

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 1

Wire Switch Example

Introduction
This document describes an ECOA® wire switch (Service Link switch) example named “Wire Switch

Example”.

It is based upon the concepts introduced in the ECOA “Simple Example” (ref. [2]), with extensions

showing two design patterns which could be used to implement a service switching mechanism in

ECOA.

This document presents the principal user generated artefacts required to create the “Wire Switch

Example” example using the ECOA. It is assumed that the reader is conversant with the ECOA

Architecture Specification (ref. [1]) and the process of defining and declaring ECOA Assemblies, ASCs

(components), Modules, and deployments in XML, and then using code generation to produce

Module framework (stub) code units and ECOA Container and Platform code.

Aims
This ECOA “Wire Switch Example” example is intended to demonstrate a number of design patters

which can be used by an ECOA system designer in order to provide a wire switching mechanism. An

example of when this sort of mechanism may be useful is when multiple service providers are

required (e.g. for redundancy) and there is a preference to use one provider over another in normal

operation (e.g. it has a better quality of service, response time, update rate or more accurate data).

ECOA Features Exhibited
 Composition of an ECOA Assembly of multiple ECOA ASCs (components).

 Contention-free resource sharing within an ECOA Assembly.

 Use of the ECOA runtime logging API.

 Use of a “broker” component to manage service connectivity.

 Use of a “client” component with multiple service instances.

Design and Definition

Wire Switch Functional Design
The “Wire Switch” example will demonstrate two methods of implementing a service switching

mechanism.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

2

The first method will involve a “brokered” client component which will periodically perform a

request, from a server and will receive a data item in return. This “brokered” client component is the

connected to a “broker” component, which is responsible for routing the request to the preferred

server if available, or the backup server if not. In this scenario, the “brokered” client is fully isolated

from the knowledge that multiple servers even exist in the system. This is advantageous, as the

same Component may be deployed into systems where there is only a single Server, two servers, or

in fact any number of servers without requiring modification. The disadvantage of this approach is

that extra latency will be incurred as any operations will pass through the “broker” component.

The second method will involve a “non-brokered” client component which will periodically perform

a request, from a server and will receive a data item in return. This “non-brokered” client is “aware”

that there are multiple servers available and is responsible for choosing the preferred provider itself.

This approach is advantageous as there are no latency penalties. However, the approach limits the

reusability of the Component, as it will only be able to be deployed into systems with the same

number of Servers available (i.e. 2 in this case).

In each case, the data content of the request will be the current absolute time and the response will

be of a user defined type.

Both clients will set a local variable to zero and output this to the log prior to performing the

request. The result will be returned into this variable and logged.

Both clients will be periodically activated at a rate of 0.5Hz (once every 2 seconds).

ECOA Assembly Design and Definition
This ECOA “Wire Switch Example” example ECOA Assembly comprises five ECOA ASCs named

“BrokeredClient”, “NonBrokeredClient”, “ServiceBroker” and “Server”. The “BrokeredClient” ASC

type is instantiated once within the ECOA Assembly as “BrokeredClient_Inst”. The

“NonBrokeredClient” ASC type is instantiated once within the ECOA Assembly as

“NonBrokeredClient_Inst”. The “ServiceBroker” ASC type is instantiated once within the ECOA

Assembly as “ServiceBroker_Inst”. The “Server” ASC is instantiated twice (different

implementations) within the ECOA Assembly as “PreferredServer_Inst” and “BackupServer_Inst” as

depicted in Figure 1.

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 3

Figure 1 - ECOA "Wire Switch" Assembly Diagram

This ECOA Assembly is defined in an Initial Assembly XML file, and declared in a Final Assembly (or

Implementation) XML file (which is practically identical). The Final Assembly XML for the ECOA

“Wire Switch Example” Assembly is as follows (file example.impl.composite):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<csa:composite
 xmlns:csa="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0"
 name="example"
 targetNamespace="http://www.ecoa.technology">

 <csa:component name="BrokeredClient_Inst">
 <ecoa-sca:instance componentType="BrokeredClient"/>

 <csa:reference name="Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 </csa:component>

 <csa:component name="PreferredServer_Inst">
 <ecoa-sca:instance componentType="Server"/>

 <csa:service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:service>

 </csa:component>

 <csa:component name="BackupServer_Inst">
 <ecoa-sca:instance componentType="Server"/>

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

4

 <csa:service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:service>

 </csa:component>

 <csa:component name="ServiceBroker_Inst">
 <ecoa-sca:instance componentType="ServiceBroker"/>

 <csa:service name="Request_Value_Service_Provided">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:service>

 <csa:reference name="Preferred_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 <csa:reference name="Backup_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 </csa:component>

 <csa:component name="NonBrokeredClient_Inst">
 <ecoa-sca:instance componentType="NonBrokeredClient"/>

 <csa:reference name="Preferred_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 <csa:reference name="Backup_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </csa:reference>

 </csa:component>

 <csa:wire source="NonBrokeredClient_Inst/Preferred_Request_Value_Service"
target="PreferredServer_Inst/Provide_Value_Service"/>

 <csa:wire source="NonBrokeredClient_Inst/Backup_Request_Value_Service"
target="BackupServer_Inst/Provide_Value_Service"/>

 <csa:wire source="BrokeredClient_Inst/Request_Value_Service"
target="ServiceBroker_Inst/Request_Value_Service_Provided"/>

 <csa:wire source="ServiceBroker_Inst/Preferred_Request_Value_Service"
target="PreferredServer_Inst/Provide_Value_Service"/>

 <csa:wire source="ServiceBroker_Inst/Backup_Request_Value_Service"
target="BackupServer_Inst/Provide_Value_Service"/>

</csa:composite>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 5

The Server ASC type is defined in XML as follows (file Server.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="Provide_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </service>

</componentType>

The ASC definition (the <componentType> XML element) declares the provision (by the ASC) of the

Provide_Value_Service ECOA Service.

The BrokeredClient ASC type is defined in XML as follows (file BrokeredClient.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares a reference (by the ASC) to the

Request_Value_Service ECOA Service.

The NonBrokeredClient ASC type is defined in XML as follows (file

NonBrokeredClient.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <reference name="Preferred_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

 <reference name="Backup_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

</componentType>

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

6

This ASC definition (the <componentType> XML element) declares two references (by the ASC) to the

Request_Value_Service ECOA Service.

The ServiceBroker ASC type is defined in XML as follows (file ServiceBroker.componentType):

<?xml version="1.0" encoding="UTF-8"?>
<componentType xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ecoa-sca="http://www.ecoa.technology/sca-extension-2.0">

 <service name="Request_Value_Service_Provided">
 <ecoa-sca:interface syntax="svc_Value"/>
 </service>

 <reference name="Preferred_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

 <reference name="Backup_Request_Value_Service">
 <ecoa-sca:interface syntax="svc_Value"/>
 </reference>

</componentType>

This ASC definition (the <componentType> XML element) declares two references (by the ASC) to the

Request_Value_Service ECOA Service and also one provision (by the ASC) of the

Request_Value_Service ECOA Service.

ECOA Service and Types Definition
The svc_Value Service is defined in a XML file (svc_Value.interface.xml):

<?xml version="1.0" encoding="UTF-8"?>
<serviceDefinition xmlns="http://www.ecoa.technology/interface-2.0">

 <use library="example"/>

 <operations>
 <requestresponse name="Request_Value">
 <input name="Time" type="ECOA:global_time"/>
 <output name="Value" type="example:value_type"/>
 </requestresponse>

 <data name="Available" type="ECOA:boolean8"/>

 </operations>
</serviceDefinition>

The Service comprises an ECOA Request-Response Operation called Request_Value which has one

input parameter (Time which is passed from the requesting client to the server), and one output

parameter (Value which is the response from the server to the client). The first parameter is

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 7

defined as being of type global_time, which is a pre-defined ECOA type. The second parameter is

defined as being of type example:value_type, where example names a data types library used by

the service definition. The data types library is, unsurprisingly, also defined in XML (file

example.types.xml):

<?xml version="1.0" encoding="UTF-8"?>
<library xmlns="http://www.ecoa.technology/types-2.0">

 <types>
 <simple name="value_type" type="uint32" />
 </types>

</library>

The data type example:value_type is therefore an unsigned 32 bit integer type.

In addition, the service defines an ECOA Versioned-Data Operation called Available which is of

type boolean8. This operation is used to control the functional availability of the service.

ECOA Module Design and Definition
The implementations of each of the Components are composed of a single ECOA Module. This is

illustrated in UML in Figure 2, Figure 3, Error! Reference source not found.Figure 4, Figure 5 and

Figure 6.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

8

Figure 2 “BrokeredClient_Im” Module Design (as UML Composite Structure Diagram)

Figure 3 – “NonBrokeredClient_Im” Module Design (as UML Composite Structure Diagram)

Figure 4 – “ServiceBroker_Im” Module Design (as UML Composite Structure Diagram)

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 9

Figure 5 – “PreferredServer_Im” Module Design (as UML Composite Structure Diagram)

Figure 6 – “BackupServer_Im” Module Design (as UML Composite Structure Diagram)

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

10

Figure 7, Figure 8 depict in UML the internal design of each of the components.

Figure 7 - "BrokeredClient_Im” Component Design (as UML Composite Structure Diagram)

Figure 8 - "NonBrokeredClient_Im” Component Design (as UML Composite Structure Diagram)

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 11

Figure 9 - "ServiceBroker_Im” Component Design (as UML Composite Structure Diagram)

Figure 10 - "PreferredServer_Im” Component Design (as UML Composite Structure Diagram)

Figure 11 - "BackupServer_Im” Component Design (as UML Composite Structure Diagram)

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

12

The Brokered Client ASC

The BrokeredClient ASC is declared in XML as follows (file BrokeredClient_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="BrokeredClient">

 <use library="example"/>

 <moduleType name="BrokeredClient_Module_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <eventReceived name="tick">
 </eventReceived>

 <requestSent name="Request_Val" isSynchronous="true" timeout="-1.0"
maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 <dataRead name="Available" type="ECOA:boolean8" notifying="false"/>

 </operations>

 </moduleType>

 <moduleImplementation name="BrokeredClient_Module_Im" language="C"
moduleType="BrokeredClient_Module_Type"/>

 <moduleInstance name="BrokeredClient_Module_Instance"
implementationName="BrokeredClient_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Internal_Trigger_Instance" relativePriority="0"/>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="BrokeredClient_Module_Instance"
operationName="tick"/>
 </receivers>
 </eventLink>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 13

 <requestLink>

 <clients>
 <moduleInstance instanceName="BrokeredClient_Module_Instance"
operationName="Request_Val"/>
 </clients>
 <server>
 <reference instanceName="Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="Request_Value_Service"
operationName="Available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="BrokeredClient_Module_Instance"
operationName="Available"/>
 </readers>
 </dataLink>

</componentImplementation>

That is, a Module Type (BrokeredClient_Module_Type) is declared which has three operations:

 A “Request_Val” requestSent operation;

 The eventReceived operation “tick”;

 The dataRead operation “Available”.

The Internal_Trigger_Instance Trigger Instance is introduced because the Brokered Client

needs to periodically request a data item and so an ECOA periodic trigger is required. Once every

period (2 seconds as set in the <eventLink> XML) the Trigger will fire and the Module Operation

tick will be invoked.

This Module Type is implemented by a concrete Module Implementation

BrokeredClient_Module_Im, which in turn is instantiated once as the Module Instance

BrokeredClient_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_Val” module

operation is connected to the “Request_Value” service operation of the

“Request_Value_Service” service instance.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

14

The <dataLink> XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations. In this example, the “Available” module operation is

connected to the “Available” service operation of the “Request_Value_Service” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete BrokeredClient_Module_Im class, and named “BrokeredClient_Module_Im.c”

(assuming the Module Implementation declaration has set the language property to “C”).

The Non Brokered Client ASC

The NonBrokeredClient ASC is declared in XML as follows (file NonBrokeredClient_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="NonBrokeredClient">

 <use library="example"/>

 <moduleType name="NonBrokeredClient_Module_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <eventReceived name="tick">
 </eventReceived>

 <requestSent name="Request_Val_Preferred" isSynchronous="true" timeout="-
1.0" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 <requestSent name="Request_Val_Backup" isSynchronous="true" timeout="-
1.0" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 <dataRead name="PreferredAvailable" type="ECOA:boolean8"
notifying="false"/>

 <dataRead name="BackupAvailable" type="ECOA:boolean8" notifying="false"/>

 </operations>

 </moduleType>

 <moduleImplementation name="NonBrokeredClient_Module_Im" language="C"
moduleType="NonBrokeredClient_Module_Type"/>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 15

 <moduleInstance name="NonBrokeredClient_Module_Instance"
implementationName="NonBrokeredClient_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="Internal_Trigger_Instance" relativePriority="0"/>

 <eventLink>
 <senders>
 <trigger instanceName="Internal_Trigger_Instance" period="2"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="NonBrokeredClient_Module_Instance"
operationName="tick"/>
 </receivers>
 </eventLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="NonBrokeredClient_Module_Instance"
operationName="Request_Val_Preferred"/>
 </clients>
 <server>
 <reference instanceName="Preferred_Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="NonBrokeredClient_Module_Instance"
operationName="Request_Val_Backup"/>
 </clients>
 <server>
 <reference instanceName="Backup_Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="Preferred_Request_Value_Service"
operationName="Available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="NonBrokeredClient_Module_Instance"
operationName="PreferredAvailable"/>
 </readers>
 </dataLink>

 <dataLink>

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

16

 <writers>
 <reference instanceName="Backup_Request_Value_Service"
operationName="Available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="NonBrokeredClient_Module_Instance"
operationName="BackupAvailable"/>
 </readers>
 </dataLink>

</componentImplementation>

That is, a Module Type (NonBrokeredClient_Module_Type) is declared which has five operations:

 A “Request_Val_Preferred” requestSent operation;

 A “Request_Val_Backup” requestSent operation;

 The eventReceived operation “tick”;

 The dataRead operation “PreferredAvailable”;

 The dataRead operation “BackupAvailable”.

The Internal_Trigger_Instance Trigger Instance is introduced because the Non-Brokered Client

needs to periodically request a data item and so an ECOA periodic trigger is required. Once every

period (2 seconds as set in the <eventLink> XML) the Trigger will fire and the Module Operation

tick will be invoked.

This Module Type is implemented by a concrete Module Implementation

NonBrokeredClient_Module_Im, which in turn is instantiated once as the Module Instance

NonBrokeredClient_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_Val_Preferred”

module operation is connected to the “Request_Value” service operation of the

“Preferred_Request_Value_Service” service instance and the “Request_Val_Backup” module

operation is connected to the “Request_Value” service operation of the

“Backup_Request_Value_Service” service instance.

The <dataLink> XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations. In this example, the “PreferredAvailable” module operation

is connected to the “Available” service operation of the “Preferred_Request_Value_Service”

service instance and the “BackupAvailable” module operation is connected to the “Available”

service operation of the “Backup_Request_Value_Service” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete NonBrokeredClient_Module_Im class, and named

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 17

“NonBrokeredClient_Module_Im.c” (assuming the Module Implementation declaration has set the

language property to “C”).

The Service Broker ASC

The ServiceBroker ASC is declared in XML as follows (file ServiceBroker_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="ServiceBroker">

 <use library="example"/>

 <moduleType name="ServiceBroker_Module_Type" hasUserContext="true"
hasWarmStartContext="false">

 <operations>

 <requestSent name="Request_Val_Preferred" isSynchronous="true" timeout="-
1.0" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 <requestSent name="Request_Val_Backup" isSynchronous="true" timeout="-
1.0" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestSent>

 <dataRead name="PreferredAvailable" type="ECOA:boolean8"
notifying="true"/>

 <dataRead name="BackupAvailable" type="ECOA:boolean8" notifying="true"/>

 <dataWritten name="BrokeredAvailable" type="ECOA:boolean8"/>

 <requestReceived name="Request_for_Val" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestReceived>

 </operations>

 </moduleType>

 <moduleImplementation name="ServiceBroker_Module_Im" language="C"
moduleType="ServiceBroker_Module_Type"/>

 <moduleInstance name="ServiceBroker_Module_Instance"
implementationName="ServiceBroker_Module_Im" relativePriority="1">

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

18

 </moduleInstance>

 <requestLink>

 <clients>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="Request_Val_Preferred"/>
 </clients>
 <server>
 <reference instanceName="Preferred_Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="Preferred_Request_Value_Service"
operationName="Available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="PreferredAvailable"/>
 </readers>
 </dataLink>

 <requestLink>

 <clients>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="Request_Val_Backup"/>
 </clients>
 <server>
 <reference instanceName="Backup_Request_Value_Service"
operationName="Request_Value"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <reference instanceName="Backup_Request_Value_Service"
operationName="Available"/>
 </writers>
 <readers>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="BackupAvailable"/>
 </readers>
 </dataLink>

 <dataLink>
 <writers>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="BrokeredAvailable"/>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 19

 </writers>
 <readers>
 <service instanceName="Request_Value_Service_Provided"
operationName="Available"/>
 </readers>
 </dataLink>

 <requestLink>

 <clients>
 <service instanceName="Request_Value_Service_Provided"
operationName="Request_Value"/>
 </clients>
 <server>
 <moduleInstance instanceName="ServiceBroker_Module_Instance"
operationName="Request_for_Val"/>
 </server>
 </requestLink>

</componentImplementation>

That is, a Module Type (ServiceBroker_Module_Type) is declared which has six operations:

 A “Request_Val_Preferred” requestSent operation;

 A “Request_Val_Backup” requestSent operation;

 The dataRead operation “PreferredAvailable”;

 The dataRead operation “BackupAvailable”;

 The dataWritten operation “BrokeredAvailable”;

 The requestReceived operation “Request_for_Val”.

This Module Type is implemented by a concrete Module Implementation

ServiceBroker_Module_Im, which in turn is instantiated once as the Module Instance

ServiceBroker_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_Val_Preferred”

module operation is connected to the “Request_Value” service operation of the

“Preferred_Request_Value_Service” service instance and the “Request_Val_Backup” module

operation is connected to the “Request_Value” service operation of the

“Backup_Request_Value_Service” service instance.

The <dataLink> XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations. In this example, the “PreferredAvailable” module operation

is connected to the “Available” service operation of the “Preferred_Request_Value_Service”

service instance and the “BackupAvailable” module operation is connected to the “Available”

service operation of the “Backup_Request_Value_Service” service instance.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

20

In addition, the “Request_for_Val” module operation is connected to the “Request_Value” service

operation of the “Request_Value_Service_Provided” and the “BrokeredAvailable” module

operation is connected to the “Available” service operation of the

“Request_Value_Service_Provided”.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete ServiceBroker_Module_Im class, and named “ServiceBroker_Module_Im.c”

(assuming the Module Implementation declaration has set the language property to “C”).

The Preferred Server ASC

The PreferredServer ASC is declared in XML as follows (file PreferredServer_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Server">

 <use library="example"/>

 <moduleType name="PreferredServer_Module_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="Request_for_Val" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestReceived>

 <dataWritten name="Available" type="ECOA:boolean8"/>

 <eventReceived name="Switch_Availability">
 </eventReceived>

 </operations>

 </moduleType>

 <moduleImplementation name="PreferredServer_Module_Im" language="C"
moduleType="PreferredServer_Module_Type"/>

 <moduleInstance name="PreferredServer_Module_Instance"
implementationName="PreferredServer_Module_Im" relativePriority="1">

 </moduleInstance>

 <triggerInstance name="PreferredServerTrigger" relativePriority="3"/>

 <requestLink>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 21

 <clients>
 <service instanceName="Provide_Value_Service"
operationName="Request_Value"/>
 </clients>
 <server>
 <moduleInstance instanceName="PreferredServer_Module_Instance"
operationName="Request_for_Val"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <moduleInstance instanceName="PreferredServer_Module_Instance"
operationName="Available"/>
 </writers>
 <readers>
 <service instanceName="Provide_Value_Service" operationName="Available"/>
 </readers>
 </dataLink>

 <eventLink>
 <senders>
 <trigger instanceName="PreferredServerTrigger" period="5"/>
 </senders>
 <receivers>
 <moduleInstance instanceName="PreferredServer_Module_Instance"
operationName="Switch_Availability"/>
 </receivers>
 </eventLink>

</componentImplementation>

That is, a Module Type (PreferredServer_Module_Type) is declared which has three operations:

 A requestReceived operation “Request_for_Val”;

 A dataWritten operation “Available”;

 An eventReceived operation “Switch_Availability”.

This Module Type is implemented by a concrete Module Implementation

PreferredServer_Module_Im which in turn is instantiated once as the Module Instance

PreferredServer_Module_Instance.

The PreferredServerTrigger Trigger Instance is introduced in order for the Preferred Server to

periodically switch its provided service between the available and unavailable state. Once every

period (5 seconds as set in the <eventLink> XML) the Trigger will fire and the Module Operation

Switch_Availability will be invoked.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

22

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_for_Val” module

operation is connected to the “Request_Value” service operation of the

“Provide_Value_Service” service instance.

The <dataLink> XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations. In this example, the “Available” module operation is

connected to the “Available” service operation of the “Provide_Value_Service” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete PreferredServer_Module_Im class, and named “PreferredServer_Module_Im.c”

(assuming the Module Implementation declaration has set the language property to “C”).

The Backup Server ASC

The BackupServer ASC is declared in XML as follows (file BackupServer_Im.impl.xml):

<?xml version="1.0" encoding="UTF-8"?>
<componentImplementation xmlns="http://www.ecoa.technology/implementation-2.0"
 componentDefinition="Server">

 <use library="example"/>

 <moduleType name="BackupServer_Module_Type" hasUserContext="false"
hasWarmStartContext="false">

 <operations>

 <requestReceived name="Request_for_Val" maxConcurrentRequests="10">
 <input name="time" type="ECOA:global_time"/>
 <output name="val" type="example:value_type"/>
 </requestReceived>

 <dataWritten name="Available" type="ECOA:boolean8"/>

 </operations>

 </moduleType>

 <moduleImplementation name="BackupServer_Module_Im" language="C"
moduleType="BackupServer_Module_Type"/>

 <moduleInstance name="BackupServer_Module_Instance"
implementationName="BackupServer_Module_Im" relativePriority="0">

 </moduleInstance>

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 23

 <requestLink>

 <clients>
 <service instanceName="Provide_Value_Service"
operationName="Request_Value"/>
 </clients>
 <server>
 <moduleInstance instanceName="BackupServer_Module_Instance"
operationName="Request_for_Val"/>
 </server>
 </requestLink>

 <dataLink>
 <writers>
 <moduleInstance instanceName="BackupServer_Module_Instance"
operationName="Available"/>
 </writers>
 <readers>
 <service instanceName="Provide_Value_Service" operationName="Available"/>
 </readers>
 </dataLink>

</componentImplementation>

That is, a Module Type (BackupServer_Module_Type) is declared which has three operations:

 A requestReceived operation “Request_for_Val”;

 A dataWritten operation “Available”;

 This Module Type is implemented by a concrete Module Implementation

BackupServer_Module_Im which in turn is instantiated once as the Module Instance

BackupServer_Module_Instance.

The <requestLink> XML logically associates the specific concrete operations of the Module

Instance with the abstract Service operations. In this example, the “Request_for_Val” module

operation is connected to the “Request_Value” service operation of the

“Provide_Value_Service” service instance.

The <dataLink> XML logically associates the specific concrete operations of the Module Instance

with the abstract Service operations. In this example, the “Available” module operation is

connected to the “Available” service operation of the “Provide_Value_Service” service instance.

A single functional code unit will be produced by the code generation process, implementing in code

the concrete BackupServer_Module_Im class, and named “BackupServer_Module_Im.c” (assuming

the Module Implementation declaration has set the language property to “C”).

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

24

ECOA Deployment Definition

The ECOA “Wire Switch Example” Assembly is deployed (that is, the declared Module and Trigger

Instances are allocated to a single ECOA Protection Domain, which is then allocated to a computing

node) by the following XML (file example.deployment.xml):

<deployment xmlns="http://www.ecoa.technology/deployment-2.0"
finalAssembly="example" logicalSystem="example">

 <protectionDomain name="Ex1">
 <executeOn computingPlatform="Example_Platform" computingNode="card1_bae"/>

 <deployedModuleInstance componentName="BrokeredClient_Inst"
moduleInstanceName="BrokeredClient_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="BrokeredClient_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
 <deployedModuleInstance componentName="PreferredServer_Inst"
moduleInstanceName="PreferredServer_Module_Instance" modulePriority="11"/>
 <deployedModuleInstance componentName="NonBrokeredClient_Inst"
moduleInstanceName="NonBrokeredClient_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="NonBrokeredClient_Inst"
triggerInstanceName="Internal_Trigger_Instance" triggerPriority="12"/>
 <deployedModuleInstance componentName="BackupServer_Inst"
moduleInstanceName="BackupServer_Module_Instance" modulePriority="11"/>
 <deployedModuleInstance componentName="ServiceBroker_Inst"
moduleInstanceName="ServiceBroker_Module_Instance" modulePriority="11"/>
 <deployedTriggerInstance componentName="PreferredServer_Inst"
triggerInstanceName="PreferredServerTrigger" triggerPriority="0"/>
 </protectionDomain>

 <platformConfiguration faultHandlerNotificationMaxNumber="8"
computingPlatform="Example_Platform"></platformConfiguration>

</deployment>

Thus in this case, a single ECOA Protection Domain is declared (Ex1) executing on an ECOA

Computing Node, on a single ECOA Computing Platform.

Implementation

The Brokered Client ASC
All we need to do is to program what to do when the Internal_Trigger_Instance Trigger

Instance fires, i.e. to populate the BrokeredClient_Module_Im__tick__received function stub.

void BrokeredClient_Module_Im__tick__received(BrokeredClient_Module_Im__context
*context)
{
 BrokeredClient_Module_Im_container__Available_handle availableHandle;

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 25

 // First check the service is available.
 ECOA__return_status return_status =
BrokeredClient_Module_Im_container__Available__get_read_access(context,
&availableHandle);

 if (return_status == ECOA__return_status_OK)
 {
 if (*(availableHandle.data) == ECOA__TRUE)
 {
 ECOA__global_time time;
 example__value_type val;
 ECOA__log log;

 return_status =
BrokeredClient_Module_Im_container__get_absolute_system_time(context, &time);

 val = 0;

 log.current_size = sprintf((char *) &log.data, "BrokeredClient - val
before request = %d", val);
 BrokeredClient_Module_Im_container__log_info(context, log);

 return_status =
BrokeredClient_Module_Im_container__Request_Val__request_sync(context, &time,
&val);

 log.current_size = sprintf((char *) &log.data, "BrokeredClient - val from
response = %d", val);
 BrokeredClient_Module_Im_container__log_info(context, log);
 }

 return_status =
BrokeredClient_Module_Im_container__Available__release_read_access(context,
&availableHandle);
 }

}

That is, the availability of the required service is interrogated. If it is available, the

Client_Module_Im_container__Request_Val__request_sync operation is invoked. A log is

performed prior to invoking the operation and after the operation containing the value of “val”.

The Non-Brokered Client ASC
All we need to do is to program what to do when the Internal_Trigger_Instance Trigger

Instance fires, i.e. to populate the NonBrokeredClient_Module_Im__tick__received function

stub.

void
NonBrokeredClient_Module_Im__tick__received(NonBrokeredClient_Module_Im__context
*context)
{

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

26

 ECOA__return_status return_status;
 ECOA__uint32 requestID;
 example__value_type val = 0;
 ECOA__global_time time;
 ECOA__log log;
 ECOA__boolean8 preferredAvailable = ECOA__FALSE;

 return_status =
NonBrokeredClient_Module_Im_container__get_absolute_system_time(context, &time);

 // Use the preferred service provide if available.
 NonBrokeredClient_Module_Im_container__PreferredAvailable_handle
preferredAvailableHandle;
 return_status =
NonBrokeredClient_Module_Im_container__PreferredAvailable__get_read_access(context
, &preferredAvailableHandle);

 if (return_status == ECOA__return_status_OK)
 {
 if (*(preferredAvailableHandle.data) == ECOA__TRUE)
 {
 preferredAvailable = ECOA__TRUE;
 log.current_size = sprintf((char *) &log.data, "***NonBrokeredClient -
using preferred - val before request = %d", val);
 NonBrokeredClient_Module_Im_container__log_info(context, log);

 return_status =
NonBrokeredClient_Module_Im_container__Request_Val_Preferred__request_sync(context
, &time, &val);

 log.current_size = sprintf((char *) &log.data, "***NonBrokeredClient -
using preferred - val from response = %d", val);
 NonBrokeredClient_Module_Im_container__log_info(context, log);
 }

 return_status =
NonBrokeredClient_Module_Im_container__PreferredAvailable__release_read_access(con
text, &preferredAvailableHandle);
 }

 // otherwise if the backup is available, use that.
 if (!preferredAvailable)
 {
 NonBrokeredClient_Module_Im_container__BackupAvailable_handle
backupAvailableHandle;
 return_status =
NonBrokeredClient_Module_Im_container__BackupAvailable__get_read_access(context,
&backupAvailableHandle);

 if (return_status == ECOA__return_status_OK)
 {
 if (*(backupAvailableHandle.data) == ECOA__TRUE)
 {

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 27

 log.current_size = sprintf((char *) &log.data, "***NonBrokeredClient -
using backup - val before request = %d", val);
 NonBrokeredClient_Module_Im_container__log_info(context, log);

 return_status =
NonBrokeredClient_Module_Im_container__Request_Val_Backup__request_sync(context,
&time, &val);

 log.current_size = sprintf((char *) &log.data, "***NonBrokeredClient -
using backup - val from response = %d", val);
 NonBrokeredClient_Module_Im_container__log_info(context, log);
 }

 return_status =
NonBrokeredClient_Module_Im_container__BackupAvailable__release_read_access(contex
t, &backupAvailableHandle);
 }
 }
}

That is, the availability of the preferred required service is interrogated. If it is available, the

NonBrokeredClient_Module_Im_container__Request_Val_Preferred__request_sync

operation is invoked. A log is performed prior to invoking the operation and after the operation

containing the value of “val”.

If the preferred Service is not available, the availability of the backup required service is

interrogated. If it is available, the

NonBrokeredClient_Module_Im_container__Request_Val_Backup__request_sync operation is

invoked. A log is performed prior to invoking the operation and after the operation containing the

value of “val”.

The Service Broker ASC
The Service Broker ASC checks the availability of both the preferred and backup required service at

start up. If either of the required services are available, the module sets its provided service as

available. This is done in the START module operation:

void ServiceBroker_Module_Im__START__received(ServiceBroker_Module_Im__context
*context)
{
 ServiceBroker_Module_Im_container__PreferredAvailable_handle
preferredAvailableHandle;
 ServiceBroker_Module_Im_container__BackupAvailable_handle
backupAvailableHandle;
 ECOA__return_status status;

 // Check if either the preferred or backup services are available.

 status =
ServiceBroker_Module_Im_container__PreferredAvailable__get_read_access(context,
&preferredAvailableHandle);

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

28

 if (status == ECOA__return_status_OK)
 {
 context->user.preferredAvailable = *(preferredAvailableHandle.data);

 status =
ServiceBroker_Module_Im_container__PreferredAvailable__release_read_access(context
, &preferredAvailableHandle);
 }

 status =
ServiceBroker_Module_Im_container__BackupAvailable__get_read_access(context,
&backupAvailableHandle);
 if (status == ECOA__return_status_OK)
 {
 context->user.backupAvailable = *(backupAvailableHandle.data);

 status =
ServiceBroker_Module_Im_container__BackupAvailable__release_read_access(context,
&backupAvailableHandle);
 }

 setProvidedServiceAvailable(context);
}

It makes use of the user function setProvidedServiceAvailable:

void setProvidedServiceAvailable(ServiceBroker_Module_Im__context *context)
{
 ServiceBroker_Module_Im_container__BrokeredAvailable_handle availableHandle;

 // Set the provided service available if either required service instance is
available.
 ECOA__return_status status =
ServiceBroker_Module_Im_container__BrokeredAvailable__get_write_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)
 {
 if (context->user.preferredAvailable == ECOA__TRUE || context-
>user.backupAvailable == ECOA__TRUE)
 {
 *(availableHandle.data) = ECOA__TRUE;
 }
 else
 {
 *(availableHandle.data) = ECOA__FALSE;
 }

 ECOA__return_status status =
ServiceBroker_Module_Im_container__BrokeredAvailable__publish_write_access(context
, &availableHandle);
 }

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 29

}

The module also receives notifications if the service availability of either service is changed.

Whenever a required service availability is changed, the availability of the provided service is

updated:

void
ServiceBroker_Module_Im__PreferredAvailable__updated(ServiceBroker_Module_Im__cont
ext* context)
{
 ServiceBroker_Module_Im_container__PreferredAvailable_handle
preferredAvailableHandle;
 ECOA__return_status status;

 // Check if either the preferred or backup services are available.

 status =
ServiceBroker_Module_Im_container__PreferredAvailable__get_read_access(context,
&preferredAvailableHandle);
 if (status == ECOA__return_status_OK)
 {
 context->user.preferredAvailable = *(preferredAvailableHandle.data);

 status =
ServiceBroker_Module_Im_container__PreferredAvailable__release_read_access(context
, &preferredAvailableHandle);
 }

 setProvidedServiceAvailable(context);
}

void
ServiceBroker_Module_Im__BackupAvailable__updated(ServiceBroker_Module_Im__context
* context)
{
 ServiceBroker_Module_Im_container__BackupAvailable_handle
backupAvailableHandle;
 ECOA__return_status status;

 status =
ServiceBroker_Module_Im_container__BackupAvailable__get_read_access(context,
&backupAvailableHandle);
 if (status == ECOA__return_status_OK)
 {
 context->user.backupAvailable = *(backupAvailableHandle.data);

 status =
ServiceBroker_Module_Im_container__BackupAvailable__release_read_access(context,
&backupAvailableHandle);
 }

 setProvidedServiceAvailable(context);
}

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

30

The request handler is implemented in the Request_for_Val entry point. If the preferred server is

available, the broker ASC “forwards” the request on to the preferred server. If only the backup

server is available, the broker ASC “forwards” the request on to the backup server:

void ServiceBroker_Module_Im__Request_for_Val__request_received
 (ServiceBroker_Module_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__global_time* time)
{
 ECOA__return_status return_status;
 example__value_type val;
 ECOA__log log;

 // Forward the request to the preferred if it's available.
 if (context->user.preferredAvailable)
 {
 log.current_size = sprintf((char *) &log.data, "***ServiceBrokered - using
preferred - val before request = %d", val);
 ServiceBroker_Module_Im_container__log_info(context, log);

 return_status =
ServiceBroker_Module_Im_container__Request_Val_Preferred__request_sync(context,
time, &val);

 log.current_size = sprintf((char *) &log.data, "***ServiceBrokered - using
backup - val from response = %d", val);
 ServiceBroker_Module_Im_container__log_info(context, log);
 }
 else if (context->user.backupAvailable)
 {
 // otherwise if the backup is available, use that.
 log.current_size = sprintf((char *) &log.data, "***ServiceBrokered - using
backup - val before request = %d", val);
 ServiceBroker_Module_Im_container__log_info(context, log);

 return_status =
ServiceBroker_Module_Im_container__Request_Val_Backup__request_sync(context, time,
&val);

 log.current_size = sprintf((char *) &log.data, "***ServiceBrokered - using
backup - val from response = %d", val);
 ServiceBroker_Module_Im_container__log_info(context, log);
 }

 // Always respond.
 return_status =
ServiceBroker_Module_Im_container__Request_for_Val__response_send(context, ID,
val);
}

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 31

The Preferred Server ASC
The Preferred Server sets its provided service as available at start up. This is done in the START

module lifecycle entry point:

void PreferredServer_Module_Im__START__received(PreferredServer_Module_Im__context
*context)
{
 // Set the service as functionally available.
 PreferredServer_Module_Im_container__Available_handle availableHandle;

 ECOA__return_status status =
PreferredServer_Module_Im_container__Available__get_write_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)
 {
 *(availableHandle.data) = ECOA__TRUE;
 ECOA__return_status status =
PreferredServer_Module_Im_container__Available__publish_write_access(context,
&availableHandle);
 }
}

The request handler is implemented in the Request_for_Val entrypoint:

void PreferredServer_Module_Im__Request_for_Val__request_received
 (PreferredServer_Module_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__global_time* time)
{
 ECOA__return_status return_status;

 // Preferred server responds immediately.
 return_status =
PreferredServer_Module_Im_container__Request_for_Val__response_send(context, ID,
1);
}

This function replies to the request with a data value of 1 by invoking the ECOA Container API

function PreferredServer_Module_Im_container__Request_for_Val__response_send.

In addition, the preferred server periodically changes the availability of the provided service. This is

done in the operation attached to the trigger instance “Switch_Availability”:

void
PreferredServer_Module_Im__Switch_Availability__received(PreferredServer_Module_Im
__context *context)
{
 // Set the service as functionally available.
 ECOA__log log;
 PreferredServer_Module_Im_container__Available_handle availableHandle;

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

32

 ECOA__return_status status =
PreferredServer_Module_Im_container__Available__get_write_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK)
 {
 if (*(availableHandle.data) == ECOA__TRUE)
 {
 log.current_size = sprintf((char *) &log.data, "Preferred server setting
service UNAVAILABLE");
 PreferredServer_Module_Im_container__log_info(context, log);
 *(availableHandle.data) = ECOA__FALSE;
 }
 else
 {
 log.current_size = sprintf((char *) &log.data, "Preferred server setting
service AVAILABLE");
 PreferredServer_Module_Im_container__log_info(context, log);
 *(availableHandle.data) = ECOA__TRUE;
 }
 ECOA__return_status status =
PreferredServer_Module_Im_container__Available__publish_write_access(context,
&availableHandle);
 }
}

The Backup Server ASC
The Backup Server sets its provided service as available at start up. This is done in the START module

lifecycle entry point:

void BackupServer_Module_Im__START__received(BackupServer_Module_Im__context
*context)
{
 // Set the service as functionally available.
 BackupServer_Module_Im_container__Available_handle availableHandle;

 ECOA__return_status status =
BackupServer_Module_Im_container__Available__get_write_access(context,
&availableHandle);

 if (status == ECOA__return_status_OK || status ==
ECOA__return_status_DATA_NOT_INITIALIZED)
 {
 *(availableHandle.data) = ECOA__TRUE;
 ECOA__return_status status =
BackupServer_Module_Im_container__Available__publish_write_access(context,
&availableHandle);
 }
}

The request handler is implemented in the Request_for_Val entrypoint:

 ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

 33

void BackupServer_Module_Im__Request_for_Val__request_received
 (BackupServer_Module_Im__context* context,
 const ECOA__uint32 ID,
 const ECOA__global_time* time)
{
 ECOA__return_status return_status;

 // Add an artificial delay in the backup server (to mimic a slower response
time in the non-preferred server).
 int i,j;
 for (i; i <= 500000000; i++)
 {
 while (j <= 500000000)
 {
 j++;
 }
 }

 return_status =
BackupServer_Module_Im_container__Request_for_Val__response_send(context, ID, 2);
}

This function replies to the request with a data value of 2 by invoking the ECOA Container API

function BackupServer_Module_Im_container__Request_for_Val__response_send. An artificial

delay has been added before the response to simulate a “worse response time” for the backup

server.

Program Output
When the ECOA “Wire Switch Example” Assembly is built and run (in a single Node deployment), an

output similar to Figure 12 should be achieved. Both Client ASCs output, at each iteration, the

value before sending the request message, and the value after receiving the response. In addition,

the preferred server logs when it sets the functional availability of its provided service. The value

returned to the request is 1 when the request is handled by the preferred server, and 2 when the

request is handled by the backup server.

ECOA Examples: Wire Switch Example

This document is developed for and on behalf of BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes
Aéroportés, GE Aviation Systems Limited, General Dynamics United Kingdom Limited and Leonardo MW Ltd, and the copyright is owned
by BAE Systems (Operations) Limited, Dassault Aviation, Bull SAS, Thales Systèmes Aéroportés, GE Aviation Systems Limited, General
Dynamics United Kingdom Limited and Leonardo MW Ltd. This document is developed by BAE Systems (Operations) Limited, Military Air
and Information, and Electronic Systems and is the Intellectual Property of BAE Systems (Operations) Limited, Military Air and
Information, and Electronic Systems. The information set out in this document is provided solely on an ‘as is’ basis and the co-developers
of this software make no warranties expressed or implied, including no warranties as to completeness, accuracy or fitness for purpose,
with respect to any of the information.

34

Figure 12 - ECOA "Wire Switch Example" in Execution

References
1 European Component Oriented Architecture (ECOA) Collaboration Programme:

Architecture Specification
(Parts 1 to 11)
“ECOA” is a registered trade mark.

2 Simple Example
http://www.ecoa.technology/tutorials.html

http://www.ecoa.technology/tutorials.html

