 

Figure 2  Scenario 1: Mission Planning 

 

From an initial Tasking Order, Planning Requests are issued by a “Mission Control” centre to a number of 
cooperating Platform (e.g. UAV, Refuelling, AWACS) Control centres (e.g. squadrons).  Mission Planners 
for each Platform set about planning the Mission for their Platform (type) exchanging and reconciling their 
plans with the other Mission Planners to formulate a coherent overall plan to attain the Task objectives.  

Detailed Mission Plans are then handed to Vehicle Control specialists who would extract specific Mission 
Routing and Goal information at the individual vehicle level. 

After the Mission, individual vehicle reports are flowed back through debriefings to Platform Control (e.g. 
squadron) level, and coordinated to “Mission Control” level, and ultimately to a Tasking level report. 

6.1.2 Pre-Conditions: 

A threat to own or friendly forces, or non-combatants, exists. 

6.1.3 Initiating Event: 

A Tasking Order is issued from Command HQ. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  6 

6.1.4 Primary Activities: 

i. “Mission Control” retrieves the Tasking Order. 
ii. “Mission Control” analyses the Tasking Order and identifies Platforms required to fulfil. 
iii. Initial (outline) Plans are proposed, and Planning requests issued. 
iv. Outline Plans are retrieved by per-Platform Mission Planners and expanded per the Platform (type). 
v. Detailed (expanded) Mission Plans are reviewed and reconciled with the cooperating per-Platform 

Mission Planners. 
vi. Once all detailed Mission Plans are reconciled, “Vehicle Control” specialists prepare vehicle-level 

Mission Routes for each vehicle. 
vii. Mission Routes are loaded to the vehicles. 
viii. The Mission is performed. 
ix. Vehicle Mission Reports are analysed at Vehicle Debrief, and composed into Mission report(s) for 

Mission Debrief. 
x. Task Review in turn composes a Tasking-level report across Platforms, as the response to the 

originating Tasking Order. 

6.1.5 Post-Conditions: 

Threat quelled, quashed, or crushed. 

6.1.6 Potential Data Servers: 

i. Command HQ: Tasking 
 Centralized; Remote; Very Secure; 
  Tasking Orders : filed by Command HQ; retrieved by “Mission Control” 
  Tasking Reports : filed by “Mission Control”; retrieved by Command HQ 

ii. “Mission Control” Information Management 
 Remote; Distributed; Secure server(s); Secure web-based access; 
  Outline Mission Plans 
  Detailed (draft, reviewed, reconciled) per-Platform Mission Plans 
  Mission Reports 

iii. (Squadron) Information Management 
 Local (to the squadron); (local) Network access; 
  per-Vehicle Mission Route extractions 
  Vehicle Mission Reports 

 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  7 

6.2 Scenario 2: Sensor Data Fusion 

6.2.1 Description: 

Sensor Data Fusion is a key part of any Advanced Mission management System (AMMS).  The following is 
a brief example of an AMMS Data Fusion architecture based on the JDL model (ref. [DFUS]). 

The Joint Directors of Laboratories (JDL) (ref. [JDL]) Data Fusion Group’s Data Fusion Model is an ordered, 
multi-layered, architecture of the data and processing to achieve data fusion.  It presents an approach for 
categorising data fusion related functions.  It is an industry standard that was developed between 1987 and 
1991.  The model was developed by the International Society for Information Fusion (ISIF) and Fusion 
Information Analysis Centre (FUSIAC-US Government) and has been used by a number of major 
organisations.  The JDL distinguishes fusion “levels”, providing a useful distinction among data fusion 
processes that relate to the refinement of “objects”, “situations”, “threats”, and “processes”: 

• Level 0 – Sub-object Data Assessment: estimation and prediction of signal object observable 
states on the basis of pixel/signal level data and characterisation. 

• Level 1 – Object Assessment: estimation and prediction of entry states on the basis of observation-
to-track association, continuous state estimation (e.g. kinematics) and discrete state estimation 
(e.g. target type and ID). 

• Level 2 – Situation Assessment: estimation and prediction of relations among entities, to include 
force structure and cross force relations, communications and perceptual influences, physical 
context, etc. 

• Level 3 – Impact Assessment: estimation and prediction of effects on situations of planned or 
estimated/predicted actions by the participants; to include interactions between action plans of 
multiple players (e.g. assessing susceptibilities and vulnerabilities to estimated/predicted threat 
actions given one’s own planned actions). 

• Level 4 – Process Refinement (an element of Fusion-Resource Management): adaptive data 
acquisition and processing to support mission objectives. 

Figure 3 shows only the Level 0 to 3 activities, representing a forward path of data fusion, from raw 
measurements and signals on the left, through front-end (Level 0) fusion to extract features of interest 
(targets, locations etc.) in a manner specific to the data source.  In some cases this leads to further Level 0 
fusion (e.g. imagery data fusing from multiple sources). 

Level 1 fusion is then applied, fusing in electronic intelligence received via the communications system (e.g. 
from AWACS, ISTAR etc.) and also information and observations directly from the aircrew. 

Level 2 fusion follows, applying the gained information to form a situational assessment, and then Level 3 
fusion to form an impact assessment. 

Figure 4 shows the Level 4 activities, whereby each data fusion node (of Figure 3) is closely coupled to a 
fusion-resource management node.  Command and control information is flowed in reverse-level-order (i.e. 
starting from the Level 3 node and propagating through to the Level 0 nodes).  This is either as mission 
mode information is applied, changing the fusion properties and priorities, or as each node determines 
requirements and priorities of itself and its supplying nodes, e.g. as a result of fault conditions occurring or 
to change sensor resolution or field-of-view.  Command and control of sensors is referred to the Sensor 
Manager function(s) of the AMMS. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  8 

Figure 3  JDL Data Fusion Model 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  9 

Figure 4  JDL Data Fusion Management 

 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  10 

6.2.2 Pre-Conditions: 

A battlespace exists, and the vehicle is part of it. 

6.2.3 Initiating Event: 

An obscured target is sought in a confused battlespace. 

6.2.4 Primary Activities: 

i. A Fusion Control request is sent down from Level 3 Resource Management Node. 
ii. At each lower level, the Resource Management Node determines whether it needs to direct 

resources at its level. 
iii. At Level 0, the EO/IR and Radar Resource Management Nodes send down Sensor Control 

requests to enable and aim their respective sensors. 
iv. EO/IR Sensors are deployed to image the target (area), etc. 
v. SAR is deployed to image the obscured target (area), etc. 
vi. Sensor data is analysed by the front-end EO/IR and SAR Data Fusion Nodes, which extract 

features, tracks, etc. which are fed up to the Imagery Data Fusion Node.  This brings together 
and fuses all relevant Sensor level data. 

vii. At Level 0, features and threat tracks from Sensors, confirmed by DAS, wide area Radar etc. 
sources, are assessed and promoted to Level 1. 

viii. At Levels 1 and 2 further analysis and confirmation is performed using the resources available 
at that level.  Threat and relevance data, and reaction decisions emerge. 

ix. At Level 3 fused data is committed/updated to the data server. 

6.2.5 Post-Conditions: 

A detailed, logical, picture of the target within the battlespace has emerged. 

6.2.6 Potential Data Servers: 

i. Central Real Time Database 
 Centralized; Real-time; Remote (from individual MMS functions); 
  Multi-aspect battlespace “picture” 
  Fused battlespace data 
  Confirmed battlespace reaction decisions 

ii. Level 1 to 3 Resource Management 
 Centralized; Real-time;  
  Additional source availability, capabilities, and modes 

iii. Level 1 to 3 Data Fusion 
 Centralized; Real-time;  
  Feature and decision filtering rules 
  Decision extraction and confirmation rules 
  Confirmed reaction decisions 

iv. Logical Source (WASM, ELINT, HUMINT, etc.) Resource Management 
 Centralized; Real-time;  
  Source availability, capabilities, and modes 

v. Logical Source Data Fusion 
 Local; Real-time;  
  Data filtering rules 
  Feature types 
  Feature extraction and confirmation rules 
  Fused features and decisions 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  11 

vi. Sensor (EO/IR, SAR, Radar etc.) Resource Management 
 Local; Real-time; Rapid access and response; 
  Sensor capabilities and modes 
  Sensor control limits 

vii. Sensor Data Fusion 
 Local; Real-time; Rapid access and response; 
  Fused sensor images 
  Image filtering rules 
  Feature types 
  Feature extraction rules 
  Extracted features and decisions 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  12 

6.3 Scenario 3: Mission Management System 

6.3.1 Description: 

Studies for MoD UK into advanced UAV Mission Management Systems (MMS) explored the information 
flows (ref. [MIFS]) for a number of combinations of vehicle platform type in order to achieve likely current 
and future mission types, leading to mission data management requirements. 

For different vehicle platform roles (such as combat or reconnaissance) different mixes of vehicle systems 
and specific data are required, and the studies therefore proposed a mission data sharing and distribution 
concept based on centralised data management.  This allowed for flexible pick-and-mix provision of vehicle 
platform capability by limiting or restricting direct interconnections between vehicle capability providers.  
Thus rather than obtain, say, air vehicle state data from the Navigation System, a Flight Control System 
would obtain it from a centralised data management source (where the Navigation System would deposit 
the data).  The Navigation and the Flight Control Systems are therefore connected only to the data 
management, not to each other, increasing the possibilities for individual System reuse and incremental 
enhancement greatly. 

Two instances of the application of such an MMS architecture are illustrated in Figure 5 and Figure 6, for a 
combat UAV and a reconnaissance UAV respectively, illustrating the primary interactions between MMS 
data management and the relevant external data agencies (such as an aeronautical regulatory authority or 
a weather data supplier) or vehicle systems.  For example, weather data from an external agency would be 
processed (in the case of a UAV as illustrated) through the vehicle ground Control Facility, and if relevant to 
the vehicle mission or operation would update the mission (route) plan (via the MissionPlanDB interaction).  
This may then in turn impinge on the operations of the Defensive Aids System (DAS) as it adjusts to watch 
for threats along the updated route. 

The study specifically identified a number of data management interactions that would be required in an 
MMS context, each described by the exchange of mission relevant data between external sources and 
internal vehicle functions: 

• TerrainDB geographic and cultural (e.g. land usage); 

• AeronauticalDB aeronautical regulatory, restrictions, and hazards; 
• ConfigurationDB the vehicle and its equipment fit; 

• MissionPlanDB the vehicle’s Mission Plan, including the route to take, and the threats and 
targets along that route; 

• TransientDB short lifespan vehicle and mission information e.g. for relay back to the 
ground ControlFacility; 

• NavigationalDB obstructions, no-go areas, flight corridors, etc.; 

• TacticalDB threat and target details; 

• Video/SensorDB threat tracks, visual, IR, and SAR (etc.) imagery; 

• FusedSensorDataDB inferred threat tracks, enhanced imagery, etc.; 
• CommunicationsDB frequencies, IFF codes, etc. 

The studies therefore identified the need for a flexible, highly reusable, scalable, and distributable, data 
management architecture (illustrated in Figure 7), predicating a number of data servers distributed within 
the mission system computing environment managing long and short lifetime data.  The need for a 
distinction between data having long and short lifetimes was explicitly brought out in the architecture where 
identified. 

This distinction allows the architecture to be implemented using mixed data management technologies, 
allowing short term data to be rapidly and frequently accessed by using appropriate local, rapid-access, but 
less capable in terms of search and selection, technologies, whilst then permitting data to be committed to 
long term, highly capable, data management in a slower timescale more appropriate to complex search, 
selection, and analysis, data management technologies. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  13 

Figure 5  Combat UAV Mission Data Management Architecture 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  14 

Figure 6  Reconnaissance UAV Mission Data Management Architecture 

 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  15 

This Distributed Data Management (DDM) architecture comprises a scalable number of Distributed 
Database Managers, each of which comprises an UnderlyingRTDBMS (Real-time Database Management 
System) of some form. 

The Distributed Database Managers collectively “contain” the data-specific logical data management 
functions (such as DDMAeronautical or DDMTransient) which may manifest in short-term (local, rapid 
access) and/or long-term (possibly remote, complex search and retrieval) forms, as necessary (such as 
DDMAeronauticalShortterm and DDMAeronauticalLongterm). 

Figure 7  Distributed Data Management (DDM) Architecture 

 

6.3.2 Pre-Conditions: 

An AMMS exists, founded on the principles of the DDM Architecture. 

By way of illustration, an example flow of information will be described (briefly), which should be typical of 
many information flows within an advanced MMS. 

6.3.3 Initiating Event: 

The Aeronautical Data – Military authority issues a hazard area notification update. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  16 

6.3.4 Primary Activities: 

i. The notification will be passed to the Military Operations authority. 
ii. The Military Operations authority will assess the notification, and flow out to the vehicle Control 

Facility and possibly to the vehicle itself. 

iii. When applicable1, the vehicle’s receiving DDMAeronautical data management function will 
assess received data and push to either DDMAeronauticalShortterm or 
DDMAeronauticalLongterm store. 

iv. The Control Facility will assess the notification and (if necessary) issue a mission re-plan order. 
v. The revised Mission Plan is pushed out to the vehicle, to the Nav. system, FCS Interface, and 

(possibly) the DAS, WASM and Sensor management (for re-programming field-of-regard etc.). 

6.3.5 Post-Conditions: 

None. 

6.3.6 Potential Data Servers: 

i. All artefacts prefixed “DDM” in Figure 7 
 Mix of Centralized and Local 
  (content as per artefact name). 

ii. DAS, FCS, Nav., WASM, Sensor Management 
 Local; Private; Real-time; Rapid access and response 
  Mission (Route) Plan, or selected, relevant, subset thereof. 

  

                                                   
 

1 On-board aeronautical data is included as part of the advanced MMS architecture to facilitate on-board re-
planning/optimal routing capabilities. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  17 

6.4 Scenario 4: Demonstrating Large Data Sets 

From the previous Mission System relevant example scenarios, it is possible to identify themes which are 
worth demonstrating in an ECOA system: 

• (Content) Query-Based Data Management, accessing (for read and/or write) long lifetime data 
held in data server permitting complex, content driven, search and retrieval; 

• (Rapid-Access) Indexed Data Management, accessing (for read and/or write) data held in a data 
server designed and optimized for rapid access and retrieval; 

• Remote.v.Local Data Management, demonstrating data server access across a network, or local 
to the client; 

• Secure.v.Non-secure Data Management, demonstrating application of security protocols and 
methods to protect data and the servers and clients using it. 

In addition to these themes, there will undoubtedly be situations where bespoke persistent data storage will 
be required, as provided for instance by access to a file system.  Examples did not emerge from the 
previous scenarios as they were based on studies explicitly looking for where organized, reusable, data 
management was appropriate.  However, it is recognised that individual capabilities will exist where such 
organized data management may be an unnecessary overhead.  Loading graphic image tiles from a data 
repository in a digital map capability might be one such case. 

Crossing these themes, example managed data sets can be chosen in order to form the basis of 
demonstration.  In Table 1, for example, a number of managed data sets are identified and associated with 
the theme (or variation of a theme) the data set management falls into. 

Table 1  Demonstrating Large Data Sets (Examples) 

                               Theme 

Managed Data 

(Rapid-Access) 

Indexed 

Query 

Based 

Remote 

(ECOA
1
) 

Remote 

(Web
2
) 

Local Secure Non-secure Bespoke 

(File IO) 

HUMS Data Processing ����  ����    ����  

HUMS Data Recording  ���� ����   ����   

Weather Data  ���� ���� ����  ����   

Vehicle State ����    ����  ����  

Digital Map Tiles   ����    ���� ���� 

Target Data ����  ����   ����   

Tactical Data  ���� ����   ����   

Notes: 

1. This column marks data management examples where the data server can be demonstrated 
“remote” from the client simply within an ECOA system context, i.e. the client and server are hosted 
on separate ECOA Computing Platforms, and therefore invoke the ELI. 

2. This column marks data management examples where the data server is outside the ECOA system 
context, specifically, a web service accessed via the public internet. 

The data management cases of Table 1 are expanded in the following sub-sections.  Each describes a 
simplified scenario for one of the Managed Data sets of the table, intended to form the basis of an indicative 
demonstration of the associated themes. 

  



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  18 

Each scenario is described using a combination of textual description and UML diagrams. 

Figure 8 gives an overall view of the demonstration scenarios with particular sub-systems or agencies 
relevant to each particular scenario, whether as a DataSource or as a DataClient.  Where no DataSource is 
associated with a scenario, it implies that – for the purposes of the scenario – the data is “read only”. 

Figure 8  Scenario 4: Demonstrating Large Data Sets – Demonstration Scenarios 

 

6.4.1 Scenario 4.1: HUMS Data Processing 

6.4.1.1 Description: 

Either periodically or on some trigger, the HUMS will scan all monitored sub-systems and collect together 
their Health and Usage data. 

The HUMS will then process the data in order to detect trends in the data (per sub-system and across sub-
systems) and raise information notices, warnings and/or alarms as necessary. 

At each stage, data is cached or stored (cf. the Mission Management System). 

The scenario is depicted as a UML Activity Diagram below (Figure 9)2. 

                                                   
 

2 In the Activity Diagrams of this document, black arrows indicate the flow of (program) control from one activity to 
another. Blue arrows indicate the flow of data between activities and/or data stores. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  19 

Figure 9  Scenario 4.1: HUMS Data Processing 

 

6.4.1.2 Pre-Conditions: 

None. 

6.4.1.3 Initiating Event: 

Periodic or on-event “HUMS scan” trigger. 

6.4.1.4 Primary Activities: 

i. For each monitored sub-system: 
a. HUMS gets the sub-system’s Health & Usage data; 
b. The data is cached to rapid-access store for later processing; 
c. The HUMS processes the sub-system data looking for Health & Usage trends, according to 

Rules obtained from long-term store; 
d. On condition, information notices, warnings, and/or alarms are raised; 

ii. The HUMS processes the data looking for Health & Usage trends across the system (vehicle), 
according to Rules obtained from long-term store; 

iii. On condition, information notices, warnings, and/or alarms are raised; 

6.4.1.5 Post-Conditions: 

Health and Usage for each sub-system obtained and processed for diagnostic trends. 

6.4.1.6 Identified Data Servers: 

i. HUMS rapid-access, short-term, data server. 
ii. HUMS query-based, long-term, rule server. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  20 

6.4.2 Scenario 4.2: HUMS Data Recording 

6.4.2.1 Description: 

Either periodically or on some trigger, the HUMS will snapshot the Health and Usage data collected from 
sub-systems and archive it to long term storage.  Each snapshot is timestamped from the master system 
clock. 

The scenario is depicted as a UML Activity Diagram below (Figure 10). 

Figure 10  Scenario 4.2: HUMS Data Recording 

 

6.4.2.2 Pre-Conditions: 

None. 

6.4.2.3 Initiating Event: 

Periodic and/or on-event “HUMS data update” trigger. 

6.4.2.4 Primary Activities: 

i. For each monitored sub-system: 
  HUMS takes a snapshot of the sub-system’s Health & Usage data; 

ii. The data from all sub-systems is bound (packaged) and timestamped. 
iii. The data package is posted to long term storage. 

6.4.2.5 Post-Conditions: 

Health and Usage data for all sub-systems archived for off-line processing and/or review. 

6.4.2.6 Identified Data Servers: 

i. HUMS rapid-access, short-term, data server. 
ii. HUMS query-based, long-term, rule server. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  21 

6.4.3 Scenario 4.3: Weather Data 

6.4.3.1 Description: 

On a long term surveillance mission (for instance) it may be necessary for an advanced UAV Navigation 
System or Ground Control Station to request a weather update.  This may be a query to a Weather Bureau 
via a web portal. 

The received data will likely cover a larger area than the area of operation, so a filtering process may be 
required before the weather update is used and/or pushed to long term storage. 

The scenario is depicted as a UML Activity Diagram below (Figure 11). 

Figure 11  Scenario 4.3: Weather Data 

 

6.4.3.2 Pre-Conditions: 

None. 

6.4.3.3 Initiating Event: 

The current weather data’s validity period expires. 

6.4.3.4 Primary Activities: 

i. The Navigation System issues a web service request on the Weather Bureau portal for the 
area of interest (operating area). 

ii. The requested weather data is returned by the web portal. 
iii. The weather data is filtered, e.g. to refine the area covered. 
iv. The weather data of interest is pushed to long term data storage. 

6.4.3.5 Post-Conditions: 

Weather data for the operating area of interest available and stored. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  22 

6.4.3.6 Identified Data Servers: 

i. Web service accessed bureau data servers. 
ii. Query-based, long-term, Weather Store server. 

6.4.4 Scenario 4.4: Vehicle State 

6.4.4.1 Description: 

Rather than distribute Vehicle State (position, altitude, heading, speed etc.) to all sub-functions of the 
Mission System (routing, digital map, situation awareness, etc.), the MMS architecture (section 6.3) 
concepts might be applied, whereby the data is collected once from source and cached to a local rapid 
access data store.  The sub-functions would then make (local) calls on the data store to access the data.  
Such an arrangement would also allow for a versioning mechanism, where the latest or previous versions 
of a data item can be accessed. 

The scenario is depicted as a UML Activity Diagram below (Figure 12), with a vehicle State Update function 
receiving and caching the data, and the A Nother Function Mission System sub-function then using the data 
from the data store. 

Figure 12  Scenario 4.4: Vehicle State 

 

6.4.4.2 Pre-Conditions: 

None. 

6.4.4.3 Initiating Events: 

The Vehicle State Provider updates the current Vehicle State and publishes/sends it to other sub-systems, 
including the Mission System. 

6.4.4.4 Primary Activities: 

i. The Vehicle State is received, for instance, on demand (if a publish-subscribe mechanism is 
used for Vehicle State distribution) or on update event. 

ii. The Vehicle State is cached to a (local to the Mission System) rapid access data store. 
iii. On demand, or periodically, other functions of the Mission System request, and receive, the 

Vehicle State from the (local) rapid access data store. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  23 

6.4.4.5 Post-Conditions: 

None. 

6.4.4.6 Identified Data Servers: 

i. Mission System rapid-access, short-term, data server. 

6.4.5 Scenario 4.5: Digital Map Tiles 

6.4.5.1 Description: 

This scenario reflects a more ordinary data management case, where a digital map application loads tiles of 
graphic (map) image to complete a displayed section of a map.  Typically the centre section of a 7-by-7 grid 
of tiles is displayed, with the displayed section only covering part of the inner 5-by-5.  Such a situation is 
illustrated in Figure 13 where some tiles (grey filled) have yet to be loaded from the tile store.  The red box 
indicates the displayed area at some given instant when the air vehicle was moving roughly north-west. 

Conventionally, each tile is stored in a separate file, named according to its position in the world-referenced 
coordinate system.  As the air vehicle moves, the map engine discards, and loads, tiles in the outer ring of 
24 so as to keep the displayed area always within the core 5-by-5 section. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  24 

Figure 13  Digital Map Tiling 

       

      

 

 

       

       

       

       

       

Figure 14 illustrates, as a UML Activity Diagram, the principal activities necessary (highly simplified for this 
scenario).  Periodically, or on demand, the Digital Map function gets the latest Vehicle State, predicts 
forward to compute the tiles necessary to fill the grid, and then loads those tiles that are not currently 
loaded.  The map display is continuously refreshed (at a much greater rate, e.g. 50Hz), displaying the 
display area within the current tile set.. 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  25 

Figure 14  Scenario 4.5: Digital Map Tiles 

 

6.4.5.2 Pre-Conditions: 

None. 

6.4.5.3 Initiating Event: 

Periodic, or on-demand, map update event. 

6.4.5.4 Primary Activities: 

i. The Digital Map function gets the current Vehicle State. 
ii. A prediction forward is made to determine the current tile set validity. 
iii. The necessary tile set is amended. 
iv. New tiles are loaded from the Map Tile Repository. 
v. Tile images are decompressed and the storage format is decoded. 
vi. Tile bitmaps are pushed into the Map Tile Cache. 
vii. The map is rendered (separately, and at a greater rate) onto the display surface using the tile 

bitmaps in the Map Tile Cache. 

6.4.5.5 Post-Conditions: 

The displayed digital map is apparently continuous in all directions. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  26 

6.4.5.6 Identified Data Servers: 

i. Mission System (Vehicle State) rapid-access, short-term, data server. 
ii. Mission System (Map Tile Repository) file store server. 

6.4.6 Scenario 4.6: Target Data 

6.4.6.1 Description: 

This scenario depicts a case where Tactical Item data stored in a query-based data store is copied to a 
rapid access, maybe local, data store for use by the mission system.  Such a case may arise where the 
tactical item becomes a target which must be tracked, so the item data changes rapidly. 

In the scenario, initial target(s) identified in the Mission Plan are loaded and cached.  New targets are 
added as mission creep occurs, and the current target data is refreshed as the target is tracked. 

All the interactions occur within a secure data context. 

Figure 15  Scenario 4.6: Target Data 

 

6.4.6.2 Pre-Conditions: 

None. 

6.4.6.3 Initiating Event: 

i. Mission System initialization; 
ii. New target identified; 
iii. Periodic or on-demand target refresh request. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  27 

6.4.6.4 Primary Activities: 

i. On initialization: 
a. The Mission Plan is loaded. 
b. Plan (initial) target ids. are extracted. 
c. The target data is obtained for the Tactical Items data store using the target ids. 
d. The target data is pushed to the (possibly local) rapid access Target data store. 

ii. New targets identified during the mission (e.g. discovered threats) are pushed to the Target 
data store for use by opportunistic mission re-planning and routing functions. 

iii. Periodically, or on-demand, data for tracked targets is refreshed, and displays updated. 

6.4.6.5 Post-Conditions: 

None. 

6.4.6.6 Identified Data Servers: 

i. Mission Plan secure, query-based, data server. 
ii. Tactical Items secure, query-based, data server. 
iii. Target data, secure, rapid access, data server. 

6.4.7 Scenario 4.7: Tactical Data 

6.4.7.1 Description: 

In an advanced Mission System with opportunistic mission re-planning and re-routing functions, it will be 
necessary to be able to make ad hoc, random, queries of the Tactical Items data store as the battlespace 
picture builds and develops.  For instance a detected threat may require a query of the data server to 
identify threat type and appropriate avoidance or counter-measures. 

Figure 16  Scenario 4.7: Tactical Data 

 

6.4.7.2 Pre-Conditions: 

None. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  28 

6.4.7.3 Initiating Event: 

A threat is indicated. 

6.4.7.4 Primary Activities: 

i. The location of the threat is identified. 
ii. Some identifying threat characteristic is detected. 
iii. A query is posed to identify the threat type 
iv. The appropriate response to the posed threat is sought. 
v. The results are displayed (to the air crew or ground operator) or acted upon (autonomous air 

vehicle capability). 

6.4.7.5 Post-Conditions: 

None. 

6.4.7.6 Identified Data Servers: 

i. Tactical Items secure, query-based, data server. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  29 

7 Design Considerations 

A number of significant design choices must be considered when creating a data server implementation, 
only some of which are directly related to the use or non-use of the ECOA.  The most significant of these 
are discussed below. 

7.1 Pushmi Pullyu 

The choice of whether the data server pushes data out to a client, or the client pulls data in from the server 
can have a profound effect on the design of that part of the system, its runtime performance, and on the 
ability to predict and analyse the behaviour of the system. 

7.1.1 The Push Model 

In the push model, data transfers are initiated entirely by the data server, either as the data publisher or as 
a central distribution server.  It is the most common mechanism in a publish-subscribe scenario, where a 
client expresses information preferences in advance “subscribing” to particular data channels, and the 
server then publishes new data content as it occurs on those channels.  The subscriber(s) have only to 
listen for new publications. 

Figure 17  Push Model Behaviour 

 

In the illustrated case, three clients subscribe to channels published by a server; clients A and C to 
channel 1, and clients A and B to channel 2.  For each channel, whenever the server has new data 
available, the data is pushed out to the subscribing clients. 

7.1.1.1 Advantages: 

• The latest data is immediately (subject to server handling latency and publish interval period) 
available to the client when needed. 

• Potentially reduced data traffic, as there are no per-transfer data requests. 

• Unidirectional data transfer (e.g. network) route. 

• Analysable data transfer timings and latency. 

7.1.1.2 Disadvantages: 

• Client-side data reception processing when the data isn’t required. 

• Potentially unnecessary data traffic as data is sent even if not needed. 

7.1.1.3 Mitigation Strategies 

• Runtime (possibly one-time) definition (by client request) of per-channel data sub-sets (from the 
overall “Topic” data set) to be transferred (at the expense of a bi-directional interchange route). 

• Runtime (possibly one-time) definition (by client request) of the period or triggering event of per-
channel transfers. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  30 

7.1.2 The Pull Model 

In the Pull Model, data transfers are initiated by the client with a request for data, and the server responds 
to the request by sending the data requested.  Since data is explicitly requested, the request can carry data 
selection criteria, or even processing instructions, to the server, so that data sub-sets or syntheses can be 
returned. 

Figure 18  Pull Model Behaviour 

 

In the illustrated case, as before, clients A and C require data from channel 1, and clients A and B from 
channel 2.  However, each client must request the data when required, and the server will return it. 

The update of new data at the server is often asynchronous of requests from clients.  The diagram 
therefore illustrates a case where the server receives a data update between requests from clients A and B, 
in which case, client B receives more recent data than A.  This situation very often leads to time-tagging the 
data on reception at the server.  A client can then know the age of the data when it is received (by looking 
at the time-tag).  However time-tagging will increase the net amount of data transferred. 

7.1.2.1 Advantages: 

• Data transfer occurs only when the data is needed (whether periodic or on asynchronous demand). 

• Transferred data sub-set can be tailored/selected on a request-by-request basis. 

• Server side processing can be utilized to process/synthesize data sets according to the request. 

7.1.2.2 Disadvantages: 

• Additional data traffic due to the request. 

• Data selection/processing/synthesis latency between the request and the response from the server. 

• Potential latencies between source data update at the server and the data delivered on request. 
• Bi-directional data transfer (e.g. network) route required. 

7.1.2.3 Mitigation Strategies 

• Predefinition of complex data sub-setting criteria/rules, which are then stored server-side, and 
invoked by much reduced individual requests (e.g. predefined SQL queries/views). 

• Concentration of data processing capability at the server, leaving client processing free to 
concentrate on data usage. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  31 

7.2 Operation Choice 

The ECOA provides for implementing both the push and pull models. 

7.2.1 Request-Response (Pull Model) 

ECOA request-response operations closely correspond to the traditional data client-server, pull model, 
relationship.  The client sends a data request (perhaps composing data selection criteria or processing 
instructions using a query language or other mechanism), which is sent to the data server.  On receipt of 
the request the data server returns the requested data selected or synthesized (from a greater data set) 
according to the request criteria/instructions if appropriate. 

For small, low latency, requests, synchronous invocation of the ECOA request-response operation may be 
used.  When the requested data set is large (involving a significant (e.g. network) transfer period), or there 
can be a significant (e.g. selection or processing) latency between the request and the response, 
asynchronous invocation of the ECOA request-response operation is likely to be preferable. 

7.2.2 Events (Push Model) 

A simple push model scheme can be implemented using ECOA Events.  When the data is updated, and a 
data transfer trigger occurs (e.g. a period expires) the server simply packages the required data set into an 
ECOA Event and sends it to all subscribing clients. 

Aircraft state data would be a typical example of a basic data server implemented this way.  Periodically, 
the server packages the current aircraft state (position, altitude/height, speed, attitude, etc.) and sends it 
out. 

It should be noted that ECOA Events can be SENT_BY_PROVIDER or RECEIVED_BY_PROVIDER.  It is 
therefore possible to implement the push model where the data server is the ECOA Service provider (with 
the client referencing the Service), OR where the data server is actually the referencing ASC and the data 
client is the Service provider ASC. 

7.2.3 Versioned Data (Implementation Defined) 

Another form of the client-server relationship can be implemented using ECOA Versioned Data 
“operations”.  ECOA Version Data provides a mechanism by which a client can apparently simply view data 
content created by the server, albeit with an access control mechanism by which the client requests (read) 
access to the data. 

The ECOA does not define, when the client and server are not co-located, whether Versioned Data 
transfers are implemented as push or pull model transfers – that is whether the data is transferred from the 
server to the client when (read) access is requested, or whether the transfer occurs when a data update is 
published (by the server).  ECOA simply requires that when a client receives (read) access to the data, the 
latest published data is available.  Whether the ECOA Software Platform code has already transferred (a 
copy of) the data, or whether it is transferred on demand, is left as an implementation decision (for the 
ECOA Software Platform designer).  The two possible cases are illustrated (as UML sequence diagrams) 
below (Figure 19). 

The first scenario illustrates an example push-model implementation.  When the Versioned Data item is 
published by the server, a copy is immediately made in a data buffer in the ECOA platform of each 
subscribing client (only one client is illustrated).  When the client requests read access, a copy of the data is 
made by the ECOA platform that will be unique for this particular access, and the client is (all being well) 
given access to the contents of that buffer.  Another publish by the server will not therefore over-write the 
contents of the per-access copy. 

In the second (pull-model) example implementation scenario, the Versioned Data item is, when “published” 
by the server, only copied into a buffer on the server side.  Only when a client requests access to the data 
is it copied from the server side to the client side.  As before, the client side ECOA platform places the data 
in a buffer specific to the access request, and it is to this that the client is then given access. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  32 

Figure 19  ECOA Versioned Data - Push/Pull Implementations 

 

7.3 Data Encoding 

7.3.1 Base64 Encoding 

Base64 (ref. [B64]) is one of a number of binary-to-text encoding transforms that allow binary data to be 
transferred over text streams.  This is done by taking three bytes (24 bits) and treating these as four 6 bit 
values (still 24 bits).  Each of the four 6 bit values is then mapped onto one of 64 printable universal ASCII 
characters, for instance ‘A’ to ‘Z’, ‘a’ to ‘z’ and ‘0-9’ (plus two others such as ‘+’ and ‘/’). 

The encoded message, now pure text, can then be transmitted over any text-capable channel, and 
decoded at the other end, without fear of control codes and nulls contained in the original data interfering 
with the transport protocols.  The expense is the 3:4 increase in transmitted number of bytes. 

If the original data is not wholly divisible into 24 bit groups, the end of an encoded message is padded with 
a 65

th
 (special) character (such as ‘=’). 

Figure 20  Example Base64 Encoded Value 

VGhpcyBpcyBhIHN0cmluZyBUaGlzIGlzIGEgc3RyaW5nIFRoaXMgaXMgYSBzdHJpbmcgVGhpcyBp 

cyBhIHN0cmluZyBUaGlzIGlzIGEgc3RyaW5nIFRoaXMgaXMgYSBzdHJpbmcgVGhpcyBpcyBhIHN0 

cmluZyBUaGlzIGlzIGEgc3RyaW5nIFRoaXMgaXM= 

7.3.2 XML 

The Extensible Markup Language (XML ) (ref. [XML]) “…describes a class of data objects called XML 
documents and partially describes the behavior of computer programs which process them.” 

“XML documents are made up of storage units called entities, which contain either parsed or unparsed 
data. Parsed data is made up of characters, some of which form character data, and some of which form 
markup. Markup encodes a description of the document's storage layout and logical structure. XML 
provides a mechanism to impose constraints on the storage layout and logical structure.” 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  33 

XML therefore provides a structured, text based, highly platform independent representation of data that 
can be stored and transferred between servers and clients.  Because of its platform independent nature, 
and the ability to create self-describing data hierarchies, XML has rapidly become a de facto standard for 
data interchange across the internet. 

An apparent disadvantage of transferring an XML representation of data is the quantity of XML text required 
to represent the data.  However with compression, XML text can be compressed by 60 to 90% or more, and 
even with the resulting binary Base64 encoded, the transmitted byte-count can be very much less than that 
of the original XML.  Compression and decompression though impose a processing overhead. 

7.3.3 Key-Length-Value (KLV) 

Key-Length-Value is a data encoding standard, used to embed data into binary streams, particularly video 
feeds.  Data items are encoded as Key-Length-Value triplets, where the key identifies the data using a 
numerical (e.g. hash-coded) value, the length specifies the data's length (in bytes), and the value is the 
data itself.  It is defined in SMPTE 336M-2007 (ref. [KLV]), approved by the Society of Motion Picture and 
Television Engineers.  The value is often itself a set of KLV packets, subdividing the data set. 

The length of the key value (1, 2, 4 or 16 bytes), and its meaning, need to be fixed and specified for a given 
application.  The length field too may be 1, 2, or 4 byte numbers, or can be an encoded using Basic 
Encoding Rules (BER) (ref. [BER]) where the first byte of the length field states how many following bytes 
are used to represent the length value (up to 127).  Potentially then, a complete KLV record could be as 
short as 3 bytes (1 byte key + 1 byte length + 1 byte value), or as long as 16+(1+127)+2

127
 bytes! 

KLV encoding has the advantage over XML in that it has a purely binary overhead, and unpacking data 
does not require text string parsing.  So where a single XML data item comprising a tag, the value, and an 
end-tag, such as: 

<AltitudeFt>10254</AltitudeFt> 

is 30 bytes of transmitted XML (though this might become 15 bytes or less after compression and Base64 
encoding), the KLV equivalent might be 12 bytes, 4 for each of the key, length, and value, for instance: 

Byte 1 2 3 4 5 6 7 8 9 10 11 12 

Meaning Key Length Value 

Value 17751 4 10254 

 
Whilst far more efficient than pure-text XML, the efficiency of KLV encoding over unstructured binary will 
very much depend on the size and structure of the data be conveyed.  It would be relatively inefficient, for 
instance, for transferring one-byte data values, as three bytes would be required.  However as the 
individual data item sizes increase, the Key-Length relative overhead diminishes and the benefits of a self-
describing data structure dominate. 

The disadvantage of KLV encoding over XML is that the transferred data packets are binary and only 
readable by being able to identify KLV blocks, and recognise the data item by its key value. 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  34 

8 ECOA Data Server Designs 

This chapter takes the four data server types identified in para. 6.4 (query-based, rapid-access indexed, 
direct file I/O, and web service accessed) and proposes an example ECOA Service and Provider ASC to 
illustrate each. 

The object of defining an ECOA Service for each of these data server types, rather than simply accessing a 
COTS data server API directly within a client code, is that it provides one more opportunity for the client 
code to be portable and reusable within the ECOA universe. 

8.1 Query-based Data Servers 

Query-based data servers are used by composing statements and commands using a Query Language 
which are then passed by the client to the server.  The server parses (interprets) the statement or 
command and invokes the functions necessary to implement and respond to that statement or command.  
The result is then passed back to the client. 

Several query languages exist, some of which are built upon XML, but the most common is the ISO 
standardized Structured Query Language (SQL) (ref. [SQL]).  SQL is an English-oriented language 
comprising structured statements that are easily understood by both humans and machines. 

For instance, the SQL command: 

SELECT * FROM Weather WHERE Region=’SouthEast’ and Country=’UK’; 

instructs the server to retrieve all entries (as denoted by the “*”) in the “Weather” data structure that have 
fields named “Region” and “Country” having the values of “SouthEast” and “UK” respectively. 

Data structures in an SQL data server are organised as Tables, each comprising multiple Row entries, 
each of which will comprise one or more Fields containing data values. 

As well as providing the means for organising large amounts of data (by using Tables) data servers driven 
by SQL provide an engine for processing (often) complex search and retrieval criteria, including cross-
referencing, selecting, and sorting according to, data taken from multiple Tables.  For instance: 

SELECT DISTINCT Data_Items.Data_Item, Data_Items.Description, Sources.Source_System, 

Formats.Format 

  FROM (Formats 

    INNER JOIN Data_Items ON Formats.Format = Data_Items.Format) 

    INNER JOIN (Systems  

      INNER JOIN Sources ON Systems.System = Sources.Source_System) 

      ON Data_Items.Data_Item = Sources.Data_Item 

  GROUP BY Data_Items.Data_Item, Data_Items.Description, Sources.Source_System, 

Formats.Format 

  ORDER BY Data_Items.Data_Item, Sources.Source_System; 

returns a number of uniquely (“DISTINCT”) valued data items, grouped (“GROUP BY”) and sorted 

(“ORDER BY”) according to certain criteria, taken from a number of different tables (“System“, 

“Data_Items“, “Sources“, etc.) within the data server. 

SQL-driven data servers provide a mechanism for transferring SQL statements from, and responses to, 
client applications, possibly over a network.  ODBC (ref. [ODBC]) for instance is a very common software 
interface (API) standard that allows programmatic connection to, and usage of, a data server using SQL as 
the access language. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  35 

Figure 21  Typical SQL Client-Data Server Configuration 

 

8.1.1 Advantages: 

Query-based data servers can provide: 

• Very high levels flexibility in the storage and usage of data, e.g.: 
o Data structures (tables) can be created and deleted at runtime; 
o Specialist subset data structures can be created and deleted at runtime using search/selection 

criteria; 
o Runtime modification of individual data values within data structures. 

• Complete platform independence between the client and server as the exchanged data is plain 
(query language) text. 

• High levels of reusability of query language statements, commands, and scripts. 
• A standards-based implementation of data server capability. 

• Powerful, scalable, data search and retrieval capabilities, based on advanced search criteria 
definition. 

• Scalable server-side data analysis, correlation, and processing capabilities. 

8.1.2 Disadvantages: 

However, for a query-based data server the response time, compared with an indexed data server, will be 
higher, due to: 

• Having to parse and interpret the query language; 

• Data search (based on the query) and recovery times. 

8.1.3 An ECOA SQL Data Management Service 

In the ECOA domain, we can envisage a practical translation of the arrangement of Figure 21 into that of 
Figure 22: 

Client Host Server Host 

Client 

Storage & 
Retrieval 
Engine 

SQL Parser 
& Expression 

Engine 

Storage 
Device 

Network 
Interface 

Network 
Interface 

Network 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  36 

Figure 22  ECOA SQL Client-Data Server Configuration 

 

Here, the data server itself is ‘hidden’ behind an ECOA sqlServer ASC, with localized inter-process 
communications.  All traffic between Client(s) and Server is now in the ECOA domain, so may physically 
invoke the ELI network protocol (as illustrated), or not if the Client is deployed to the same host as the 
Server. 

8.1.3.1 Requirements 

The following is a set of base requirements for an ECOA Service that can be used to provide access to a 
SQL query-based data server. 

1) The SQL Service should allow an ECOA client ASC to connect to (access) a nominated (named) 
data server, possibly across a network. 

2) The SQL Service should allow an ECOA client ASC to create and destroy data tables on a data 
server that it is connected to. 

3) The SQL Service should allow an ECOA client ASC to store to, search for, and retrieve data from, 
tables, using SQL statements. 

4) The SQL Service should minimise the data trafficked between the Service Provider and the data 
server itself.  

5) The SQL Service should allow an ECOA client ASC to register to be notified whenever a table is 
updated. 

6) The SQL Service should allow an ECOA client ASC to pre-load tables with data taken from a SQL 
data file. 

7) The SQL Service should allow an ECOA client ASC to save the current contents of the data server 
to a SQL data file. 

8) The SQL Service should allow an ECOA client ASC to interrogate the storage and content limits of 
the data server. 

9) The SQL Service should allow an ECOA client ASC to create and destroy ‘view’ tables on the data 
server, using SQL statements defining specific data selection criteria. 

10) The SQL Service should allow an ECOA client ASC to retrieve data composed (by the server) into 
‘view’ tables without having to re-specify the selection criteria. 

8.1.3.2 Required Operations 

From para. 8.1.3.1, the minimum set of Service Operations is then: 

1) Create (get) a connection to a data server. 
2) Destroy (end) a connection. 

Client Host Server Host 

Client 

SQL 

sqlServer 

SQL 

Storage & 
Retrieval 
Engine 

SQL Parser 
& Expression 

Engine 

Storage 
Device 

Local Inter-Process 
Interface 

Local Inter-Process 
Interface 

Network 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  37 

3) Execute an SQL statement as an identifiable “transaction”. 
4) Get the result(s) of a particular transaction. 
5) Register for table update notifications. 
6) Load (take) or save (dump) table contents from/to an SQL file. 
7) Report (get) the data server limits and meta-data. 

The creation and deletion of data tables and views (requirements (2) and (9)) and the selection and 
retrieval of data (requirements (3) and (10)), will be achieved by use of SQL statements, and therefore 
accomplished using operation (3). 

8.1.3.3 Service Definition 

Expanding this minimal set with a few additional operations, we get the Service Definition depicted in Figure 
23.  For clarity of purpose, the details of the actual data types, all of which are defined in the ECOA.SQL 
Types Library, are omitted from this diagram.  To clearly maintain the conventional client-server (pull-
model) relationship, this ECOA.SQL Service is defined in terms of ECOA Request-Response Operations.  
Only a posted notification is expressed as an ECOA Event Operation.  Each operation is described after the 
diagram. 

Figure 23  ECOA SQL Service Definition (as a UML Interface Class) 

 

8.1.3.3.1 getConnection( … ) 

This ECOA Request-Response Operation will create a connection to a named dataSource, using the 
authentication parameters username and password.  A unique Connection Identifier (connection) will be 
returned, together with a requestStatus code. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  38 

8.1.3.3.2 endConnection( … ) 

This ECOA Request-Response Operation will end (close) the identified connection, and return a 
requestStatus code. 

8.1.3.3.3 SQLExecute( … ) 

This ECOA Request-Response Operation will send the SQLString statement to the data server at 
connection, and return a transaction handle.  This transaction handle will be used in subsequent 
operations to extract the data resulting from execution of the SQLString statement. 

8.1.3.3.4 getResult( … ) 

This ECOA Request-Response Operation will transfer the data associated with a transaction on the data 
server at connection, from the (remote) data server to the (local) client, and return a requestStatus 
code.  The result data can now be accessed without further network activity. 

The result data will be presented as a table of values with a number of rows (which may be zero) each of a 
number of fields (columns) (which may also be zero). 

8.1.3.3.5 getResultData( … ) 

This ECOA Request-Response Operation will extract the data value from field columnNo of the result data 
associated with a transaction on the data server at connection, return the data value in columnValue, 
and return a requestStatus code. 

8.1.3.3.6 getResultColumnCount( … ) 

This ECOA Request-Response Operation will return the number of fields (columns) in the result data 
associated with a transaction on the data server at connection, return the data value in columnValue, 
and return a requestStatus code. 

8.1.3.3.7 getResultColumnInfo( … ) 

This ECOA Request-Response Operation will return the meta-data for the field (column) columnNo of the 
result data associated with a transaction on the data server at connection, return the meta-data in 
columnInfo, and return a requestStatus code.  The meta-data includes the field name, a code indicating 
the field’s data type (integer, real, data, etc.), and the field’s data type size (in number of bytes). 

8.1.3.3.8 getStatus( … ) 

This ECOA Request-Response Operation will return (as resultStatus) the status of the result data 
associated with a transaction on the data server at connection, and return a requestStatus code. 

A resultStatus is different from a requestStatus, the latter indicating whether a particular Service 
Operation succeeded and why if it did not, whilst the former returns information from the underlying data 
server about the status of the particular result data. 

8.1.3.3.9 setUpdateTable( … ) 

This ECOA Request-Response Operation will register the client for notification whenever the table 
tableName, on the data server at connection, is updated (i.e. has a value changed), and return a 
requestStatus code. 

8.1.3.3.10 dump( … ) 

This ECOA Request-Response Operation will save the entire data store, on the data server at 
connection, to the file filename, and return a requestStatus code.  The file will be written as SQL or 
XML depending on the value of the format parameter. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  39 

8.1.3.3.11 take( … ) 

This ECOA Request-Response Operation will read from the file filename, and execute the statements 
contained, on the data server at connection, and return a requestStatus code.  The file will be expected 
to contain either SQL or XML depending on the value of the format parameter. 

XML files can be used to populate tables on the data server.  SQL files can be used to populate tables and 
perform data queries and extractions.  The result of only the last SQL statement that produces a result will 
be available for retrieval by the client. 

8.1.3.3.12 getHelp( … ) 

This ECOA Request-Response Operation will return (in parameter help) a text string of useful “help” 
information from the data server at connection, and return a requestStatus code. 

8.1.3.3.13 listTables( … ) 

This ECOA Request-Response Operation will return, as tableList, a list of the names of the tables 
currently held on the data server at connection, and return a requestStatus code. 

8.1.3.3.14 getLimits( … ) 

This ECOA Request-Response Operation will return, as limits, a list of limit values relevant to the data 
server at connection, and return a requestStatus code. 

The list will include: 

• the maximum length of an ECOA.SQL.String; 
• the maximum length of an ECOA.SQL.NameString; 

• the maximum size of an ECOA.SQL.CLOB3; 

• the maximum size of an ECOA.SQL.BLOB4; 
• the maximum length of an ECOA.SQL.IntegerList; 

• the maximum length of an ECOA.SQL.TableNameList; 

• the maximum number of simultaneous connections that are supported. 

8.1.3.3.15 getCounts( … ) 

This ECOA Request-Response Operation will return, as counts, a list of current values relevant to the data 
server at connection, and return a requestStatus code. 

The list will include: 

• the number of tables; 

• the number of transactions completed; 

• the number of transactions pending; 
• the number of connections. 

8.1.3.3.16 tableUpdateNotification( … ) 

This ECOA Event Operation, sent by the provider to the client, reports that the table tableName has been 
updated (changed).  No indication of what the change might be is given or available.  
A tableUpdateNotification(…) Event will only be sent if the client has previously registered by invoking the 
setUpdateTable(…) Operation. 

                                                   
 

3 CLOB = Character Large Object 

4 BLOB = Binary Large Object 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  40 

8.1.3.4 Service Definition XML 

The following are a few lines of the formal ECOA Service Definition XML for this Service.  The entire 
Service Definition is not given here for brevity, but it will be seen that each Operation of the Service is 
defined using the data types depicted in the UML diagram above (Figure 23). 

In ECOA, a Service Definition XML comprises a <serviceDefinition> XML element composed of an 
<operations> list XML element.  Each Operation provided by the Service is listed (in this case either as 
<requestresponse> XML elements or as <event> XML elements) within the <operations> element.  
Each Operation lists its input and output parameters as either <input> and <output> XML elements. 

Listing 1  SQL Service Definition XML 

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0" > 

  <use library="ECOA.SQL"/> 

  <operations> 

    <requestresponse name="getConnection"> 
      <input  name="dataSource" type="ECOA.SQL:String"/> 

      <input  name="userName" type="ECOA.SQL:NameString"/> 

      <input  name="password" type="ECOA.SQL:NameString"/> 

      <output name="connection" type="ECOA.SQL:ConnectionId"/> 
      <output name="requestStatus" type="ECOA.SQL:Error"/> 

    </requestresponse> 

    <requestresponse name="endConnection"> 

      <input name="connection" type="ECOA.SQL:ConnectionId"/> 

      <output name="requestStatus" type="ECOA.SQL:Error"/> 
    </requestresponse> 

       : 

       : (snipped) 

       : 

    <event name="tableUpdateNotification" direction="SENT_BY_PROVIDER"> 
      <input name="tableName" type="ECOA.SQL:NameString"/> 

    </event> 

  </operations> 

</serviceDefinition> 

The ECOA XML files for the example Services and ASCs discussed in this document are available from the 
ECOA website (ref. [CODE]). 

8.1.4 An ECOA SQL Data Service Provider ASC 

For the present purposes, the defined ECOA SQL Service will be provided by a self-contained sqlServer 
ECOA ASC, described in UML in Figure 24, and defined by the ECOA Component Implementation XML 
that follows (Listing 2). 

For brevity within this document, only the first few Operations are shown in each of the UML entities in the 
diagram.  The complete set of Service Operations was shown in Figure 23 and need not be repeated.  
Likewise, the (ASC) Component Implementation XML following has been snipped where repetition of 
similar structures, one for each operation, has been curtailed. 

Referring to Figure 24, the sqlServer ECOA ASC, represented as an UML class and stereotyped 
«ecoa.component», provides the SQL «ecoa.service» - indicated by the UML realization relationship 
(closed-headed dashed arrow, stereotyped «provides») – by being composed of the 
«ecoa.moduleImplementation» sqlServer_modMain.  At runtime, the single specific instance of the 
sqlServer_modMain implementation is named sqlServer_modMainInst – as indicated by the decorations on 
the composed of (or “aggregation”) relationship arrow. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  41 

The sqlServer_modMain implementation is itself a realization5 of two interface definitions, one defining the 
lifecycle operations that all ECOA Modules must provide and here depicted as the UML Interface class 
ECOA.Module, and the other being the Module Type definition derived from (or “specialized” from) the 
SQL ECOA Service, namely the «ecoa.moduleType» sqlService_modMain_t.  Thus 
sqlService_modMain_t exports all the Module Operations defined by the SQL Service, but they are now 
stereotyped as «requestReceived» (or in the case of tableUpdateNotification() «eventSent») because 

they are Operations on the provider Module Type6.  Similarly, the Operations appear again on the Module 
Implementation class (sqlService_modMain), along with the (implementation of) Operations from the 
ECOA::Module abstract class. 

Figure 24  sqlServer ASC Design (as UML Class Diagram) 

 

8.1.4.1 Component Implementation XML 

In ECOA, a Component Implementation XML formally defines the construction of an ASC, comprising a 
<componentImplementation> XML element composed of one or more <moduleType>, 
<moduleImplementation>, and <moduleInstance> XML elements.  Each <moduleImplementation> and 
<moduleInstance> element expresses the realization of a Module Type and the instantiation (at runtime) 
of the Module Implementation respectively. 

                                                   
 

5 In UML, a “realization” denotes where an interface definition is made real by an implementation. 

6 If the ASC referenced the Service rather than providing it, the Operations of the Module Type would be stereotyped 
«requestSent» (or in the case of tableUpdateNotification() «eventReceived»).  A provider receives Request-
Response Operations sent by a client (referrer). 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  42 

A Module Type, defined in a <moduleType> element, lists the Operations that will be implemented by the 
Module (i.e. Operations defined by the provided Service(s)).  Each implemented Operation is listed (in this 
case either as <requestReceived> XML elements or as <eventReceived> XML elements) within an 
<operations> element.  Each Operation lists its input and output parameters as either <input> and 
<output> XML elements. 

The <componentImplementation> element also includes a list of Operation Link elements, one for each 
implemented Service Operation implemented by the ASC and one for each Module-to-Module Operation 
implemented.  Each Operation Link specifies the link source and destination.  In the present case, the 
Operation Links comprise <requestLink> elements, which name the SQL Service as the source 
(<clients> XML element) and name a code implementation operation (within the Module Instance) as the 
destination (<server> XML element), and an <eventLink> element which is reversed since the Event 
Operation is sent by the Module (using <senders> and <receivers> XML elements). 

Listing 2  sqlServer Component Implementation XML 

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0" 

componentDefinition="sqlServer"> 

  <use library="ECOA.SQL"/> 
  <moduleType name="sqlServer_modMain_t" hasUserContext="false"  

                                         hasWarmStartContext="false"> 

    <operations> 

    <requestReceived name="getConnection"> 
      <input  name="dataSource" type="ECOA.SQL:String"/> 

      <input  name="userName" type="ECOA.SQL:NameString"/> 

      <input  name="password" type="ECOA.SQL:NameString"/> 

      <output name="connection" type="ECOA.SQL:ConnectionId"/> 

      <output name="requestStatus" type="ECOA.SQL:Error"/> 
    </requestReceived> 

    <requestReceived name="endConnection"> 

      <input name="connection" type="ECOA.SQL:ConnectionId"/> 

      <output name="requestStatus" type="ECOA.SQL:Error"/> 

    </requestReceived> 

    <requestReceived name="SQLExecute"> 

      <input name="connection" type="ECOA.SQL:ConnectionId"/> 

      <input name="SQLString" type="ECOA.SQL:String"/> 

      <output name="transaction" type="ECOA.SQL:ResultSetId"/> 
    </requestReceived> 

    <requestReceived name="getResult"> 

      <input name="connection" type="ECOA.SQL:ConnectionId"/> 

      <input name="transaction" type="ECOA.SQL:ResultSetId"/> 

      <output name="requestStatus" type="ECOA.SQL:Error"/> 
    </requestReceived> 

        : 

        : (snipped) 

        : 

    <eventSent name="tableUpdateNotification"> 
     <input name="tableName" type="ECOA.SQL:NameString"/> 

    </eventSent> 

    </operations> 

  </moduleType> 

   

  <moduleImplementation name="sqlServer_modMain" 

moduleType="sqlServer_modMain_t"  

language="C" /> 

   



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  43 

  <moduleInstance name="sqlServer_modMainInst"  

implementationName="sqlServer_modMain" relativePriority="1"/> 

   

   <requestLink> 

    <clients> 

      <service instanceName="SQL" operationName="getConnection"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="sqlServer_modMainInst" 

operationName="getConnection"/> 
    </server> 

  </requestLink> 

   <requestLink> 

    <clients> 

      <service instanceName="SQL" operationName="endConnection"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="sqlServer_modMainInst" 

operationName="endConnection"/> 
    </server> 

  </requestLink> 

   <requestLink> 

    <clients> 

      <service instanceName="SQL" operationName="SQLExecute"/> 
    </clients> 

    <server> 

      <moduleInstance instanceName="sqlServer_modMainInst" 

operationName="SQLExecute"/> 
    </server> 

  </requestLink> 

   <requestLink> 

    <clients> 

      <service instanceName="SQL" operationName="getResult"/> 
    </clients> 

    <server> 

      <moduleInstance instanceName="sqlServer_modMainInst" 

operationName="getResult"/> 

    </server> 

  </requestLink> 

        : 

        : (snipped) 

        : 

  <eventLink> 

    <senders> 

      <moduleInstance instanceName="sqlServer_modMainInst" 

operationName="tableUpdateNotification"/> 

    </senders> 

    <receivers> 

      <service  instanceName="SQL" operationName="tableUpdateNotification"/> 

    </receivers> 

  </eventLink> 

</componentImplementation> 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  44 

8.2 Rapid-Access (Indexed) Data Servers 

Indexed data servers use a single atomic7 value to index into a data space.  A hashing algorithm is applied 
to reduce a key value (which may be of a compound data type) to an index value.  The data Value (which 
can also be of a compound data type is then stored into the indexed data space, or recovered from it.  The 
reduction of data location to a simple indexing into a data space means that data storage and retrieval is 
likely to be far faster than when parsing a location criterion such as with SQL. 

An indexed, or “Key-Value”, data server (since the data is presented as a Key and a Value) would tend not 
to be used across a network, but rather as a way of managing large amounts of data within an application 
program.  A Key-Value data server could be thought of as a large indexed array of data with optimized, 
efficient, insertion, search and retrieval functionality, with the benefit of persistence when the data is stored 
to, say, a disc drive.  Indeed, with optimal use of data caching in memory, data retrieval speeds could 
approach those of simple memory-to-memory (e.g. array reference) transfers. 

The major processing element of a Key-Value data server implementation will be the conversion of Keys 
into hash value indices into the data space. 

Figure 25  Typical Key-Value Data Server Configuration 

 

8.2.1 Advantages: 

Indexed data servers can provide: 

• Rapid data storage and retrieval. 
• Use of compound/record data types for both keys and values (e.g. via key hashing). 

Potential for easy, fast, no-disc implementation for transient data. 

8.2.2 Disadvantages: 

In any hash-based indexing scheme it is possible that a given hash value can be generated by multiple 
input keys.  In such cases, the consequences must be clear to the user, whether the data server will simply 
overwrite existing stored data whenever a duplicate key-hash is generated, or whether multiple entries are 
stored and retrieved.  Storage and retrieval times for data can therefore be affected. 

Similarly, search and retrieve operations based on a partial, or wide-field, key value (should such be 
supported by the data server implementation) will require client-side search overhead to distinguish 
between multiple data values returned by the server.  For instance, if the key is a record containing a date 
and a time field, and the data server permits retrieval of a list of values stored against keys containing a 
particular date irrespective of the time, the client would need to process/search that returned list to isolate a 
particular record/entry. 

                                                   
 

7 “atomic” in the sense of being “indivisible”. 

Application Host 

Key-Value Data Management Library 

Client 
Function 

Storage & 
Retrieval 
Engine 

Client API & 
Key Hashing 

Storage 
Device 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  45 

8.2.3 An ECOA Key-Value Data Management Service 

In the ECOA domain, we can envisage a practical translation of the arrangement of Figure 25 into that of 
Figure 26: 

Figure 26  ECOA Key-Value Data Server Configuration 

 

Here, the data server itself is hidden within an ECOA dbmServer ASC.  All traffic between Client(s) and 
Server is now in the ECOA domain, so may physically invoke the ELI network protocol if the Client is 
deployed to the different host than the Server (Figure 27) (at the expense of some performance as network 
delays will be invoked). 

Figure 27  ECOA Key-Value Data Server Configuration (Multiple Hosts) 

 

8.2.3.1 Requirements 

The following is a set of base requirements for an ECOA Service that can be used to provide access to an 
indexed, Key-Value, data server, named “DBM” (for Data Base Manager)  

1) The DBM Service should allow an ECOA client ASC to connect to (access) a nominated (named) 
data server. 

2) The DBM Service should allow an ECOA client ASC to create and destroy indexed (by a Key) data 
items on a data server that it is connected to. 

3) The DBM Service should allow an ECOA client ASC to store to, search for, and retrieve data from 
the data server. 

4) The DBM Service should allow an ECOA client ASC to pre-load data taken from an XML data file. 
5) The DBM Service should allow an ECOA client ASC to save the current contents of the data server 

to an XML data file. 

Application Host 

dbmServer 

Key-Value Data Management Library 

Storage & 
Retrieval 
Engine 

Client API & 
Key Hashing 

Storage 
Device 

Client 

DBM DBM 

Server Host Application Host 

dbmServer 

Key-Value Data Management Library 

Storage & 
Retrieval 
Engine 

Client API & 
Key Hashing 

Storage 
Device 

Client 

DBM DBM 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  46 

6) The DBM Service should allow an ECOA client ASC to interrogate the storage and content limits of 
the data server. 

8.2.3.2 Required Operations 

From para. 8.2.3.1, the minimum set of Service Operations is then: 

1) Open (get) a connection to a data server. 
2) Close (end) a connection. 
3) Store/fetch data according to the value of a Key. 
4) Fetch all Key items sequentially. 
5) Load (take) or save (dump) data contents from/to an XML file. 
6) Manage the data server limits and meta-data. 

8.2.3.3 Service Definition 

Largely adopting the API set of GNU gdbm (itself based on the Unix dbm) (ref. [dbm], [gdbm]), which will 
give a certain familiarity to programmers writing client code, and augmenting with other potentially useful 
operations, we get the Service Definition depicted in Figure 28.  For clarity of purpose, the details of the 
actual data types, all of which are defined in the ECOA.DBM Types Library, are omitted from this diagram.  
Again, the Service is defined in terms of ECOA Request-Response Operations.  Each operation is 
described after the diagram. 

Figure 28  ECOA Key-Value Service Definition (as a UML Interface Class) 

 

8.2.3.3.1 open( … ) 

This ECOA Request-Response Operation will open (create) a connection to a named database.  A unique 
Connection Identifier (connection) will be returned, together with a dbmStatus code.  If a file-based 
underlying storage mechanism is employed, then the database file will be opened according to the flags 
specified (for read, write, etc.), and created (if necessary) with the permissions specified. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  47 

8.2.3.3.2 close( … ) 

This ECOA Request-Response Operation will close (end) the identified connection. 

8.2.3.3.3 store( … ) 

This ECOA Request-Response Operation will store the data content to the database at connection, 
indexed for retrieval using the given key, and return a dbmStatus code 

8.2.3.3.4 fetch( … ) 

This ECOA Request-Response Operation will look for an entry indexed by key, in the database at 
connection.  If an entry is found, the Operation will return the data as content.  A dbmStatus code (which 
may indicate no key/data found) is always returned. 

8.2.3.3.5 exists( … ) 

This ECOA Request-Response Operation will look for an entry indexed by key, in the database at 
connection, and will return exists set either “TRUE” or “FALSE” as appropriate.  A dbmStatus code is 
also returned. 

8.2.3.3.6 delete( … ) 

This ECOA Request-Response Operation will delete any entry indexed by key, from the database at 
connection, and return a dbmStatus code 

8.2.3.3.7 firstkey( … ) 

This ECOA Request-Response Operation will return the “first” key found in the database at connection, 
and return a dbmStatus code.  There is no correlation between the order in which key value are returned 
by firstkey(…) and nextkey(…) and the order entries were made, nor any form of sort order of (unhashed) 
key values.  It is only guaranteed that successive calls to nextkey(…), after an initial call to firstkey(…), will 
return every key in the database once. 

8.2.3.3.8 nextkey( … ) 

This ECOA Request-Response Operation will return the “next” key found in the database at connection, 
and return a dbmStatus code. 

8.2.3.3.9 reorganize( … ) 

This ECOA Request-Response Operation will, if appropriate to the underlying implementation, reorganize 
the database at connection so as to minimize the size of the database file (e.g. after a large number of 
entry deletions), and return a dbmStatus code. 

8.2.3.3.10 sync( … ) 

This ECOA Request-Response Operation will, if appropriate to the underlying implementation, ensure that 
the database at connection has flushed all internal buffers and written all data to the database file, and 
return a dbmStatus code.   

8.2.3.3.11 lastError( … ) 

This ECOA Request-Response Operation will return, as errtxt, an English text explanation of the error 
code errnum, and return a dbmStatus code 

8.2.3.3.12 setopt( … ) 

This ECOA Request-Response Operation will allow the client to control the (implementation specific) 
underlying database at connection, and return a dbmStatus code.  Settings are likely to include such 
parameters as cache size, and whether the database automatically synchronizes to the database file. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  48 

8.2.3.3.13 dump( … ) 

This ECOA Request-Response Operation will save the entire database at connection, to the file 
filename, and return a requestStatus code.  The file will be written as XML. 

8.2.3.3.14 take( … ) 

This ECOA Request-Response Operation will read from the file filename, and execute the statements 
contained, on the database at connection, and return a requestStatus code.  The file will be expected to 
contain XML. 

8.2.3.3.15 getHelp( … ) 

This ECOA Request-Response Operation will return (in parameter help) a text string of useful “help” 
information from the database at connection, and return a dbmStatus code 

8.2.3.3.16 getLimits( … ) 

This ECOA Request-Response Operation will return, as limits, a list of limit values relevant to the 
database at connection, and return a dbmStatus code. 

The list will include: 

• the maximum length of an ECOA.DBM.String; 

• the maximum length of an ECOA.DBM.NameString; 

• the maximum size of an ECOA.DBM.Datum. 

8.2.3.3.17 getCounts( … ) 

This ECOA Request-Response Operation will return, as counts, a list of current values relevant to the 
database at connection, and return a dbmStatus code. 

The list will include: 

• TBD. 

8.2.3.4 Service Definition (XML) 

The following are a few lines of the formal ECOA Service Definition XML for this Service.  The entire 
Service Definition is not given here for brevity, but it will be seen that each Operation of the Service is 
defined using the data types depicted in the UML diagram above (Figure 28). 

In ECOA, a Service Definition XML comprises a <serviceDefinition> XML element composed of an 
<operations> list XML element.  Each Operation provided by the Service is listed (in this case as 
<requestresponse> XML elements) within the <operations> element.  Each Operation lists its input and 
output parameters as either <input> and <output> XML elements. 

Listing 3  DBM Service Definition XML 

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0"> 

  <use library="ECOA.DBM"/> 
  <operations> 

    <requestresponsename="open"> 

      <input  name="database"  type="ECOA.DBM:String"/> 

      <input  name="size"  type="int32"/> 
      <input  name="flags"  type="ECOA.DBM:OpenFlags"/> 

      <input  name="mode"  type="int32"/> 

      <output name="connection"  type="ECOA.DBM:ConnectionId"/> 

      <output name="dbmStatus"  type="int32"/> 

    </requestresponse> 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  49 

    <requestresponsename="close"> 

      <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 

    </requestresponse> 

    <requestresponsename="store"> 

      <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 
      <input  name="key"  type="ECOA.DBM:Datum"/> 

      <input  name="content"  type="ECOA.DBM:Datum"/> 

      <input  name="flag"  type="ECOA.DBM:StoreFlag"/> 

      <output name="dbmStatus"  type="int32"/> 

    </requestresponse> 

       : 

       : (snipped) 

       : 

  </operations> 

</serviceDefinition> 

The ECOA XML files for the example Services and ASCs discussed in this document are available from the 
ECOA website (ref. [CODE]). 

8.2.4 An ECOA Key-Value Data Service Provider ASC 

For the present purposes, the defined ECOA DBM Service will be provided by a self-contained dbmServer 
ECOA ASC, described in UML in Figure 29, and defined by the ECOA Component Implementation XML 
that follows (Listing 4). 

For brevity within this document, only the first few Operations are shown in each of the UML entities in the 
diagram.  The complete set of Service Operations was shown in Figure 28 and need not be repeated.  
Likewise, the (ASC) Component Implementation XML following has been snipped where repetition of 
similar structures, one for each operation, has been curtailed. 

Referring to Figure 29, the dbmServer ECOA ASC, represented as an UML class and stereotyped 
«ecoa.component», provides the DBM «ecoa.service» - indicated by the UML realization relationship 
(closed-headed dashed arrow, stereotyped «provides») – by being composed of the 
«ecoa.moduleImplementation» dbmServer_modMain.  At runtime, the single specific instance of the 
dbmServer_modMain implementation is named dbmServer_modMainInst – as indicated by the decorations 
on the composed of (or “aggregation”) relationship arrow. 

The dbmServer_modMain implementation is itself a realization of two interface definitions, one defining the 
lifecycle operations that all ECOA Modules must provide and here depicted as the UML Interface class 
ECOA.Module, and the other being the Module Type definition derived from (or “specialized” from) the 
DBM ECOA Service, namely the «ecoa.moduleType» dbmService_modMain_t.  Thus 
dbmService_modMain_t exports all the Module Operations defined by the DBM Service, but they are now 
stereotyped as «requestReceived» because they are Operations on the provider Module Type.  Similarly, 
the Operations appear again on the Module Implementation class (dbmService_modMain), along with the 
(implementation of) Operations from the ECOA::Module abstract class. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  50 

Figure 29  dbmServer ASC Design (as UML Class Diagram) 

 

8.2.4.1 Component Implementation XML 

In ECOA, a Component Implementation XML formally defines the construction of an ASC, comprising a 
<componentImplementation> XML element composed of one or more <moduleType>, 
<moduleImplementation>, and <moduleInstance> XML elements.  Each <moduleImplementation> and 
<moduleInstance> element expresses the realization of a Module Type and the instantiation (at runtime) 
of the Module Implementation respectively. 

A Module Type, defined in a <moduleType> element, lists the Operations that will be implemented by the 
Module (i.e. Operations defined by the provided Service(s)).  Each implemented Operation is listed (in this 
case as <requestReceived> XML elements) within an <operations> element.  Each Operation lists its 
input and output parameters as either <input> and <output> XML elements. 

The <componentImplementation> element also includes a list of Operation Link elements, one for each 
implemented Service Operation implemented by the ASC and one for each Module-to-Module Operation 
implemented.  Each Operation Link specifies the link source and destination.  In the present case, the 
Operation Links are all <requestLink> elements, which all name the DBM Service as the source 
(<clients> XML element) and name a code implementation operation (within the Module Instance) as the 
destination (<server> XML element). 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  51 

Listing 4  dbmServer Component Implementation XML 

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0" 

componentDefinition="dbmServer"> 

  <use library="ECOA.DBM"/> 

  <moduleType name="dbmServer_modMain_t" hasUserContext="true"  
                                         hasWarmStartContext="false"> 

    <operations> 

      <requestReceived name="open"> 

        <input  name="database"  type="ECOA.DBM:String"/> 

        <input  name="size"  type="int32"/> 
        <input  name="flags"   type="ECOA.DBM:OpenFlags"/> 

        <input  name="mode"  type="int32"/> 

        <output name="connection"  type="ECOA.DBM:ConnectionId"/> 

        <output name="dbmStatus"  type="int32"/> 

      </requestReceived> 

      <requestReceived name="close"> 

        <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 

      </requestReceived> 

      <requestReceived name="store"> 

        <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 
        <input  name="key"   type="ECOA.DBM:Datum"/> 

        <input  name="content" type="ECOA.DBM:Datum"/> 

        <input  name="flag"  type="ECOA.DBM:StoreFlag"/> 

        <output name="dbmStatus"  type="int32"/> 
      </requestReceived> 

      <requestReceived name="fetch"> 

        <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 

        <input  name="key"   type="ECOA.DBM:Datum"/> 

        <output name="content" type="ECOA.DBM:Datum"/> 
        <output name="dbmStatus"  type="int32"/> 

      </requestReceived> 

      <requestReceived name="exists"> 

        <input  name="connection"  type="ECOA.DBM:ConnectionId"/> 

        <input  name="key"   type="ECOA.DBM:Datum"/> 
        <output name="exists"  type="boolean8"/> 

      </requestReceived> 

        : 

        : (snipped) 
        : 

    </operations> 

  </moduleType> 

   

  <moduleImplementation  name="dbmServer_modMain" 
moduleType="dbmServer_modMain_t" language="C" /> 

   

  <moduleInstance name="dbmServer_modMainInst" 

implementationName="dbmServer_modMain" relativePriority="1"/> 

   

  <requestLink> 

    <clients> 

      <service instanceName="DBM" operationName="open"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="dbmServer_modMainInst" operationName="open"/> 

    </server> 

  </requestLink> 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  52 

  <requestLink> 

    <clients> 

      <service instanceName="DBM" operationName="close"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="dbmServer_modMainInst" 

operationName="close"/> 

    </server> 

  </requestLink> 

  <requestLink> 

    <clients> 

      <service instanceName="DBM" operationName="store"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="dbmServer_modMainInst" 

operationName="store"/> 

    </server> 

  </requestLink> 

  <requestLink> 

    <clients> 

      <service instanceName="DBM" operationName="fetch"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="dbmServer_modMainInst" 
operationName="fetch"/> 

    </server> 

  </requestLink> 

  <requestLink> 

    <clients> 

      <service instanceName="DBM" operationName="exists"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="dbmServer_modMainInst" 
operationName="exists"/> 

    </server> 

  </requestLink> 

      : 

      : (snipped) 
      : 

</componentImplementation> 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  53 

8.3 File-based Data Servers 

Sometimes it is more practical or convenient to create an application specific data server using a standard 
File Access API.  Scenario 4.5 described one possible case, where graphic images are stored as tiles, one 
per file, that are loaded and rendered at runtime in an order dependent on the flight path of the air vehicle. 

The application is then likely to be constructed in a manner similar to Figure 30, where the operating 
system specific File Access API code library is used by a Client API code library, which is in turn used by 
the Client Function(s) itself/themselves.  Thus in the case of Scenario 4.5, the Client API would comprise 
functions working with client-space data objects (positions, orientations, tiles, etc.), whilst the Client API 
implementation would do the conversion into file-space data objects (file names, handles, indexing, etc.).  
The Client Function is therefore abstracted away from actual files, and independent of the operating system 
implementation. 

Figure 30  Typical File-based Data Server Configuration 

 

8.3.1 Advantages: 

Creating a bespoke, application specific, file-based data server can provide: 

• Maximally efficient persistent storage of application specific data; 

• No need to translate between as-stored and as-used data formats; 
• Easy addition of new stored data by adding additional files; 

8.3.2 Disadvantages: 

Conversely, a bespoke, application specific, file-based data server will be precisely that: 

• Stored data (files) likely to be computing platform/operating system specific (due to characteristics 
such as data packing, endianness, etc.); 

• Compounded addition of new data items to existing stored data structures and files; 
• Need to organize/manage data files (into folders/directories); 

• Tendency for the file organization/folder hierarchy requirements to evolve/change over time; 

8.3.3 An ECOA File IO Data Access Service 

In the ECOA domain, whilst the Client API of Figure 30 could be recast as an ECOA ASC directly (making it 
an ECOA “driver” ASC since it uses the operating system’s File Access API), it might be more effective to 
realise the File Access API as an ECOA File Access ASC in its own right.  Other application specific server 
ASCs could then re-use the common File Access ASC. 

A Scenario 4.5 implementation might then become as Figure 31, where the Client API is transformed to an 
ECOA tileServer ASC providing a “Map Tile” Service, and the operating system specific File Access API is 
hidden within an ECOA fileServer ASC providing a “FileIO” Service. 

Application Host 

Client 

Function 

File 
Access 

API 

Client 
API 

Storage 
Device 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  54 

Figure 31  ECOA File-based Data Server Configuration 

 

In such a scheme, the ECOA fileServer might then be deployed “remotely” from some or all of the clients 
(tileServer etc.), either in a separate ECOA Protection Domain on the same computing platform, or 
physically remotely on a separate host computing platform (Figure 32) (at the expense of some 
performance as network delays will be invoked). 

Figure 32  ECOA File-based Data Server Configuration (Multiple Hosts) 

 

 

8.3.3.1 Requirements 

The following is a set of base requirements for an ECOA Service that can be used to provide access to 
files, named “FileIO”. 

1) The FileIO Service should provide a simple, minimal, mapping to file system operations. 
2) The FileIO Service should allow an ECOA client ASC to open and close files. 
3) The FileIO Service should allow an ECOA client ASC to read and write text or binary from opened 

files. 
4) The FileIO Service should allow an ECOA client ASC to create and delete files (subject to the 

underlying host platform). 
5) The FileIO Service should allow an ECOA client ASC to change the current read/write position 

within an open file. 
6) The FileIO Service should allow an ECOA client ASC to browse the file storage structure. 

8.3.3.2 Required Operations 

From para. 8.3.3.1, the minimum set of Service Operations is then: 

1) Open/create a named file. 
2) Close an open file. 
3) Write/read data (text or binary) to/from an open file. 
4) Delete a named file. 
5) Set/get the read/write point to/as an indexed location within an open file. 
6) “Open” a folder/directory listing. 
7) Read/get entries in a folder/directory listing. 
8) “Close” a folder/directory listing. 

Application Host 

Storage 
Device 

Client tileServer fileServer 

FileIO Map 
Tile 

FileIO Map 
Tile 

File 
Access 

API 

Other client-domain server ASCs…

Server Host Application Host 

Storage 
Device 

Client tileServer fileServer 

FileIO Map 
Tile 

FileIO Map 
Tile 

File 
Access 

API 

Other client-domain server ASCs…



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  55 

Additional operations may be required for more detailed manipulation and interrogation of files and folders, 
as application needs arise.  These may include exposing, as ECOA Service Operations, detailed file access 
and management operations such as: 

9) Folder creation/deletion. 
10) Purging, flushing, and synchronizing data files and buffers. 
11) Opening a new file using a file handle. 
12) Folder/directory traversal (“walking”). 
13) Get/set file status and attributes. 

etc. 

8.3.3.3 Service Definition 

Largely adopting (a small part of) the POSIX file API, which will give a certain familiarity to programmers 
writing client code, we get the Service Definition depicted in Figure 33.  For clarity of purpose, the details of 
the actual data types, all of which are defined in the ECOA.FileIO Types Library, are omitted from this 
diagram.  Each operation is described after the diagram. 

 

Figure 33  ECOA File IO Service Definition (as a UML Interface Class) 

 

8.3.3.3.1 open( … ) 

This ECOA Request-Response Operation will open (or create) a connection to a file named name.  A unique 
Connection Identifier (connection) will be returned.  The file will be opened according to the flags 
specified (for read, write, etc.), and created (if necessary) with the permissions specified. 

8.3.3.3.2 close( … ) 

This ECOA Request-Response Operation will close the file identified by connection.  If the Operation is 
successful, result is returned set to zero, otherwise it will be non-zero. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  56 

8.3.3.3.3 read( … ) 

This ECOA Request-Response Operation will read up to maxCount bytes from the file associated with 
connection.  If the read is successful, the Operation will return the data in buffer, and the number of 
bytes read in actualCount. 

actualCount will be returned equal to maxCount unless: 

i) the end of the file is encountered, in which case it will be set to the number of bytes actually 
read up to the end of the file; 

ii) if maxCount is greater than the maximum length of the ECOA.FileIO:string type (65536); 
iii) if connection is invalid, in which case actualCount will be returned as zero (0). 

8.3.3.3.4 write( … ) 

This ECOA Request-Response Operation will write up to maxCount bytes from buffer, to the file 
associated with connection.  The Operation will return the number of bytes actually written in 
actualCount, which may be less than maxCount if an error occurs (such as running out of file space). 

8.3.3.3.5 seek( … ) 

This ECOA Request-Response Operation will position the current read/write point position bytes from the 
base reference point within the file associated with connection. 

base can be one of the values: 

i) ECOA.FileIO.SEEK_SET which sets the read/write point position bytes from the beginning of 
the file; 

ii) ECOA.FileIO.SEEK_END which sets the read/write point position bytes from the end of the 
file; 

iii) ECOA.FileIO.SEEK_CUR which sets the read/write point position bytes from the current 
position of the read/write point. 

The Operation returns the final (absolute) position (i.e. relative to the beginning of the file) of the read/write 
point as actualPosn. 

To obtain the current (absolute) position of the read/write point, the Operation can be invoked with 
position = 0 and base = ECOA.File:SEEK_CUR.   

8.3.3.3.6 delete( … ) 

This ECOA Request-Response Operation will delete file named name (if it exists).  If the Operation is 
successful (i.e. the file is deleted), result is returned set to zero, otherwise it will be non-zero. 

8.3.3.3.7 opendir( … ) 

This ECOA Request-Response Operation will “open” a directory contents listing for the file directory name.  
If the Operation is successful, handle provides a reference to that contents listing, otherwise handle will be 
returned zero. 

A valid (non-zero) handle is required by the readdir and closedir Operations. 

8.3.3.3.8 readdir( … ) 

This ECOA Request-Response Operation will return, as entry, one entry from the directory contents listing 
associated with handle.  Successive invocations of the Operation will return each entry in turn.  If no more 
entries are present (all have been read or the directory is empty), entry is returned with a null entry name. 

If the Operation is successful (including a null entry return), result is returned set to zero, otherwise it will 
be non-zero. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  57 

8.3.3.3.9 closedir( … ) 

This ECOA Request-Response Operation will close the directory contents listing associated with handle.  If 
the Operation is successful, result is returned set to zero, otherwise it will be non-zero. 

8.3.3.4 Service Definition (XML) 

The following are a few lines of the formal ECOA Service Definition XML for this Service.  The entire 
Service Definition is not given here for brevity, but it will be seen that each Operation of the Service is 
defined using the data types depicted in the UML diagram above (Figure 33). 

In ECOA, a Service Definition XML comprises a <serviceDefinition> XML element composed of an 
<operations> list XML element.  Each Operation provided by the Service is listed (in this case as 
<requestresponse> XML elements) within the <operations> element.  Each Operation lists its input and 
output parameters as either <input> and <output> XML elements. 

Listing 5  FileIO Service Definition XML 

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0"> 

  <use library="ECOA.FileIO"/> 

  <operations> 

    <requestresponse name="open"> 

      <input name="Name" type="ECOA.FileIO:FileName"/> 

      <input name="Flags" type="ECOA.FileIO:ModeFlag"/> 

      <input name="Permissions" type="ECOA.FileIO:Permissions"/> 

      <output name="Handle" type="int32"/> 
    </requestresponse> 

    <requestresponse name="close"> 

      <input name="Handle" type="int32"/> 

      <output name="Result" type="int32"/> 

    </requestresponse> 

    <requestresponse name="read"> 

      <input name="Handle" type="int32"/> 

      <input name="MaxCount" type="int32"/> 

      <output name="Buffer" type="ECOA.FileIO:string"/> 

      <output name="ActualCount" type="int32"/> 
    </requestresponse> 

       : 

       : (snipped) 

       : 

  </operations> 

</serviceDefinition> 

 

The ECOA XML files for the example Services and ASCs discussed in this document are available from the 
ECOA website (ref. [CODE]). 

8.3.4 An ECOA File IO Service Provider ASC 

For the present purposes, the defined ECOA FileIO Service will be provided by a self-contained fileServer 
ECOA ASC, described in UML in Figure 34, and defined by the ECOA Component Implementation XML 
that follows (Listing 6). 

For brevity within this document, only the first few Operations may be shown in each of the UML entities in 
the diagram.  The complete set of Service Operations was shown in Figure 33 and need not be repeated.  
Likewise, the (ASC) Component Implementation XML following has been snipped where repetition of 
similar structures, one for each operation, has been curtailed. 

Referring to Figure 34, the fileServer ECOA ASC, represented as an UML class and stereotyped 
«ecoa.component», provides the FileIO «ecoa.service» - indicated by the UML realization relationship 
(closed-headed dashed arrow, stereotyped «provides») – by being composed of the 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  58 

«ecoa.moduleImplementation» fileServer_modMain.  At runtime, the single specific instance of the 
fileServer_modMain implementation is named fileServer_modMainInst – as indicated by the decorations on 
the composed of (or “aggregation”) relationship arrow. 

The fileServer_modMain implementation is itself a realization of two interface definitions, one defining the 
lifecycle operations that all ECOA Modules must provide and here depicted as the UML Interface class 
ECOA.Module, and the other being the Module Type definition derived from (or “specialized” from) the 
FileIO ECOA Service, namely the «ecoa.moduleType» fileService_modMain_t.  Thus 
fileService_modMain_t exports all the Module Operations defined by the FileIO Service, but they are now 
stereotyped as «requestReceived» because they are Operations on the provider Module Type.  Similarly, 
the Operations appear again on the Module Implementation class (fileService_modMain), along with the 
(implementation of) Operations from the ECOA::Module abstract class. 

Figure 34  fileServer ASC Design (as UML Class Diagram) 

 

8.3.4.1 Component Implementation XML 

In ECOA, a Component Implementation XML formally defines the construction of an ASC, comprising a 
<componentImplementation> XML element composed of one or more <moduleType>, 
<moduleImplementation>, and <moduleInstance> XML elements.  Each <moduleImplementation> and 
<moduleInstance> element expresses the realization of a Module Type and the instantiation (at runtime) 
of the Module Implementation respectively. 

A Module Type, defined in a <moduleType> element, lists the Operations that will be implemented by the 
Module (i.e. Operations defined by the provided Service(s)).  Each implemented Operation is listed (in this 
case as <requestReceived> XML elements) within an <operations> element.  Each Operation lists its 
input and output parameters as either <input> and <output> XML elements. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  59 

The <componentImplementation> element also includes a list of Operation Link elements, one for each 
implemented Service Operation implemented by the ASC and one for each Module-to-Module Operation 
implemented.  Each Operation Link specifies the link source and destination.  In the present case, the 
Operation Links are all <requestLink> elements, which all name the FileIO Service as the source 
(<clients> XML element) and name a code implementation operation (within the Module Instance) as the 
destination (<server> XML element). 

Listing 6  fileServer Component Implementation XML 

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0" 

componentDefinition="fileServer"> 

  <use library="ECOA.FileIO"/> 

  <moduleType name="fileServer_modMain_t" hasUserContext="true"  
                                          hasWarmStartContext="false"> 

    <operations> 

      <requestReceived name="open"> 

        <input name="name" type="ECOA.FileIO:FileName"/> 

        <input name="flags" type="ECOA.FileIO:ModeFlag"/> 
        <input name="permissions" type="ECOA.FileIO:Permissions"/> 

        <output name="handle" type="int32"/> 

      </requestReceived> 

      <requestReceived name="close"> 

        <input name="handle" type="int32"/> 
        <output name="result" type="int32"/> 

      </requestReceived> 

     <requestReceived name="read"> 

        <input name="handle" type="int32"/> 
        <input name="maxCount" type="int32"/> 

        <output name="buffer" type="ECOA.FileIO:string"/> 

        <output name="actualCount" type="int32"/> 

      </requestReceived> 

      <requestReceived name="write"> 
        <input name="handle" type="int32"/> 

        <input name="buffer" type="ECOA.FileIO:string"/> 

        <input name="maxCount" type="int32"/> 

        <output name="actualCount" type="int32"/> 

      </requestReceived> 

      <requestReceived name="seek"> 

        <input name="handle" type="int32"/> 

        <input name="position" type="int64"/> 

        <input name="base" type="ECOA.FileIO:SeekBase"/> 

        <output name="actualPosn" type="int64"/> 
      </requestReceived> 

        : 

        : (snipped) 

        : 

    </operations> 

  </moduleType> 

   

  <moduleImplementation  name="fileServer_modMain" 

moduleType="fileServer_modMain_t" language="C" /> 
   

  <moduleInstance name="fileServer_modMainInst" 

implementationName="fileServer_modMain" relativePriority="1"/> 

   



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  60 

  <requestLink> 

    <clients> 

      <service instanceName="FileIO" operationName="open"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="fileServer_modMainInst" 

operationName="open"/> 

    </server> 

  </requestLink> 

   <requestLink> 

    <clients> 

      <service instanceName="FileIO" operationName="close"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="fileServer_modMainInst" 

operationName="close"/> 

    </server> 

  </requestLink> 

  <requestLink> 

    <clients> 

      <service instanceName="FileIO" operationName="read"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="fileServer_modMainInst" 
operationName="read"/> 

    </server> 

  </requestLink> 

  <requestLink> 

    <clients> 

      <service instanceName="FileIO" operationName="write"/> 

    </clients> 

    <server> 

      <moduleInstance instanceName="fileServer_modMainInst" 
operationName="write"/> 

    </server> 

  </requestLink> 

        : 

        : (snipped) 
        : 

</componentImplementation> 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  61 

8.4 Web Servers 

With the explosion of web and cloud based computing, and now common-place distribution of data via web 
portals, including data such as tasking orders and mission plans in the military domain (cf. Scenario 1), it is 
but right that this document should look at a web access approach using ECOA constructs. 

The usual form of a web access context is illustrated in Figure 35.  A Data Server, often an SQL database, 
provides the data storage and retrieval element, but this is accessed via a Web Service application and 
HTTP Server.  In addition to the Data Server Security mechanisms, a Firewall would be present in any 
system accessed from the Internet. 

Authorised client applications make requests of the Data Server engine normally in one of two ways: 

a) Scripting Engine 

Direct HTTP access operates by the client invoking a server side scripting engine (e.g. ASP, PHP, JSP, 
Java Script, etc.) by requesting the relevant web document for the action the client wishes to have 
performed, which the scripting engine executes.  Parameters are passed by the client as extensions to 
the web document request.  Such a request might be: 

http://www.myweather2.com/developer/forecast.ashx?uac=<accessCode>&query=51.368,0.123 

which requests the weather forecast (web document forecast.ashx) for the location given (as a latitude 
and longitude) by the query parameter.  The HTTP server at www.myweather2.com will access the web 
document, pass it to the script engine (in the role of the Web Server Application in Figure 35) which 
executes it for the location given, builds a response document (as an XML document for instance), and 
posts it back to the HTTP Server as the response to the web page request. 

b) Data Exchange Protocol 

The other form of web data access mechanism is to employ a data exchange protocol, such as SOAP 
(ref. [SOAP]).  SOAP provides the “definition of the XML-based information which can be used for 
exchanging structured and typed information between peers in a decentralized, distributed 
environment.”  SOAP is a one-way message exchange paradigm ideally suited to employing TCP and 
HTTP as transport protocols, though more complex interaction patterns are built by combining one-way 
messaging, particularly request-response patterns including Remote Procedure Call.  A very simple 
SOAP request package might be: 

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:xsd="http://www.w3.org/1999/XMLSchema" 

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"  

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 

  <SOAP-ENV:Body> 

    <add SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" > 

      <a xsi:type="xsd:int">10</a> 

      <b xsi:type="xsd:int">20</b> 

    </add> 

  </SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 

which invokes an “add” RPC with the parameters “a” and “b” set to the values “10” and “20” 
respectively.  The receiving network Server (whether HTTP, TCP, or whatever) passes the SOAP XML 
package to the SOAP execution engine (in the role of the Web Server Application in Figure 35) which 
parses the XML, extracts the request and parameters, performs the requested function, and packages 
and returns the result response (as a SOAP XML package) back to the network Server (e.g. as the 
HTTP request response or as a return TCP message). 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  62 

Figure 35  Typical Web Service Data Server Configuration 

 

8.4.1 Advantages: 

Employing the internet and web as the communications infrastructure provides a very high degree of 
platform independence of client and service processing, whilst also providing the potential for access from 
anywhere in the world. 

Web technology also opens the potential to use universally available client access tools such as web 
browsers, rather than having to deploy and use bespoke, proprietary, tooling. 

8.4.2 Disadvantages: 

The downside of global accessibility is the potential for unauthorised access. 

8.4.3 An ECOA Web Server Access Service 

It is unlikely to be possible, and probably undesirable, to define a “one size fits all” generic web service 
interface as has been done for the other data server types.  Instead, a particular service type example will 
be chosen, and an ECOA interface to that service type will be constructed, allowing room to implement 
different instances.  Scenario 4.3 described one possible case, where a “Weather” service is used to 
provide weather data to a Navigation System. 

A Scenario 4.3 implementation might then become as Figure 36, where an ECOA metServer ASC provides 
a “Weather” Service, hiding the specifics of accessing the web service from the client.  The client is 
insulated from the details of accessing the web service, including the specific web service provider. 

Client Host 

Web 
Server 
Host 

Firewall 

Data Server Host 

HTTP Server 

Client 
Storage & 
Retrieval 
Engine 

SQL Parser 
& Expression 

Engine 

Storage 
Device 

Network 
Interface 

Network 
Interface 

Web Service 
Application 

Network (Internet or Intranet) 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  63 

Figure 36  ECOA-ized Web Service Data Server Configuration 

 

 

8.4.3.1 Requirements 

The following is a set of base requirements for an example ECOA Weather Service, named “Weather”. 

1) The Weather Service should provide the current weather at a location. 
2) The Weather Service should provide forecast weather at a location for a given future time. 
3) The Weather Service should, as a minimum, allow locations to be expressed as latitude and 

longitude. 
4) The Weather Service should provide weather data including, at least; temperature (maximum, 

minimum, current), wind direction and speed, air pressure, cloud cover, precipitation, and overall 
outlook/synopsis. 

5) The Weather Service should provide forecast data for at least seven days ahead. 

8.4.3.2  Required Operations 

From para. 8.4.3.1, the minimum set of Service Operations might be: 

1) Get current weather at location. 
2) Get forecast weather at location for time. 
3) Get current individual weather data item (e.g. temperature) at location. 
4) Get forecast individual weather data item (e.g. temperature) at location at time. 

8.4.3.3 Service Definition 

Expanding this minimal set, we get the Service Definition depicted in Figure 37.  For clarity of purpose, the 
details of the actual data types, all of which are defined in the Weather Types Library, are omitted from this 
diagram.  In this case, the primary point of client access to the Service is to be implemented as an ECOA 
Version Data item (weather).  Each operation is described after the diagram. 

metServer 

Web 
Server 
Host 

Firewall 

Data Server Host 

HTTP Server 

Storage & 
Retrieval 
Engine 

SQL Parser 
& Expression 

Engine 

Storage 
Device 

Network 
Interface 

Network 
Interface 

Web Service 
Application 

Network 

Client 

Weather 

Weather 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  64 

Figure 37  ECOA (Weather) Web Server Access Service Definition (as a UML Interface Class) 

 

8.4.3.3.1 weather 

This ECOA Versioned Data item will contain the current weather (as a WeatherRecd) at the location 
previously set using the setLocation() operation.  If a location has not been set, the weather Versioned 
Data item will not be readable. 

8.4.3.3.2 setLocation(…) 

This ECOA Event Operation will set the current weather location to the location given.  The location is 
given as a text string (data type wxLocationString), and will, as a minimum be accepted when in the form 
of a comma separated latitude-longitude pair, such as “51.354, 13.445”.  Other possibilities might include a 
location specified as a postcode or city name. 

8.4.3.3.3 getForecastWeather(…) 

This ECOA Request-Response Operation will return, as weather, the forecast weather at the location 
given for the time specified by when. 

8.4.3.3.4 getWeatherItem(…) 

This ECOA Request-Response Operation will return, as value, the current value of the weather data item 
specified by item, at the location given.  If the location is given as NULL, then the location set by a 
previous setLocation() operation will be used. 

item will be an enumeration specifier, with a unique value for each weather data item.  value will be an 
ECOA VariantRecord type with a field for each data item type.  For example: 

getWeatherItem( MAXTEMP, berlin, &wxItem ); 

maxTemp = wxItem.u_param.MaxTempC; 

getWeatherItem( WINDIR, berlin, &wxItem ); 
windDir = wxItem.u_param.WindDir; 

8.4.3.3.5 getForecastWeatherItem(…) 

This ECOA Request-Response Operation will return, as value, the forecast value of the weather data item 
specified by item, at the location given, at the time given by when. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  65 

8.4.3.4 Service Definition (XML) 

The following listing is the formal ECOA Service Definition XML for this Service.  It will be seen that each 
Operation of the Service is defined using the data types depicted in the UML diagram above (Figure 37). 

In ECOA, a Service Definition XML comprises a <serviceDefinition> XML element composed of an 
<operations> list XML element.  Each Operation provided by the Service is listed within the 
<operations> element.  Each Operation lists its input and output parameters as either <input> and 
<output> XML elements (where relevant). 

Listing 7  Weather Service Definition XML 

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0" > 

  <operations> 

    <data name="weather" type="Weather:WeatherRecd"/> 

    <event name="setLocation" direction="RECEIVED_BY_PROVIDER"> 
      <input  name="location" type="Weather:wxLocationString"/>  

    </event> 

    <requestresponse name="getForecastWeather"> 

      <input  name="when"     type="ECOA:global_time"/> 

      <input  name="location" type="Weather:wxLocationString"/> 
      <output name="weather"  type="Weather:WeatherRecd"/> 

    </requestresponse> 

    <requestresponse name="getWeatherItem"> 

      <input  name="item"     type="Weather:wxWeatherItem"/> 
      <input  name="location" type="Weather:wxLocationString"/> 

      <output name="weather"  type="Weather:WeatherRecd"/> 

    </requestresponse> 

    <requestresponse name="getForecastWeatherItem"> 

      <input  name="item"     type="Weather:wxWeatherItem"/> 
      <input  name="when"     type="ECOA:global_time"/> 

      <input  name="location" type="Weather:wxLocationString"/> 

      <output name="weather"  type="Weather:WeatherRecd"/> 

    </requestresponse> 

  </operations> 

</serviceDefinition> 

The ECOA XML files for the example Services and ASCs discussed in this document are available from the 
ECOA website (ref. [CODE]). 

8.4.4 An ECOA Web Server Access Provider ASC 

For the present purposes, the defined ECOA Weather Service will be provided, as discussed in para. 8.4.3, 
by a self-contained metServer ECOA ASC, described in UML in Figure 38, and defined by the ECOA 
Component Implementation XML that follows (Listing 8). 

For brevity within this document, only the first few Operations may be shown in each of the UML entities in 
the diagram.  The complete set of Service Operations was shown in Figure 37 and need not be repeated.  
Likewise, the (ASC) Component Implementation XML following has been snipped where repetition of 
similar structures, one for each operation, has been curtailed. 

Referring to Figure 38, the metServer ECOA ASC, represented as an UML class and stereotyped 
«ecoa.component», provides the Weather «ecoa.service» - indicated by the UML realization 
relationship (closed-headed dashed arrow, stereotyped «provides») – by being composed of the 
«ecoa.moduleImplementation» metServer_modMain.  At runtime, the single specific instance of the 
metServer_modMain implementation is named metServer_modMainInst – as indicated by the decorations 
on the composed of (or “aggregation”) relationship arrow. 

The metServer_modMain implementation is itself a realization of two interface definitions, one defining the 
lifecycle operations that all ECOA Modules must provide and here depicted as the UML Interface class 
ECOA.Module, and the other being the Module Type definition derived from (or “specialized” from) the 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  66 

Weather ECOA Service, namely the «ecoa.moduleType» metService_modMain_t.  Thus 
metService_modMain_t exports all the Module Operations defined by the Weather Service, but they are 
now stereotyped as «requestReceived» because they are Operations on the provider Module Type.  
Similarly, the Operations appear again on the Module Implementation class (metService_modMain), along 
with the (implementation of) Operations from the ECOA::Module abstract class. 

Figure 38  metServer ASC Design (as UML Class Diagram) 

 

8.4.4.1 Component Implementation XML 

In ECOA, a Component Implementation XML formally defines the construction of an ASC, comprising a 
<componentImplementation> XML element composed of one or more <moduleType>, 
<moduleImplementation>, and <moduleInstance> XML elements.  Each <moduleImplementation> and 
<moduleInstance> element expresses the realization of a Module Type and the instantiation (at runtime) 
of the Module Implementation respectively. 

A Module Type, defined in a <moduleType> element, lists the Operations that will be implemented by the 
Module (i.e. Operations defined by the provided Service(s)).  Each implemented Operation is listed (in this 
case as <requestReceived> XML elements) within an <operations> element.  Each Operation lists its 
input and output parameters as either <input> and <output> XML elements. 

The <componentImplementation> element also includes a list of Operation Link elements, one for each 
implemented Service Operation implemented by the ASC and one for each Module-to-Module Operation 
implemented.  Each Operation Link specifies the link source and destination.  In the present case, the 
Operation Links are all <requestLink> elements, which all name the Weather Service as the source 
(<clients> XML element) and name a code implementation operation (within the Module Instance) as the 
destination (<server> XML element). 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  67 

Listing 8  metServer Component Implementation XML 

<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0" 

componentDefinition="metServer"> 

 

  <use library="Weather"/> 

   

  <moduleType name="metServer_modMain_t" hasUserContext="true"  
                                      hasWarmStartContext="false"> 

    <operations> 

      <dataWritten name="weather" type="Weather:WeatherRecd"/> 

      <eventReceived name="setLocation"> 

        <input  name="location" type="Weather:wxLocationString"/>  

      </eventReceived> 

      <requestReceived name="getForecastWeather"> 

        <input  name="when"     type="ECOA:global_time"/> 

        <input  name="location" type="Weather:wxLocationString"/>  

        <output name="weather"  type="Weather:WeatherRecd"/> 

      </requestReceived> 

      <requestReceived name="getWeatherItem"> 

        <input  name="item"     type="Weather:wxWeatherItem"/> 

        <input  name="location" type="Weather:wxLocationString"/>  

        <output name="value"    type="Weather:wxItemUnion"/> 

      </requestReceived> 

        <input  name="item"     type="Weather:wxWeatherItem"/> 

        <input  name="when"     type="ECOA:global_time"/> 

        <input  name="location" type="Weather:wxLocationString"/>  

        <output name="value"    type="Weather:wxItemUnion"/> 

      </requestReceived> 

      <eventReceived name="Tick"/> 

    </operations> 

  </moduleType> 

   

  <moduleImplementation name="metServer_modMain" 

moduleType="metServer_modMain_t" language="C" /> 

   

  <moduleInstance name="metServer_modMainInst" 

implementationName="metServer_modMain" 
relativePriority="1"/> 

 

  <triggerInstance name="metServer_Ticker" relativePriority="2"/> 

   

  <eventLink> 

    <senders> 

      <trigger instanceName="metServer_Ticker" period="300.0" />  

    </senders> 

    <receivers> 

      <moduleInstance instanceName="metServer_modMainInst" operationName="Tick"/> 

    </receivers> 

  </eventLink> 

 

   <dataLink> 

 <writers> 

   <moduleInstance instanceName="metServer_modMainInst" 

operationName="weather"/> 

 </writers> 

 <readers> 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  68 

   <service instanceName="Weather" operationName="weather"/> 

 </readers> 

  </dataLink> 

   

   <eventLink> 

 <senders> 

   <service instanceName="Weather" operationName="setLocation"/> 

 </senders> 

 <receivers> 

   <moduleInstance instanceName="metServer_modMainInst" 
operationName="setLocation"/> 

 </receivers> 

  </eventLink> 

   

   <requestLink> 

 <clients> 

   <service instanceName="Weather" operationName="getForecastWeather"/> 

 </clients> 

 <server> 

   <moduleInstance instanceName="metServer_modMainInst" 

operationName="getForecastWeather"/> 

 </server> 

  </requestLink> 

   

   <requestLink> 

 <clients> 

   <service instanceName="Weather" operationName="getWeatherItem"/> 

 </clients> 

 <server> 

   <moduleInstance instanceName="metServer_modMainInst" 

operationName="getWeatherItem"/> 

 </server> 

  </requestLink> 

   

   <requestLink> 

 <clients> 

   <service instanceName="Weather" operationName="getForecastWeatherItem"/> 

 </clients> 

 <server> 

   <moduleInstance instanceName="metServer_modMainInst" 

operationName="getForecastWeatherItem"/> 

 </server> 

  </requestLink> 

   

</componentImplementation> 

 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  69 

9 ECOA Data Server Demonstration 

To demonstrate the concepts expressed in this document, an example hypothetical, and highly contrived, 
software system has been composed and implemented using the ECOA.  The system, illustrated as an 
ECOA Assembly Diagram in Figure 39, has an instance of each of the four types of data server provider 
discussed, accessed by Mission System oriented data server clients.  These data server clients implement 
the behaviours expressed in Scenario 4 (para. 6.4). 

The Assembly Diagram is, for information, annotated with data flow arrows and identifications, and also 
how the ASCs are deployed into five separate ECOA Protection Domains.  The demonstration can be built 
and run with all five Protection Domains running on one host, or distributed across multiple hosts. 

Figure 39  ECOA Data Servers Demonstration Assembly 

 

9.1 The Demonstration Mission System Oriented ASCs 

Chapter 8 proposed example ECOA Services and Provider ASC implementations to illustrate each of the 
data server types discussed.  The following paragraphs briefly describe the Mission System oriented ECOA 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  70 

Services and ASCs created in order to exercise the Data Server Scenarios discussed in Chapter 6 (as 
condensed for demonstration in Section 6.4), and the Design Considerations discussed in Chapter 7. 

9.1.1 AVModel ASC 

In order to create a time variant behaviour within the demonstration system, the Air Vehicle Model 
(AVModel) ASC provides a source of simulated air vehicle state (position, altitude/height, speed, heading 
etc.). 

Listing 9  AVModel ASC Definition XML 

<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" 

xmlns:xs="http://www.w3.org/2001/XMLSchema"  
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"> 

  <service name="AVS"> 

    <ecoa-sca:interface syntax="AVS" qos="…"/> 

  </service> 

</componentType> 

9.1.1.1 AVS Service 

The Air Vehicle State (AVS) Service acts as a simple push-model data server using an ECOA 
(SENT_BY_PROVIDER) Event Operation.  Periodically, the AVSUpdate ECOA Event is sent to all 
referencing ASCs. 

Listing 10  AVS Service Definition XML 

<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0"> 
  <use library="AVS"/> 

  <operations> 

 <event name="AVSUpdate" direction="SENT_BY_PROVIDER" > 

  <input name="avs" type="AVS:AVS" /> 
 </event>   

  </operations> 

</serviceDefinition> 

 

The Event carries a single data item of type AVS (from the AVS Data Types library), an XML encoded 
structure as follows: 

Listing 11  An Example AVS Data Item 

<AVS> 

 <Latitude units="Degrees" direction="North">51.0</Latitude> 

 <Longitude units="Degrees" direction="East">0.1</Longitude> 
 <Height units="feet" reference="MeanSeaLevel">10123</Height> 

 <Speed units="metresPerSec">123.56</Speed> 

 <Heading units="Degrees" reference="NorthClockwise">234.6</Heading> 

</AVS> 

The reasons for using XML in this case are two: 

i) To provide an example of XML encoded data; 
ii) Hypothetically, the structure can be expanded by adding additional data items (such as air 

vehicle attitude, rate-of-climb, rate-of-turn, and so forth).  This should not affect any existing 
clients of the Service, since the programmed interface remains unchanged. 

9.1.2 HUMS ASC 

The Health and Usage Management System (HUMS) ASC will implement the functional behaviour of the 
Scenarios of paras. 6.4.1 and 6.4.2. 



This document is developed by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE 
Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd and the copyright is owned by BAE 
Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General 
Dynamics United Kingdom Limited and Leonardo MW Ltd.  The information set out in this document is provided solely on an ‘as is’ 
basis and developers of this document make no warranties expressed or implied, including no warranties as to completeness, 
accuracy or fitness for purpose, with respect to any of the information. 

  71 

The HUMS ASC will periodically simulate some sub-system data from the current air vehicle state, and 
store it to the dbmServer ASC of Figure 39 (acting as the “HUMS Short-term” store of Figure 9) in the form 
of KLV records.  The ASC will also (at a longer period) snapshot (simulated) data from the dbmServer 
(acting as the “HUMS Cache” of Figure 10) to the sqlServer ASC (“HUMS DB”). 

9.1.3 MissionSys ASC 

The Mission System (MissionSys) ASC will implement the functional behaviour of the Scenarios of paras. 
6.4.4, 6.4.6 and 6.4.7. 

When a vehicle state update is received (from the AVModel ASC) , the ASC will record a copy to the 
dbmServer2 ASC of Figure 39 (acting in the role of “Vehicle State Store” of Figure 12). 

The ASC will also retrieve, on demand, (simulated) Mission Plans and Initial targets from the sqlServer 
ASC (acting as the “Mission Plan” and “Tactical Items” databases) making a fast access (local) copy to the 
dbmServer2 ASC (acting as the “Target Store”). 

In addition, the MissionSys ASC will provide a mechanism for on-demand query of the “Tactical Items” 
database (implemented in the sqlServer ASC), and display the retrieved content. 

9.1.4 NavSys ASC 

The Navigation System (NavSys) ASC will implement the functional behaviour of the Scenarios of paras. 
6.4.3 and 6.4.5. 

When a vehicle state update is received, the NavSys ASC will, acting in the role of a Digital Map engine, 
use the contained data to load one or more (simulated) map tiles from the “Map Tile repository” (of Figure 
14) implemented by use of the fileServer ASC. 

Periodically the NavSys ASC will also make queries on a weather source provided by the metServer ASC, 
storing a subset of the received data to the sqlServer ASC (acting as the “Weather Store” of Figure 11). 

9.2 Build and Execution 

The demonstration has been implemented in C, and built and run on an ECOA POSIX platform, with the 
five Protection Domains identified in Figure 39 hosted, for demonstration purposes, on Linux, Windows 
(with a POSIX compatible runtime), and VxWorks hosts. 

Neither detailed ECOA Assembly, Implementation, and Deployment XMLs, nor the demonstration source 
code will be presented here, but are available under the same IP, and distribution restrictions, as this 
document. 

The available code does not implement any of the “higher” functions (such as compression and security 
protocols) limiting itself to showing outline implementation of the various ECOA interfaces exercised using 
simple example data types. It is intended solely as a sign-post to the direction that solutions might take. 

9.3 Warranty 

The software is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull 
SAS, Thales Systemes Aeroportes, GE Aviation Systems Limited, General Dynamics United Kingdom 
Limited and Leonardo MW Ltd, and the copyright is owned by BAE Systems (Operations) Limited, Dassault 
Aviation, Bull SAS, Thales Systemes Aeroportes, GE Aviation Systems Limited, General Dynamics United 
Kingdom Limited and Leonardo MW Ltd 

The software is developed by BAE Systems (Operations) Limited, Electronic Systems, and is the 
Intellectual Property of BAE Systems (Operations) Limited, Electronic Systems. 

The information set out in the software is provided solely on an 'as is' basis and the co-developers of the 
software make no warranties expressed or implied, including no warranties as to completeness, accuracy 
or fitness for purpose, with respect to any of the information. 


